
TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep
Learning Models

Soumick Chatterjeea,b,c,∗∗, Arnab Dasa, Chirag Mandala, Budhaditya Mukhopadhyaya, Manish Vipinraja, Aniruddh Shuklaa,
Rajatha Nagaraja Raoa, Chompunuch Sarasaenc,d, Oliver Speckc,e,f,g, Andreas Nürnbergera,b,f

aFaculty of Computer Science, Otto von Guericke University Magdeburg, Germany
bData and Knowledge Engineering Group, Otto von Guericke University Magdeburg, Germany

cBiomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany
dInstitute for Medical Engineering, Otto von Guericke University Magdeburg, Germany

eGerman Center for Neurodegenerative Disease, Magdeburg, Germany
fCenter for Behavioral Brain Sciences, Magdeburg, Germany

gLeibniz Institute for Neurobiology, Magdeburg, Germany

Abstract

Clinicians are often very sceptical about applying automatic image processing approaches, especially deep learning based methods,
in practice. One main reason for this is the black-box nature of these approaches and the inherent problem of missing insights of
the automatically derived decisions. In order to increase trust in these methods, this paper presents approaches that help to interpret
and explain the results of deep learning algorithms by depicting the anatomical areas which influence the decision of the algorithm
most. Moreover, this research presents a unified framework, TorchEsegeta, for applying various interpretability and explainability
techniques for deep learning models and generate visual interpretations and explanations for clinicians to corroborate their clinical
findings. In addition, this will aid in gaining confidence in such methods. The framework builds on existing interpretability and
explainability techniques that are currently focusing on classification models, extending them to segmentation tasks. In addition,
these methods have been adapted to 3D models for volumetric analysis. The proposed framework provides methods to quantitatively
compare visual explanations using infidelity and sensitivity metrics. This framework can be used by data scientists to perform post-
hoc interpretations and explanations of their models, develop more explainable tools and present the findings to clinicians to increase
their faith in such models. The proposed framework was evaluated based on a use case scenario of vessel segmentation models
trained on Time-of-fight (TOF) Magnetic Resonance Angiogram (MRA) images of the human brain. Quantitative and qualitative
results of a comparative study of different models and interpretability methods are presented. Furthermore, this paper provides an
extensive overview of several existing interpretability and explainability methods.

Keywords: Deep Learning, Black-box, Interpretability, Explainability, Model introspection, MRA segmentation

1. Introduction

The use of artificial intelligence is widely prevalent today in
medical image analysis. It is, however, imperative to do away
with the black-box nature of Deep Learning techniques to gain
the trust of radiologists and clinicians, as a model’s erroneous
output might have a high impact in the medical domain.

Interpretability vs Explainability: Interpretability and Ex-
plainability methods aim to unravel the black-box nature of
decision-making in machine learning and deep learning mod-
els. Explainability focuses on explaining the internal work-
ing mechanisms of the model. In contrast, interpretability fo-
cuses on observing the effects of changes in model parameters
and inputs on the model prediction, hence attributing proper-
ties to the input, and it also requires a context, considering
the audience who is to interpret the properties and character-
istics for the model outcomes (Marcinkevičs and Vogt, 2020;

∗Esegeta (origin: ancient Greek) in Italian means interpreter of sacred texts
∗∗Corresponding author:

Email address: soumick.chatterjee@ovgu.de (Soumick Chatterjee)

Chakraborty et al., 2017). It is to be noted that earlier work
failed to draw a clear line of distinction between interpretabil-
ity and explainability as these terms are subjective and pertain
to the stakeholders, considering the audience who must under-
stand the model and its outcomes. Interpretability and explain-
ability nurture a sense of human-machine trust as they help the
users of the machine/deep-learning models understand how cer-
tain decisions are made by the model and are not limited to sta-
tistical metric-based approaches such as accuracy or precision.
This in turn, allows employing such models in mission-critical
problems such as medicine, autonomous driving, legal systems,
banking etc. The basis of measuring model transparency is said
to comprise simulatability, decomposability, and algorithmic
transparency (Chakraborty et al., 2017); and model functional-
ity which consists of textual descriptions of the model’s output
and visualisations of the model’s parameters. The goals to be
attained through interpretability of models (Marcinkevičs and
Vogt, 2020) are trust, reliability, robustness, fairness, privacy,
and causality. Explainability can be formulated as the explana-
tion of the decisions made internally by the model that in turn

1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

doi:10.20944/preprints202201.0072.v1

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202201.0072.v1

generates the observable, external conclusions arrived at by the
model. This promotes human understanding of the model’s in-
ternal mechanisms and rationale, which in turn helps build user
trust in the model (Emmert-Streib et al., 2020). The evalua-
tion criteria for model explainability include comprehensibility
by humans, fidelity and scalability of the extracted representa-
tions, and scalability and generality of the method (Belle and
Papantonis, 2020).

Some models are transparent and hence inherently under-
standable, such as Decision Trees, K-Nearest Neighbours,
Rule-based and Bayesian models, but some are opaque and
require post-hoc explanations. A post-hoc model explanation
can be through model-agnostic and model-specific techniques
that aim towards explaining a black-box model in human-
understandable terms. The European Union has also incorpo-
rated transparency and accountability of models in 2016 as a
criterion in the ethical guidelines of trustworthy AI (Arrieta
et al., 2020; Choo and Liu, 2018). Through interpretability
and explainability, to some degree, the following goals can be
achieved: trustworthiness, causality, confidence, fairness, infor-
mativeness, transferability and interactivity, which in turn can
help improve the model (Arrieta et al., 2020).

Data scientists can generate interpretability-explainability re-
sults for their opaque models and present the model’s reason-
ing or the model’s inner mechanism to the domain experts (e.g.
clinicians). If the reasoning is the same as a human domain
expert would have done, then the experts can have more faith
in that model, which in turn implies that the model can be in-
corporated into real-life workflows. Apart from building trust
in the models, interpretability and explainability techniques can
be used by the data scientists to improve their models as well,
by discussing the outcomes with the domain experts and im-
proving the model based on expert feedback. Moreover, accu-
rate (verified by experts) interpretability-explainability results
can be used as part of automatic or semi-automatic teaching
programs for trainees.

For classification models, there are multiple interpretability
ad explainability techniques supported by various libraries such
as Captum1, Torchray (Fong et al., 2019) and CNN Visualiza-
tion library 2 and many of the techniques are introduced in the
following section of this paper. However, this is more chal-
lenging for segmentation as the output is more complex than
just a simple class prediction. In this contribution, various in-
terpretability and explainability techniques used for classifica-
tion models have been adapted to work with segmentation mod-
els. On applying the interpretability techniques, essential fea-
tures or areas of the input image can be visualised, on which
the model’s output is critically based. By applying explainabil-
ity techniques, a better understanding of the knowledge repre-
sented in the model’s parameters can be achieved.

1.1. Contributions
This paper proposes a unified, flexible and scaleable

interpretability-explainability pipeline for PyTorch, Torch-

1https:captum.ai
2https://github.com/utkuozbulak/pytorch-cnn-visualizations

Esegeta, which leverages post-hoc interpretability and explain-
ability methods and can be applied on 2D or 3D deep learn-
ing models working with images. Apart from implementing
the existing methods for classification models, this research ex-
tends them for segmentation models. This pipeline can be ap-
plied to trained models with little to no modification, using ei-
ther a graphical user interface for easy access or directly us-
ing a python script. It also provides an easy platform for in-
corporating new interpretability or explainability techniques.
Moreover, this pipeline provides features to evaluate the in-
terpretability and explainability methods using two different
methods. First, using cascading randomisation of the model’s
weights, which can help evaluate how much the results are de-
pendent on the actual weights, and second, using quantitative
metrics: infidelity and sensitivity. Finally, the pipeline was ap-
plied on models trained to segment vessels from magnetic res-
onance angiograms (MRA), and the interpretability results are
shown here. Furthermore, apart from the technical contribu-
tions with the TorchEsegeta pipeline, this paper also provides
a comprehensive overview of several post-hoc interpretability
and explainability techniques.

2. Methods

This paper presents the TorchEsegeta framework, which in-
tegrates various interpretability and explainability techniques
available in different libraries and extends these techniques
for segmentation models. It is noteworthy that the develop-
ment of this pipeline started with the exploration of various
interpretability techniques for classifying COVID-19 and other
types of pneumoni (Chatterjee et al., 2020b). An initial pipeline
was developed under that project for classification models, but
only for 2D images. This research further extends that for 3D
volumetric images, as well as for segmentation models. Apart
from incorporating these features, the original pipeline was fur-
ther streamlined and improved during this research - to create
the first version of TorchEsegeta.

2.1. Incorporated libraries
The following interpretability and explainability based li-

braries have been explored in this research work - Captum,
CNN visualisation, TorchRay, DeepDream, Lucent, LIME and
SHAP

Captum is a library built on PyTorch and is used to provide
the interpretability of machine/deep-learning models. It pro-
vides many algorithms that evaluate the contribution of differ-
ent features in providing a model’s prediction and thus helps in
improving the model.

CNN visualisations (Ozbulak, 2019) provides different im-
plementations for the different interpretability techniques and
visualisations for CNN based models architectures.

TorchRay 3 is a package used for several visualisation meth-
ods for convolutional neural network architectures using Py-
Torch. It focuses on interpretability wherein it attempts to de-

3https://github.com/facebookresearch/TorchRay

2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https:captum.ai
https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/facebookresearch/TorchRay
https://doi.org/10.20944/preprints202201.0072.v1

termine which regions of the input image influence the final
prediction made by the model (Fong et al., 2019).

LIME (Local Interpretable Model-agnostic Explanations) is
a model-agnostic technique that provides post-hoc model ex-
planations to explain the decisions of the deep learning model,
and due to its model-agnostic nature, LIME flexibly explains
any unknown model (Choo and Liu, 2018; Samek et al., 2020;
Arrieta et al., 2020)

SHAP 4 (SHapley Additive exPlanation) is a post-hoc, game-
theoretical approach that computes shapley values in order to
explain the prediction made by the deep learning model (Lund-
berg and Lee, 2017).

Lucent 5 is the PyTorch implementation of lucid for the ex-
plainability of deep learning models. It aims to explain the de-
cision made by the deep neural network by explaining what is
being learnt by the various layers of the network.

DeepDream 6 is also an explainability technique that is used
to visualise the parameters learnt by the convolutional neural
network.

2.2. Implemented Interpretability Techniques
Interpretability techniques help to understand the focus area

of a model - can help understand the reasoning done by the
model. These techniques can be categorised into two groups:
model attribution and layer attribution.

2.2.1. Model Attribution Techniques
Model attribution techniques are the techniques to assess the

contribution of each attribute to the prediction of the model.
There is a long list of methods available in the literature under
the rubric model attribution techniques, hence for better under-
standing, they are further divided here into two groups: feature-
based and gradient-based.

1. Feature-based Techniques:
Methods under this group bring into play input and/or out-
put feature space to compute local or global model attribu-
tions.

(a) Feature Permutation - This is a perturbation based
technique (Breiman, 2001; Fisher et al., 2019) in
which the value of an input or group of inputs is
changed utilising random permutation of values in
a batch of inputs and calculating its corresponding
change in output. Hence, meaningful feature attri-
butions are calculated only when a batch of inputs is
provided.

(b) Shapley Value Sampling - The proposed method de-
fines an input baseline to which all possible permu-
tations of the input values are added one at a time,
and the corresponding output values and hence each
feature attribution is calculated. For permutation O,

4https://christophm.github.io/interpretable-ml-book/

shap.html
5https://github.com/greentfrapp/lucent
6https://ai.googleblog.com/2015/06/

inceptionism-going-deeper-into-neural.html

given player set N, the set of all possible permuta-
tions π(N) and the predecessors of player i Prei(O),
the Shapley value is given by

S hi(v) = σO∈π(N)
1
n!

(v(Prei(O)
⋃

i) − v(Prei(O)))
(1)

As all possible permutations are considered, this
technique is computationally expensive, and this can
be overcome by sampling the permutations and av-
eraging their marginal contributions instead of con-
sidering all possible permutations such as the Ap-
proShapley sampling technique (Castro et al., 2009)

(c) Feature Ablation - This method works by replacing
an input, or a group of inputs with another value de-
fined by a range or reference value and the feature
attribution of the input or group of inputs such as a
segment are computed. This method works based on
perturbation.

(d) Occlusion - Similar to the Feature Ablation method,
Occlusion (Zeiler and Fergus, 2014) works as a per-
turbation based approach wherein the continuous in-
puts in a rectangular area are replaced by a value de-
fined by a range or a reference value. Using this ap-
proach, the change in the corresponding outputs is
calculated in order to find the attribution of the fea-
ture.

(e) RISE Randomised Input Sampling for Explanation of
Black-box Models - It generates an importance map
indicating how salient each pixel is for the model’s
prediction (Petsiuk et al., 2018). RISE works on
black-box models since it does not consider gradients
while making the computations. In this approach, the
model’s outputs are tested by masking the inputs ran-
domly and calculating the importance of the features.

(f) Extremal Perturbations - They are regions of an im-
age that maximally affect the activation of a certain
neuron in a neural network for a given area in an im-
age (Fong et al., 2019). Extremal Perturbations lead
to the largest change in the prediction of the deep
neural network, when compared to other perturba-
tions defined by

ma = arg max
m:||m||1a|Ω|,m∈M

Φ(m ⊗ x) (2)

for the chosen area a. The paper also introduces area
loss to enforce the restrictions while choosing the
perturbations.

(g) Score-weighted Class Activation (Score CAM) - It
is a gradient-independent interpretability technique
based on class activation mapping (Wang et al.,
2020). Activation maps are first extracted, and each
activation then works as a mask on the original im-
age, and its forward-passing score on the target class
is obtained. Finally, the result can be generated by
the linear combination of score-based weights and
activation maps7. Given a convolutional layer l, class

7https://github.com/haofanwang/Score-CAM

3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://christophm.github.io/interpretable-ml-book/shap.html
https://christophm.github.io/interpretable-ml-book/shap.html
https://github.com/greentfrapp/lucent
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://github.com/haofanwang/Score-CAM
https://doi.org/10.20944/preprints202201.0072.v1

c, number of channels k and activations A:

Lc
S core−CAM = ReLU(

∑
k

αc
kAk

l) (3)

Gradient-based Techniques:. This group of methods
mainly use the model’s parameter space to generate the
attribute maps - calculated with the help of the gradients.

(a) Saliency - It was initially designed for visualising the
image classification done by convolutional networks
and the saliency map for a specific image (Simonyan
et al., 2013). It is used to check the influence of each
pixel of the input image in assigning a final class
score to the image I using the linear score model
S c(I) = wT

c I + bc for weight w and bias b.
(b) Guided Backpropagation - In this approach, during

the backpropagation, the gradients of the outputs are
computed with respect to the inputs (Springenberg
et al., 2014). RELU activation function is applied
to the input gradients, and direct backpropagation
is performed, ensuring that the backpropagation of
non-negative gradients does not occur.

(c) Deconvolution - This approach is similar to the
guided backpropagation approach wherein it ap-
plies RELU to the output gradients instead of the
input gradients and performs direct backpropaga-
tion (Zeiler and Fergus, 2014). Similarly, RELU
backpropagation is overridden to allow only non-
negative gradients to be backpropagated.

(d) Input X Gradient - It extends the saliency approach
such that the contribution of each input to the final
prediction is checked by multiplying the gradients of
outputs and their corresponding inputs in a setting of
a system of linear equations AX = B where A is the
gradients and B is the calculated final contribution of
input X (Shrikumar et al., 2016).

(e) Integrated gradients - This technique (Sundararajan
et al., 2017) calculates the path integral of the gradi-
ents along the straight line path from the baseline x′

to the input x. It satisfies the axioms of Completeness
i.e. the attributions must account for the difference in
output for the baseline x‘ and input x, Sensitivity i.e.
a non-zero attribution must be provided even to in-
puts that flatten the prediction function where the in-
put differs from the baseline, and Implementation In-
variance of gradients i.e. two functionally equivalent
networks must have identical feature attributions. It
requires no instrumentation of the deep neural net-
work for its application. All the gradients along the
straight line path from x′ to x are integrated along the
ith dimension as:

IGi(x) ::= (xi − x′i) ×
∫ 1

α=0

∂F(x′ + α × (x − x′))
∂xi

dα

(4)
(f) Grad Times Image - In this technique (Shrikumar

et al., 2017b) the gradients are multiplied with the
image itself. It is a predecessor of the DeepLift

method as the activation of each neuron for a given
input is compared to its reference activation, and
contribution scores are assigned according to the dif-
ference for each neuron.

(g) DeepLift - It is a method (Shrikumar et al., 2017a)
that considers not only the positive but also the neg-
ative contribution scores of each neuron based on its
activation concerning its reference activation. The
difference in the output of the activation function of
the neuron t under observation is calculated based on
the difference in input with respect to a reference in-
put. Contribution scores for each of the preceding
neurons x1, ..xn that influence t are assigned C4xi4t

that sums up to the difference in t’s activation:

n∑
i=1

C4xi4t = 4t (5)

(h) DeepLiftShap - This method extends the DeepLift
method and computes the SHAP values on an equiv-
alent, linear approximation of the model (Lundberg
and Lee, 2017). It assumes the independence of in-
put features. For model f, the effective linearization
from SHAP for each component is computed as:

φi(f3, y) ≈ myi f3 (yi − E[yi]) (6)

(i) GradientShap - This technique also assumes the in-
dependence of the inputs and computes the game-
theoretic SHAP values of the gradients on the lin-
ear approximation of the model (Lundberg and Lee,
2017). Gaussian noise is added to randomly selected
points, and the gradients of their corresponding out-
puts are computed.

(j) Guided GradCAM - The Gradient-weighted Class
Activation Mapping approach provides a means to
visualise the regions of an image input that are pre-
dominant in influencing the predictions made by the
model. This is done by visualising the gradient in-
formation pertaining to a specific class in any layer
of the user’s choice. It can be applied to any CNN-
based model architecture. The guided backpropa-
gation and GradCAM approaches are combined by
computing the element-wise product of guided back-
propagation attributions with upsampled GradCAM
attributions (Selvaraju et al., 2017).

(k) Grad-Cam++ - Generalised Gradient-based Visual
Explanations for Deep Convolutional Networks is a
method (Chattopadhay et al., 2018) that claims to
provide better predictions than the Grad-CAM and
other state-of-the-art approaches for object localisa-
tion and explaining occurrences of multiple object
instances in a single image. This technique uses a
weighted combination of the positive partial deriva-
tives of the last convolutional layer’s feature maps
concerning a specific class score as weights to gen-
erate a visual explanation for the corresponding class

4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

label. The importance wc
k of an activation map Ak

over class score Ycis given by

wc
k =

∑
i

∑
j

αkc
i j .relu(

∂Yc

∂Ak
i j

) (7)

Grad-CAM++ provides human-interpretable visual
explanations for a given CNN architecture across
multiple tasks, including classification, image cap-
tion generation and 3D action recognition.

(l) Vanilla Backpropagation and layer visualisation - It
is the standard gradient backpropagation technique
through the deep neural network wherein the gradi-
ents are visualised at different layers and what is be-
ing learnt by the model is observed, given a random
input image.

(m) Smooth Grad - In this method (Wang et al.,
2020; Smilkov et al., 2017) random Gaussian noise
N(0, σ2) is added to the given input image and the
corresponding gradients are computed to find the av-
erage values over n image samples

M̂c(x) =
1
n

n∑
1

Mc(x + N(0, σ2)) (8)

Vanilla and guided backpropagation techniques can
be used to calculate the gradients.

2.2.2. Layer Attribution Techniques
Layer Attribution methods evaluate the effect of each indi-

vidual neuron in a particular layer on the model output. There
are various types of layer attribution methods that have been
explored as part of this research work. Perturbation-Based ap-
proaches (Wang et al., 2020) perturb the original input and ob-
serve the change in the prediction of the model, and are highly
time-consuming.

1. Inverted representation - The aim of this technique is to
generate the given input image after a number of n target
layers. An inverse of the given input image representation
is computed (Mahendran and Vedaldi, 2014) in order to
find an image Φ(x0) whose representation best matches the
input image Φ0 while minimising the given loss l such that

x∗ = arg min
x∈RHxWxC

l(Φ(x),Φ0) + λR(x) (9)

2. Layer Activation with Guided Backpropagation - This
method (Springenberg et al., 2015) is quite similar to
guided backpropagation, but instead of guiding the signal
from the last layer and a specific target, it guides the signal
from a specific layer and filter. The guided backpropaga-
tion method adds an additional guidance signal from the
higher layers to the usual backpropagation.

3. Layer DeepLift - This is the DeepLift method as men-
tioned in the model attribution techniques (Lundberg and
Lee, 2017), but applied with respect to the particular hid-
den layer in question.

4. Layer DeepLiftShap - This method is similar to the
DeepLIFT SHAP technique mentioned in the model attri-
bution techniques (Lundberg and Lee, 2017), applied for
a particular layer. The original distribution of baselines
is taken, and the attribution for each input-baseline pair
is calculated using the Layer DeepLIFT method, and the
resulting attributions are averages per input example. As-
suming model linearity, φ(f3, y) ≈ myi

5. Layer GradCam The GradCam attribution for a given
layer is provided by this method (Selvaraju et al., 2017).
The target output’s gradients are computed concerning the
particularly given layer. The resultant gradients are aver-
aged for each output channel (dimension 2 of output). The
average gradient for each channel is then multiplied by the
layer activations. The results are then added over all the
channels. For the class feature weights w, global average
pooling is performed over the feature maps A such that

S c =
∑

k

wc
k

1
Z

∑
i

∑
j

Ak
i j (10)

6. Layer GradientShap - This is analogous with Gradi-
entSHAP (Lundberg and Lee, 2017) method as mentioned
in the model attribution techniques but applied for a par-
ticular layer. Layer GradientSHAP adds Gaussian noise
to each input sample multiple times, wherein a random
point along the path between baseline and input is selected,
and the gradient of the output with respect to the identified
layer is computed. The final SHAP values approximate the
expected value of gradients * (layer activation of inputs -
layer activation of baselines).

7. Layer Conductance This method (Dhamdhere et al., 2018)
provides the conductance of all neurons of a particular hid-
den layer. Conductance of a particular hidden unit refers
to the flow of Integrated Gradients attribution through this
hidden unit. The main idea behind using this method is
to decompose the computation of the Integrated Gradients
via the chain rule. One property that this method of con-
ductance satisfies is that of completeness. Completeness
means that the conductances of a particular layer add up
to the prediction difference of F(x) F(x′) for input x and
baseline input x′. Other properties that are satisfied by this
method are that of Linearity and insensitivity.

8. Internal Influence - This method calculates the contribu-
tion of a layer to the final prediction of the model by inte-
grating the gradients with respect to the particular layer
under observation. The internal representation is influ-
enced by an element j as defined by (Leino et al., 2018)
such that

χs
i (f , P) =

∫
χ

∂g
∂z j

∣∣∣∣
h(x)

P(x)dx (11)

wherein s = 〈g, h〉 for the slice of the network represented
by s as a function of tuple g,h. It is similar to the inte-
grated gradients approach where instead of the input, the
gradients are integrated with respect to the layer.

9. Contrastive Excitation Backpropagation/Excitation Back-
propagation - This approach is used to generate and vi-
sualise task-specific attention maps. Excitation Backprop

5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

method as proposed by (Zhang et al., 2018) is to pass along
top-down signals downwards in the network hierarchy via
a probabilistic Winner-Take-All process wherein the most
relevant neurons in the network are identified for a given
top-down signal. Both top-down and bottom-up informa-
tion is integrated to compute the winning probability of
each neuron as defined by

yi =

N∑
j=1

wi jx j (12)

for input x and weight matrix w. The contrastive excitation
backpropagation is used to make the top-down attention
maps more discriminative.

10. Layer Activation It computes the activation of a particular
layer for a particular input image (Liu et al., 2020). It helps
to understand how a given layer reacts to an input image.
One can get an excellent idea of what part or features of
the image at which a particular layer looks.

11. Linear Approximator - This is a technique to overcome in-
consistencies of post-hoc model interpretation; linear ap-
proximator combines a piecewise linear component and a
nonlinear component (Guo et al., 2020; Fong et al., 2019).
The piecewise linear component describes the explicit fea-
ture contributions by piecewise linear approximation that
increases the expressiveness of the deep neural network.
The nonlinear component uses a multi-layer perceptron
to capture feature interactions and implicit nonlinearity,
which in turn increases the prediction performance. Here,
the interpretability is obtained once the model is learned
in the form of feature shapes and has high accuracy.

12. Layer Gradient X Activation This method (Ancona et al.,
2017) computes the element-wise product of a given layers
gradient and activation. It is a combination of the gradient
and activation methods of layer attribution. The output
attributions are returned as a tuple if the layer input/output
contains multiple tensors or a single tensor is returned.

2.3. Implemented Explainability Techniques

Explainability techniques aim to unravel the internal working
mechanism of a model - tries to explain the knowledge repre-
sented inside the model’s parameters.

2.3.1. DeepDream
As the network is trained using many examples, it is essen-

tial to check what has been learnt from the input image. Hence,
visualising what has been learnt at different layers of the CNN
based network gives rise to repetitive patterns of different lev-
els of abstraction, enabling to interpret of what has been learnt
by the layers. This visualisation can be realised using Deep-
Dream. Given an arbitrary input image, any layer from the net-
work can be picked, and the detected features at that layer can
be enhanced. It is observed that the initial layers are sensitive to
basic features in the input images, such as edges, and the deeper
layers identify complex features from the input image. As an

example, InceptionNet 8 was trained on animal images, and it
was observed that the different layers of the network could in-
terpret an interesting remix of the learnt animal features in any
given image.

2.3.2. LIME
Local Interpretable Model-agnostic Explanations (LIME) is

a technique for providing post-hoc model explanations. LIME
constructs an approximated surrogate, locally linear model or
decision tree of a given complex model that helps to explain the
decisions of the original model, and due to its model-agnostic
nature, it can be employed to explain any model even when
its architecture is unknown (Choo and Liu, 2018; Samek et al.,
2020; Arrieta et al., 2020). LIME also performs the transfor-
mation of input features to obtain a representation that is inter-
pretable to humans (Belle and Papantonis, 2020). In the original
work (Ribeiro et al., 2016), the authors propose LIME, an algo-
rithm that provides explanations for a model f, that are locally
faithful in the locality Πx, for an individual prediction of the
model, such that users can ensure that they can trust the predic-
tion before acting on it. LIME provides an explanation for f in
the form of a model g and g ∈ G where G is a set of all pos-
sible interpretable models and Ω(g) which is the complexity of
the interpretable model, is minimised. L(f , g,Πx) is the fidelity
function that measures the unfaithfulness of g in estimating f
in the locality Πx. Hence, the explanation provided by LIME
is (Ribeiro et al., 2016):

ξ(x) = argming∈GL(f , g,Πx) + Ω(g) (13)

2.3.3. SHAP
SHapley Additive exPlanation (Lundberg and Lee, 2017) is

similar to LIME such that it approximates an interpretable, ex-
planation model g of the original, complex model f, in order
to explain a prediction made by the model f(x). SHAP pro-
vides post-hoc model explanations for an individual output and
is model-agnostic. It calculates the contribution of each fea-
ture in producing the final prediction and is based on the prin-
ciples of Game Theory such as Shapley Values (Belle and Pa-
pantonis, 2020). SHAP works on simplified, interpretable input
data x‘, which is analogous to the original input data such that
x = hx(x). SHAP must ensure consistency theorems (Lund-
berg and Lee, 2017),local accuracy such that g(x‘) matches f (x)
when x = hx(x) and missingness such that if an attribute’s value
is 0, it does not not imply that its corresponding contribution to
the prediction is 0. Hence, the contribution of each attribute x
can be calculated as follows (Lundberg and Lee, 2017):

φi(f , x) = Σz‘⊆x‘
|z‘|!(M − |z‘| − 1)!

M!
[fx(z‘) fx(z‘ \ i)] (14)

where z‘ ∈ {0, 1}M and |z‘| is the number of non-zero entries in z‘

and z‘ ⊆ x‘ represents all z‘ vectors where the non-zero entries
are a subset of the non-zero entries in x‘.

8https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-
neural.html

6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

2.3.4. Lucent
Based on Lucid 9, Lucent is a library implemented using Py-

Torch for the explainability of deep learning models. The im-
plementation provides optivis, which is the main framework for
providing the visualisations of parameters learnt by the differ-
ent layers of the deep neural network. It can be used to visualise
torchvision models with no overhead for setup. Activation at-
las methods, feature visualisation methods, building blocks and
differentiable image parameterisations can be used to visualise
the different features learnt by the network. Activation atlas
methods comprise different methods which show the network
activations for a particular class or average activations in a grid
cell of the image. Feature visualisation methods help under-
stand the crucial features for a neuron, entire channel, or layer.
Building blocks help to visualise the activation vector and its
components for the given image. Differentiable image parame-
terisations find the types of image generation processes which
can be backpropagated through, and this helps to perform ap-
propriate preconditioning of the input image to improve the op-
timisation of the neural network.

2.4. The Pipeline: TorchEsegeta

The pipeline architecture is shown in Figure 1. The
pipeline is implemented keeping in line with the object-oriented
methodology. One of the key features of the pipeline is that it is
easily scalable, according to the customised needs of the end-
user because of the JSON based configuration. The pipeline is a
plug and play software and can be easily used by the end-users.
This pipeline is publicly available on GitHub10.

2.5. Features of TorchEsegeta

3D input data is especially important for medical images like
MRI and CT scans. Hence, the framework has been built to
support both 2D and 3D input data. One of the most impor-
tant features of the pipeline is scalability. New methods can be
added to the pipeline seamlessly by the users and used as per
requirement.

The JSON based configuration will allow the user to execute
the pipeline according to their specific needs and is easy to use
the feature. The logging facility allows the users to track the
pipeline execution and make changes in case of any error be-
cause of wrong parameter usage.

The timeout facility makes sure that no method execution
is above a certain threshold of time. That way, it saves both
computation resources as well as valuable time for the end-user.

2.5.1. Parallel Execution
Another way of saving much valuable time for the user is

by using Multi-GPU, which helps in the parallel execution of
multiple methods simultaneously. The multi-threading feature
enables the execution of multiple methods on the same GPU
allowing the users to make optimum use of resources.

9https://github.com/tensorflow/lucid
10TorchEsegeta on GitHub: https://github.com/soumickmj/

TorchEsegeta

2.5.2. Patch-based Execution
Patch-based models are supported in the pipeline and thus

helps running computationally intensive methods. Existing in-
terpretability and explainability methods do not give an option
to be directly used on patch-based models.

2.5.3. Automatic Mixed Precision
Automatic Mixed Precision (Micikevicius et al., 2017) facil-

ity is also incorporated in the framework aiding in the faster
execution of the code. Due to the use of this technique, the
overall memory consumption while executing the methods is
greatly reduced. The execution time is also reduced as a result.

