Preprint
Article

The Cationic Amphiphilic Drug Hexamethylene Amiloride Eradicates Bulk Breast Cancer Cells and Therapy-Resistant Subpopulations With Similar Efficiencies

Altmetrics

Downloads

240

Views

374

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 December 2021

Posted:

06 January 2022

You are already at the latest version

Alerts
Abstract
The resistance of cancer cell subpopulations, including cancer stem cell (CSC) populations, to apoptosis-inducing chemotherapeutic agents is a key barrier to improved outcomes for cancer patients. The cationic amphiphilic drug hexamethylene amiloride (HMA) has been previously demonstrated to efficiently kill bulk breast cancer cells independent of tumor subtype or species, but acts poorly toward non-transformed cells derived from multiple tissues. Here we demonstrate that HMA is similarly cytotoxic toward breast CSC-related subpopulations that are resistant to conventional chemotherapeutic agents, but poorly cytotoxic toward normal mammary stem cells. HMA inhibits the sphere-forming capacity of FACS-sorted human and mouse mammary CSC-related cells in vitro, specifically kills tumor but not normal mammary organoids ex vivo, and inhibits metastatic outgrowth in vivo, consistent with CSC suppression. Moreover, HMA inhibits viability and sphere formation by lung, colon, pancreatic, brain, liver, prostate and bladder tumor cell lines, suggesting that its effects may be applicable to multiple malignancies. Mechanistically, HMA elicits the permeabilization of the limiting lysosomal membrane, a hallmark feature of the lysosome-dependent cell death pathway. Our observations expose a key vulnerability intrinsic to cancer stem cells, and point to novel strategies for the exploitation of cationic amphiphilic drugs in cancer treatment.
Keywords: 
Subject: Medicine and Pharmacology  -   Oncology and Oncogenics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated