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ABSTRACT 

The objective of this work was to determine the antimicrobial properties of an allium-based 

antimicrobial formulation named VEG’LYS (https://phytoauxilium.com/) on the growth of 

plant pathogenic microorganisms such as fungi, oomycetes, and bacteria. Two anthracnose-

related species of the fungal genus Colletotrichum, C. gloeosporioides, and C. fragariae, the 

oomycete Phytophthora cactorum and the bacterium Xanthomonas fragariae associated with 

strawberry plants and two fungi Alternaria dauci and Botrytis cinerea, associated with carrot 

plants were tested in vitro. In in planta experiments, A. dauci and B. cinerea were used.. 

VEG’LYS inhibited the growth of all plant pathogens tested. We found that both curative and 

preventive in planta treatments with VEG’LYS inhibited the growth of A. dauci and B. cinerea 

in carrot. Furthermore, after spraying VEG’LYS on carrot plants the expression of the 

Pathogenesis-related (PR) 10 gene correlated with the magnitude of infection both in treated 

and untreated plants. Additionally, it has been shown, that the field application of VEG’LYS 

on strawberry plants results in a reduction of bacterial and fungal pathogens of strawberry fruits 

stored in refrigerator. In summary, VEG’LYS is a potential resistance inducer that seems to be 

suitable for use in both curative and preventive treatments to reduce the diseases and rotting of 

fruits and vegetables caused by different plant pathogens.  

 

Keywords: Plant extracts, VEG’LYS, antimicrobial effects, curative and preventive treatment.  
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INTRODUCTION   

Plants are irreplaceable food sources for humans (Bennett, 2007). Edible, medicinal and spice 

plants contain a large number of secondary metabolites that retard or inhibit the growth of 

pathogenic microorganisms such as bacteria and fungi (Burt et al., 2003). These components 

are called biopesticides (Kumar et al., 2021) or botanicals and  have a role in the plant’s innate 

immune response elicited by microbial pathogens and pests, and are produced ubiquitously in 

roots, seeds, flowers, stems, and leaves, highlighting their physiological importance (Carlos et 

al., 2015). The antimicrobial compounds in plant materials are commonly found in the essential 

oil fraction of leaves (rosemary, sage, basil, oregano, thyme, and marjoram), flowers or buds 

(clove), bulbs (garlic and onion), seeds (caraway, fennel, nutmeg, and parsley), rhizomes 

(asafoetida), fruits (pepper and cardamom), or other parts of plants (Gutierrez et al., 2008). In 

the context of agricultural pest management, natural plant products are best suited for use in 

organic food production in industrialised countries and could also play a greater role in the 

production and post-harvest protection of food products in developing countries (Gurjar et al., 

2012). The advantages of using compounds of plant origin to control plant diseases include 

mostly low health and environmental hazards and low risk of resistance development by 

pathogens and pests (Amadioha, 2003) and less expensive, easily available (because of their 

natural occurrence) and depending on the concentration, they may have less detrimental effects 

on seed viability, plant growth and food quality (Opara and Wokocha, 2008). 

Several plant species contain antimicrobial components such as flavonoids, phenolics and 

triterpenoids in abundant amounts that exhibit a significant protective effect on H2O2-mediated 

injury in rat adrenal medulla PC12 cells at low concentrations, and can also prevent pathogenic 

growth, when applied on infected crops (Dong et al., 2014). The extract of Glycyrrhiza glabra 

inhibits growth of some Gram-negative bacteria such as Salmonella species, Shigella species 

and E. coli (Shirazi et al., 2007). Extracts from Yucca schidigera also have antibacterial 

activity, which was attributed to the presence of saponin, a compound found to inhibit 

microbial growth through haemolytic activity (Hassan et al., 2010). The control of Bacterial 

Leaf Spot (BLS) caused by seed-borne Xanthomonads by means of biopesticides in tomato has 

provided an alternative control approach against copper-resistant strains present in Tanzania 

(Shenge et al., 2007). Moreover, plant extracts from Aloe vera, Coffea arabica and Yucca 

schidigera are potential candidates for seed treatment against seed-borne Xanthomonads in 

tomato (Mbega et al., 2012). The most commonly and sustainably used biopesticides in 

agricultural practice are extracts of the Neem tree (Azadirachta indica, A. juss) and garlic 
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(Allium sativum, L.), essential oils from Nettle (Urtica spp.), rue (Ruta graveolens), thyme 

(Thymus vulgaris) and tea tree (Melaleuca alternifolia) (Gurjar et al., 2012; Srivasata et al., 

2011). Especially components with phenolic structures such as caracole, eugenol, and thymol 

were highly active against plant pathogens (Das et al., 2010).  

An Allium-based antimicrobial formulation from garlic and onion was recently tested for 

antimicrobial properties in several applications. The volatile antimicrobial substance allicin, a 

thiosulfinate with two allyl groups as carbon chains (diallylthiosulphinate), is synthesized in 

garlic (Leontive et al., 2018), when the tissues are damaged and the substrate alliin (S-allyl-L-

cysteine sulfoxide) is converted by the enzyme alliin lyase. Allicin is readily membrane-

permeable and undergoes thiol-disulfide exchange reactions with free thiol groups in proteins. 

Allicin applications reduced seed-borne Alternaria spp on carrot, Phytophthora leaf blight on 

tomato and tuber blight on potato, Magnaporthe on rice and downy mildew (Peronospora 

parasitica) on Arabidopsis thaliana (Koch and Slusarenko 1990; Slusarenko et al., 2008). The 

product named VEG’LYS was developed as antimicrobial product for surface sterilization of 

seeds, and was reported to be an effective antimicrobial product for use on seeds of bitter gourd 

and globe artichoke (Samadi et al., 2015; Okubara et al., 2017). The product was also used to 

maintain nutrient quality and extend the shelf life of strawberries, with no effect on the taste 

(Samadi et al., 2017). The antimicrobial effects of VEG’LYS was demonstrated against 

Fusarium graminearum, the causal agent of Fusarium head blight and root rot of cereals as 

well as powdery mildew caused by the ascomycete fungus Blumeria graminis (Imani et al., 

2013). 

In this study, the antimicrobial properties of VEG’LYS were further evaluated against some of 

the most devastating phytopathogenic microorganisms. The effect of VEG’LYS against 

pathogens was analysed by in vitro assays and the amount of pathogens was determined by 

qPCR after VEG’LYS treatment on the experimental plants. Additionally, the role of 

VEG’LYS as a potential systemic resistance inducer was determined by evaluation of PR gene 

expression upon curative and preventive VEG’LYS treatment on plants. 

 

MATERIALS AND METHODS 

The Allium extract VEG’LYS was obtained from Phytoauxilium (http://phytoauxilium.com). 

Strawberry (Fragaria ananassa var. Cherry) and carrot (Daucus carota ssp. sativus, var. Rotin) 
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plants were investigated following inoculation by the two fungal pathogens Alternaria dauci 

and Botrytis cinerea. Carrot plants were grown in pots in vermiculite with a grain size of 0 - 3 

mm in a plant growing chamber under 16 h light/8 h dark intervals (light intensity approx. 160 

µmol m-2 s-1) at 24°C with 60% relative humidity. 

 

In vitro assays of VEG’LYS effects on pathogen growth 

Three primary growth media were used, Malt Extract Peptone Agar for Colletotrichum 

gloeosporioides, V-8 Juice Agar for Phytophthora cactorum and Nutrient Agar for 

Xanthomonas fragariae. Different concentrations of VEG’LYS-F (0%, 0.01%, 0.05%, 0.1% 

(v/v)) were added to the media when allowed to cool down after autoclaving. Four plates of 25 

ml medium in 100 mm-diameter petri dishes were prepared for each VEG’LYS concentration. 

The inoculation of microbes onto the respective media was done using agar blocks with the 

help of a sterilised cork-borer and a needle. Fungal and oomycete growth was quantified using 

ImageJ software (http://imagej.nih.gov/ij/). The control plate served as 100% growth area. The 

bacterial activity was measured by optical density (OD600). 

 

Inoculum preparation and in vivo pathogen assays 

Alternaria dauci and Botrytis cinerea conidia were collected from two-week-old sporulation 

medium (sucrose, 20 g; CaCO3, 30 g; agar, 20 g; pH 7.4; Shahin et al., 1979) and potato 

dextrose agar (dextrose, 15 g; Potato Extract, 4 g; water, 1 l; agar, 15 g; pH 5.6), respectively, 

by pouring Tween 20 water (0.05% v/v) and gently scrubbing with a sterile glass rod. Conidia 

suspensions were filtered through a single layered, sterilized Miracloth and the remaining 

dislodged conidia were removed by flooding the media plates with sterilize distilled water into 

a 50 ml falcon tube, centrifuged at 3500 rpm for 10 min. The supernatant was removed and the 

pellet was re-suspended in 20 ml of sterile deionized water. Conidia solutions were adjusted to 

103 conidia ml-1 and 108 conidia ml-1, respectively, by a hemocytometer (Fuchs Rosenthal). 

Conidia solutions from both pathogens were then sprayed on carrot plants (Daucus carota var. 

‘Rotin’) with the plants incubated in white plastic boxes lined with papers and maintained 

under 100% relative humidity with constant illumination from white light tube (Philips TLD 

36 W/830HF) in the hood. Infection was evaluated at 7 dpi. 
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Experimental procedure for carrot plants and pathogenic fungi following VEG’LYS treatments 

This experimental procedure involved curative and preventive methods. In the curative method, 

10 ml each of A. dauci and B. cinerea conidia solutions (103 conidia ml-1 and 108 conidia ml-1, 

respectively)  was sprayed on the carrot plants followed by 10 ml of 0.03% (v/v) VEG’LYS 

exactly 48 h after pathogen inoculation on the plant materials and vice versa for the preventive 

method. Four white plastic boxes lined with papers, each containing three experimental carrot 

plants were maintained under 100% relative humidity by spraying the plastic boxes with 

sterilized water under constant illumination from white light tube (Philips TLD 36 W/830HF). 

The first plastic box was used as the control experimental setup sprayed with sterilize distilled 

water, the second plastic box contained plant samples sprayed with only pathogen conidia 

solutions, the third as the curative carrot samples and the fourth as preventive materials. The 

whole experimental setup was observed for few weeks. 

 

Treatment of strawberry fields with VEG’LYS  

The strawberry field was divided into four rows with each row containing 25 strawberry plants. 

Different VEG’LYS concentrations were used. The first row was sprayed with sterilized water, 

the second row with 0.1% v/v, the third row with 0.2% v/v and the fourth row with 0.5% v/v. 

The application of VEG’LYS was done twice per week for one month. Nine ripe fruits were 

harvested separately from each row and stored in a refrigerator in an uncovered small white 

box and checked daily for the presence of fungal growth. 

 

Fungal DNA quantification 

Genomic DNA was extracted from carrot callus and pure cultures of A. dauci and B. cinerea 

to test the specific primers with qPCR for the carrot ubiquitin gene (forward 5’-

aagcccaagaagatcaagca-3’; reverse 5’-tcaaaatgattggccatgaa-3’), A. dauci glyceraldehyde-3-

phosphate dehydrogenase (gpd) gene (forward 5’-aagcttccccaagcactcacaa-3’ reverse 5’-

ctgcgttctgcagctgtagaga-3’) and B. cinerea β-tubulin gene (forward 5’-gttacttgacatgctctgccatt-

3’; reverse 5’-cacggctacagaaagttagtttctacaa-3’. Samples from each experimental material 

(uninfected carrots, curative material, preventive material and carrot plants infected with A. 

dauci or B. cinerea) were collected into 50 ml falcon tubes and immediately frozen by liquid 

nitrogen which were later stored at -80oC from which DNA extraction was carried out for 
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fungal gene quantification using QIAGEN DNeasy plant mini kit. The DNA extraction was 

followed by polymerase chain reaction (PCR) for the amplification of the fungal gene of 

interest. 

 

RNA Extraction 

For gene expression analysis, plant sample materials were crushed into fine powder in liquid 

nitrogen and total RNA was extracted using the TRIzol® Reagent. The RNA samples were all 

treated with DNAse to remove all the traces of remaining genomic DNA. The experiment was 

performed in PCR tubes with a total volume of 10 µL. Incubation followed immediately as the 

DNAse was added to each sample for 30 min at 37oC. Subsequently, 2 µL 0.25 M EDTA was 

added and incubated at 65oC for 10 min. One µg of RNA (5 µL from the previous preparation) 

was used for cDNA synthesis with Quantiscript Reverse Transcriptase (Thermo Fisher 

Scientific Inc., Germany) with a total volume of 20 µL. The quality of the cDNA synthesized 

was checked on an Agarose gel (1 µL from each sample) in a PCR reaction with the carrot 

ubiquitin gene (forward and reverse primers). 