2.5.4. Wrapper for Segmentation Models
The interpretability techniques that are available publicly are

basically for classification problems. The framework is an ex-
tension to the segmentation problem with the help of a task-
specific wrapper functionality -

1. Pixel-wise multi-class classification
2. Threshold-based pixel classification

Pixel-wise multi-class classification. In this method, the pixel
scores are summed up for all pixels predicted as each class. Two
main steps are performed:

a. Pixel-wise Class Assignment - In this step, for every pixel,
the argmax class is computed. Let y be the image with dimen-
sions

yi j = arg max
k

(yi jk) (15)

b. Final Output Calculation - In this step, the sum of the pixel
scores for all pixels is predicted as each class is computed.

Outin = count{yi j

∣∣∣ yi j ∈ class m} (16)

where 0 ≤ m ≤ Nc

Threshold based pixel classification. This method performs
class identification by Otsu threshold and then sums up the pix-
els for each class. This task is also performed in two steps:

a. Normalisation - In this step, the input image is normalised
by the following function:

yi jnorm =
yi j − min(y)

max(y) − min(y)
(17)

b. Pixel-wise binarisation - The pixel-wise binarisation is
performed with the help of Otsu thresholding.

yi j =

{1 where yi jnorm>th

0 elsewhere

(18)

where th = otsu(yi jnorm)
The output for both the processes is a tensor with a single

value for each class.

7

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://github.com/tensorflow/lucid
https://github.com/soumickmj/TorchEsegeta
https://github.com/soumickmj/TorchEsegeta
https://doi.org/10.20944/preprints202201.0072.v1

Figure 1: TorchEsegeta pipeline architecture

Figure 2: GUI: parameter selection

2.5.5. Graphical User Interface

A Graphical User Interface (GUI) has been created to pro-
vide the end-user with an intuitive graphical layout to select
the parameters and interpretability methods according to their
requirement. The first screen shown in Figure 2 provides the
user with a dialogue box for parameter selection. The user can
choose the model nature, model name, dataset and many more
run-time parameters. Once these selections are made, the ’Se-
lect Methods’ button will display the following dialogue box as
shown in Figure 3. The users have a wide range of interpretabil-
ity methods to choose from in this dialogue box. Once the inter-
pretability methods are chosen, the method-specific parameter
dialogue box is displayed to the user as in Figure 4. The users
can then choose the visualisation method, device id and many
other parameters. On clicking the ’Next’ button, the code will
be executed in the back-end, and the output will be generated
in the output path specified in Figure 2.

2.6. Evaluation Methods
In order to evaluate and compare the methods, both qualita-

tive and quantitative aspects have been considered.

2.6.1. Qualitative evaluation
For qualitative or visual evaluation, the cascading randomi-

sation (Adebayo et al., 2018) technique was implemented, in
which the model weights are randomised successively, from
the top to the bottom layers. The learned weights of the lay-
ers are destroyed from top to bottom by this technique. While
doing so, the interpretability and explainability techniques are
applied to each state of randomisation. If the interpretability-
explainability results are dependent upon the model’s weights
- how it is supposed to be - then the quality would decrease as
the amount of randomisation increases. If they are not depen-
dent, then the results will be unaffected by the randomisation -
hence, the technique is not accurate or unsuitable for the current
model.

2.6.2. Quantitative evaluation
For the quantitative evaluation, the uncertainty method was

chosen due to the unavailability of ground truth data for the
attribution images. Two metrics have been used for comput-
ing the uncertainty values of the attribution methods: Infi-
delity (Yeh et al., 2019)] and Sensitivity (Yeh et al., 2019).
These metrics can be used only on model attribution methods
as of now. It is to be noted that the qualitative metrics can be
used on top of cascading randomisation as an additional level
of evaluation.

Infidelity11 represents the expected mean-squared error be-
tween the explanation multiplied by a meaningful input pertur-
bation and the differences between the predictor function at its
input and perturbed input. Sensitivity11 measures the extent of
explanation change when the input is slightly perturbed.

11 https://captum.ai/api/metrics.html

8

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

Figure 3: GUI: method selection

Figure 4: GUI: Method-specific parameter selection a the chosen method

3. Results

To evaluate the TorchEsegeta pipeline for segmentation mod-
els, a use-case of vessel segmentation was chosen.

3.1. Models

The segmentation network models chosen for this use case
are from the DS6 paper (Chatterjee et al., 2020a). The models
are UNet, UNet MSS and UNet MSS with Deformation. The
difference between the UNetMSS and UNetMSS with Defor-
mation is a change in the number of up-sampling and down-
sampling layers and a modified activation function. UNetMSS
performs downsampling five times using convolution striding
and uses transported convolution for upsampling, and it in-
cludes instance normalisation and Leaky ReLU in the convo-
lution blocks. On the contrary, the modified version applies
four down-sampling layers using max-pool and performs up-
sampling using interpolation combined with Batch normalisa-
tion and ReLU in its convolution block.

For UNetMSS with Deformation, a small amount of variable
elastic deformation is added at the time of training, along with
each volume input. The authors have given a comprehensive
overview of the method, and based on their results, one can see
that UNetMSS with Deformation is the best performing model.

3.2. Use Case Experiment

As a use case study, the previously mentioned interpretabil-
ity and explainability techniques were explored while analysing
the results of a vessel segmentation model trained on Time-of-
fight (TOF) Magnetic Resonance Angiogram (MRA) images
of the human brain called DS6 (Chatterjee et al., 2020a). The
model automatically segments vessels from 3D 7 Tesla TOF-
MRA images.

A study about the attribution outputs of the different meth-
ods across the three models was conducted. The zoomed-in
portions of the attribution images show even more closely the
model’s focus areas.

Figure 5 shows examples of interpretability techniques com-
pared across the three models.

Figure 6 portrays similar interpretability results from U-Net
MSS Deformation model.

In all of these attribution maps, whichever pixel is high-
lighted by red represents high activation, indicating the most
important pixels in the input according to the respective
method, and the other region represents lower to no activation.

3.3. Notable observations

In Figure 5, the CNN Visualization Layer Activation Guided
Backpropagation attribution map shows a lot of attributions,
most of which are on parts other than the brain vessels, i.e. the
region of interest. The respective zoomed images also confirm
the observation.

On the contrary, methods such as Captum Deeplift and
TorchRay Gradient provide fewer attributions and miss out on
major portions of the brain vessels.

9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

Torchray Deconvolution provides more attributions compar-
atively; however, most of the attributions are concentrated on
certain areas of the brain.

CNN Visualization Vanilla Backpropagation, Captum De-
convolution and Captum Saliency provide better results com-
pared to the others - they provided more human-interpretable
results. These methods mainly attribute on the region of inter-
est. However, a look at the respective zoomed images would
reveal that for Captum Saliency, there are attributions even in
the areas surrounding the brain vessels. For the other two, the
attributions are mainly on the brain vessels only.

Figure 6 shows a comparison of some of the better perform-
ing interpretability methods for model U-Net MSS Deforma-
tion model.

In Figure 7 and Figure 8, the layer-wise attributions for the
three models are shown, for the methods: Excitation Backprop-
agation, Layer Conductance, Layer DeepLift and Layer Gradi-
ent X Activation. For all the methods, the maximum attribu-
tions are shown in the Conv3 layer. Among the three models,
U-Net MSS Deformation seems to focus better than the other
two, as it attributions can be seen all over the brain contrary to
the other two (it is to be noted the vessels are present all over the
brain, and not focused in a specific region). The network focus
shifts while going from the first to the last layer of the models.
In the initial layers, the focus is more on selective regions of
the brain. However, towards the deeper layers like Conv3, the
focus is almost on the entire brain.

3.4. Evaluation
A comparative study of the cascading randomisation tech-

nique is shown for the outputs of 4 interpretability methods for
all the models in Figure 9.

Moreover, to show the functionality of the quantitative evalu-
ation part of the pipeline, a few methods were compared quan-
titatively using infidelity and sensitivity, the scores are shown
in Table 1 and 2.

UNet UNetMSS UNetMSS Deform
Guided Backprop 5.87e−17 2.08e−17 2.59e−18

Deconvolution 3.20e−16 2.62e−16 1.48e−16
Saliency 1.95e−15 1.54e−15 1.23e−16

Table 1: Infidelity Scores

UNet UNetMSS UNetMSS Deform
Guided Backprop 1.156 0.917 0.831

Deconvolution 1.210 1.188 1.140
Saliency 1.171 1.197 1.153

Table 2: Sensitivity Scores

4. Discussion

In this work, various interpretability and explainability meth-
ods were adopted for segmentation models and were used to in-
terpret the network. A pipeline has been developed and made

public on GitHub10, TorchEsegeta, comprised of those inter-
pretability and explainability methods that can be applied on
2D or 3D image-based deep learning models for classification
and segmentation. The pipeline was experimented with using
three models UNet, UNetMSS and the UNetMSS-Deform, for
the task of vessel segmentation from MRAs. The evaluation of
the methods have been done qualitatively using cascading ran-
domisation and quantitatively using evaluation metrics. This
pipeline can be used by data scientists to improve their models
by tweaking their models based on the shown interpretability
and explainability - to improve the reasoning of the models, in
turn improving the performance. Moreover, they can use this
pipeline to show it to the model’s users, for them to have trust
in the model while using them in high-risk situations. On the
other hand, this pipeline can be used by expert decision-makers,
like clinicians, as a decision support system - by understanding
the reasoning done by the models, they can get assistance in
decision making.

It is noteworthy that the current pipeline can be extended for
reconstruction purposes, and new interpretability and explain-
ability methods can be added to the existing pipeline. Ground
truth based pixel-wise interpretability for segmentation models
can be implemented, which will add a new dimension to the ex-
isting work. Nevertheless, the real evaluation of the interpreta-
tions and explanations can only be done by the domain experts
- in this case of vessel segmentation, by the clinicians - who
can judge whether these results are actually useful or not. This
step of the evaluation was not performed under the scope of the
current work and will be performed in the near future.

Author Contributions

Conceptualisation, S.C.; Literature Survey, A.S. and R.N.R.;
Architecture Design, S.C. and A.D.; Pipeline Development,
A.D., C.M. and B.M.; Experiments, A.D.; Quantitative Evalua-
tion, M.V.; GUI Development, B.M.; Visualisation, C.S.; Writ-
ing - original draft, S.C., C.M. and R.N.R.; Writing - review and
editing, S.C., O.S. and A.N. All authors have read and agreed
to the submitted version of the manuscript.

Funding

This work was in part conducted within the context of the In-
ternational Graduate School MEMoRIAL at Otto von Guericke
University (OVGU) Magdeburg, Germany, kindly supported by
the European Structural and Investment Funds (ESF) under the
programme ”Sachsen-Anhalt WISSENSCHAFT International-
isierung” (project no. ZS/2016/08/80646).

Conflicts of Interest

The authors declare no conflict of interest.
Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B., 2018.

Sanity checks for saliency maps. arXiv preprint arXiv:1810.03292 .
Ancona, M., Ceolini, E., Öztireli, C., Gross, M., 2017. Towards better un-

derstanding of gradient-based attribution methods for deep neural networks.
arXiv preprint arXiv:1711.06104 .

10

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

Figure 5: Example of interpretability techniques compared across three models: U-Net, U-Net MSS and U-Net MSS with deformation, along with its
corresponding zoomed image.

Figure 6: Some of similar interpretability results of U-Net MSS Deformation model.

11

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

Figure 7: Layer-based interpretability methods: Excitation Backpropagation and Layer Conductance, shown using representative UNets

12

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

Figure 8: Layer-based interpretability methods: Layer Deeplift and Layer Gradient X Activation, shown using representative UNets

13

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

Figure 9: Example of cascading radomisation outputs of the three models: U-Net, U-Net MSS and U-Net MSS with deformation.

14

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

https://doi.org/10.20944/preprints202201.0072.v1

Arrieta, A.B., Dı́az-Rodrı́guez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
A., Garcı́a, S., Gil-López, S., Molina, D., Benjamins, R., et al., 2020. Ex-
plainable artificial intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai. Information Fusion 58, 82–115.

Belle, V., Papantonis, I., 2020. Principles and practice of explainable machine
learning. arXiv preprint arXiv:2009.11698 .

Breiman, L., 2001. Random forests. Machine learning 45, 5–32.
Castro, J., Gómez, D., Tejada, J., 2009. Polynomial calculation of the shapley

value based on sampling. Computers & Operations Research 36, 1726–
1730.

Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M.,
Cerutti, F., Srivastava, M., Preece, A., Julier, S., Rao, R.M., et al.,
2017. Interpretability of deep learning models: a survey of results, in:
2017 IEEE smartworld, ubiquitous intelligence & computing, advanced
& trusted computed, scalable computing & communications, cloud &
big data computing, Internet of people and smart city innovation (smart-
world/SCALCOM/UIC/ATC/CBDcom/IOP/SCI), IEEE. pp. 1–6.

Chatterjee, S., Prabhu, K., Pattadkal, M., Bortsova, G., Sarasaen, C., Dubost,
F., Mattern, H., de Bruijne, M., Speck, O., Nürnberger, A., 2020a. Ds6,
deformation-aware semi-supervised learning: Application to small vessel
segmentation with noisy training data. arXiv preprint arXiv:2006.10802 .

Chatterjee, S., Saad, F., Sarasaen, C., Ghosh, S., Khatun, R., Radeva, P., Rose,
G., Stober, S., Speck, O., Nürnberger, A., 2020b. Exploration of inter-
pretability techniques for deep covid-19 classification using chest x-ray im-
ages. arXiv preprint arXiv:2006.02570 .

Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N., 2018.
Grad-cam++: Generalized gradient-based visual explanations for deep con-
volutional networks, in: 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), IEEE. pp. 839–847.

Choo, J., Liu, S., 2018. Visual analytics for explainable deep learning. IEEE
computer graphics and applications 38, 84–92.

Dhamdhere, K., Sundararajan, M., Yan, Q., 2018. How important is a neuron?
arXiv preprint arXiv:1805.12233 .

Emmert-Streib, F., Yli-Harja, O., Dehmer, M., 2020. Explainable artificial
intelligence and machine learning: A reality rooted perspective. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery 10, e1368.

Fisher, A., Rudin, C., Dominici, F., 2019. All models are wrong, but many
are useful: Learning a variable’s importance by studying an entire class of
prediction models simultaneously. J. Mach. Learn. Res. 20, 1–81.

Fong, R., Patrick, M., Vedaldi, A., 2019. Understanding deep networks via
extremal perturbations and smooth masks, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2950–2958.

Guo, M., Zhang, Q., Liao, X., Zeng, D.D., 2020. An interpretable neural net-
work model through piecewise linear approximation. arXiv:2001.07119.

Leino, K., Sen, S., Datta, A., Fredrikson, M., Li, L., 2018. Influence-directed
explanations for deep convolutional networks, in: 2018 IEEE International
Test Conference (ITC), IEEE. pp. 1–8.

Liu, H., Brock, A., Simonyan, K., Le, Q.V., 2020. Evolving normalization-
activation layers. arXiv preprint arXiv:2004.02967 .

Lundberg, S., Lee, S.I., 2017. A unified approach to interpreting model predic-
tions. arXiv preprint arXiv:1705.07874 .

Mahendran, A., Vedaldi, A., 2014. Understanding deep image representations
by inverting them. arXiv:1412.0035.

Marcinkevičs, R., Vogt, J.E., 2020. Interpretability and explainability: A ma-
chine learning zoo mini-tour. arXiv preprint arXiv:2012.01805 .

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Gins-
burg, B., Houston, M., Kuchaiev, O., Venkatesh, G., et al., 2017. Mixed
precision training. arXiv preprint arXiv:1710.03740 .

Ozbulak, U., 2019. Pytorch cnn visualizations. https://github.com/

utkuozbulak/pytorch-cnn-visualizations.
Petsiuk, V., Das, A., Saenko, K., 2018. Rise: Randomized input sampling for

explanation of black-box models. arXiv:1806.07421.
Ribeiro, M.T., Singh, S., Guestrin, C., 2016. ” why should i trust you?” ex-

plaining the predictions of any classifier, in: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining,
pp. 1135–1144.

Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., Müller, K.R., 2020.
Toward interpretable machine learning: Transparent deep neural networks
and beyond. arXiv preprint arXiv:2003.07631 .

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.,
2017. Grad-cam: Visual explanations from deep networks via gradient-

based localization, in: Proceedings of the IEEE international conference on
computer vision, pp. 618–626.

Shrikumar, A., Greenside, P., Kundaje, A., 2017a. Learning important features
through propagating activation differences, in: International Conference on
Machine Learning, PMLR. pp. 3145–3153.

Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A., 2016. Not just a
black box: Learning important features through propagating activation dif-
ferences. arXiv preprint arXiv:1605.01713 .

Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A., 2017b. Not just a
black box: Learning important features through propagating activation dif-
ferences. arXiv:1605.01713.

Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034 .

Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M., 2017. Smooth-
grad: removing noise by adding noise. arXiv preprint arXiv:1706.03825
.

Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806 .

Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2015. Striving
for simplicity: The all convolutional net. arXiv:1412.6806.

Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic attribution for deep
networks, in: International Conference on Machine Learning, PMLR. pp.
3319–3328.

Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel, P., Hu,
X., 2020. Score-cam: Score-weighted visual explanations for convolutional
neural networks, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 24–25.

Yeh, C.K., Hsieh, C.Y., Suggala, A.S., Inouye, D.I., Ravikumar, P., 2019.
On the (in) fidelity and sensitivity for explanations. arXiv preprint
arXiv:1901.09392 .

Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional
networks, in: European conference on computer vision, Springer. pp. 818–
833.

Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S., 2018. Top-
down neural attention by excitation backprop. International Journal of Com-
puter Vision 126, 1084–1102.

15

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 doi:10.20944/preprints202201.0072.v1

http://arxiv.org/abs/2001.07119
http://arxiv.org/abs/1412.0035
https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/utkuozbulak/pytorch-cnn-visualizations
http://arxiv.org/abs/1806.07421
http://arxiv.org/abs/1605.01713
http://arxiv.org/abs/1412.6806
https://doi.org/10.20944/preprints202201.0072.v1

	Introduction
	Contributions

	Methods
	Incorporated libraries
	Implemented Interpretability Techniques
	Model Attribution Techniques
	Layer Attribution Techniques

	Implemented Explainability Techniques
	DeepDream
	LIME
	SHAP
	Lucent

	The Pipeline: TorchEsegeta
	Features of TorchEsegeta
	Parallel Execution
	Patch-based Execution
	Automatic Mixed Precision
	Wrapper for Segmentation Models
	Graphical User Interface

	Evaluation Methods
	Qualitative evaluation
	Quantitative evaluation

	Results
	Models
	Use Case Experiment
	Notable observations
	Evaluation

	Discussion