 

Quantitative PCR (qPCR) 

200 ng/µL of cDNA was used as a template for the quantitative real-time PCR in an Applied 

Biosystems 7500 Fast real-time thermocycler (ThermoFisher Scientific Inc., Germany). A 96-

well plate was used for the qPCR reaction with 20 µL of the reaction mixture pipetted into each 

well where amplification process was performed with SYBR Green JumpStart TaqReadyMix 

(Sigma-Aldrich GmbH, Germany). Each sample was performed with three repetitions. Each 

run of the qPCR reaction included a non-template control in order to rule out test reagent 

contamination. Respective melting curves were determined at the end of each cycle to ensure 

amplification of only one PCR product. Ct values were calculated with the 7500 Fast software 

supplied with the instrument. Transcript levels of the target genes were determined via the ∆Ct 

method with a reference gene (Schmittgen and Livak, 2008). The relative expression of each 

pathogen genes versus the plant reference gene (carrot ubiquitin) was calculated, then the ratio 

of expression and the biomass of fungal DNA for each sample was determined against the 

control sample (Wild type Carrot plants). All statistical calculations were made via unpaired 

two-tailed student’s t-test. 
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RESULTS 

VEG’LYS has strong antimicrobial effects against various microbial pathogens in in vitro 

assays 

First, we determined the antimicrobial effects of different VEG'LYS concentrations in 

inhibiting the in vitro growth of microbial pathogens in axenic culture. VEG’LYS (0.01% and 

0.05% v/v) completely inhibited the axenic growth of the oomycete Phytophthora cactorum 

(Fig.1a,b). Moreover, 0.05% and 0.1% VEG’LYS also completely inhibited the axenic growth 

of the ascomycete Colletotrichum gloeosporioides, while 0.01% VEG’LYS strongly but not 

completely inhibited its growth (Fig. 2a,b). The growth of the bacterium Xanthomonas 

fragariae in liquid medium also was strongly inhibited by 0.01% and 0.02% VEG’LYS as 

shown by the significant lower OD600 values as compared to the untreated control (Fig. 3). 

 

Evaluation of fungal growth and PR gene expression upon curative and preventive VEG’LYS 
treatments 
 
Next, we tested the effects of VEG’LYS on the two devastating ascomycete pathogens 

Alternaria dauci and Botrytis cinerea during carrot plant infection. Fungal conidia (108 and 103 

conidia ml-1, respectively) were sprayed in a volume of 10 ml per plant. At 7 dpi, carrot leaves 

and petioles showing heavy symptoms of gray mold caused by Botrytis cinerea.. Gradual 

fungal growth was observed in plants inoculated with A. dauci conidial solutions, taking up to 

six weeks for total infection of all parts of the plants. In contrast, the untreated plants were 

strongly infected and infection symptoms were visible in virtually every part of the plants (Fig. 

S1). To estimate the level of infection on both VEG’LYS treated and untreated plant material, 

we quantified the expression of A. dauci Glyceraldehyde-3-phosphate dehydrogenase (Adgpd) 

and B. cinerea β-tubulin genes (Bc1) by qPCR and normalized it with the carrot ubiquitin gene. 

Both preventive and curative treatments of carrot plants with VEG’LYS strongly reduced A. 

dauci and B. cinerea infections (Fig. 4; S2).  

Next, we analysed the expression levels of the genes Dau c1.01,  Dau c1.02 and  Dau c1.03, 

which all belong to the PR 10 gene family of carrot, in treated vs. untreated samples. The carrot 

plants were inoculated with A. dauci and B. cinerea, respectively, and treated with VEG’LYS 

vs. mock. We found that in all the treated carrot plants the expression of PR 10 family genes 
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were significantly reduced compared with the untreated plants (Fig. 5), corroborating that the 

development of the fungi is greatly reduced by VEG’LYS.  

 
Pre-harvest VEG’LYS application on a strawberry fields prevented post-harvest pathogenic 
growth 

To evaluate the effect of VEG’LYS in extending the shelf life of strawberry, nine fruits from 

each row were harvested and stored in the fridge in an uncovered small box and observed daily 

for the presence of fungal growth. We found that pre-harvest VEG’LYS application in a 

strawberry field prevents post-harvest pathogenic growth of fruits compared with control 

samples showing visible fungal presence at 17 days post-harvest (Fig. S3). 

 
 
DISCUSSION 
 
Plant extracts are beneficial alternatives for fungicides in control of phytopathogenic fungi due 

to the presence of bioactive chemicals such as flavonoids, phenols, tannins, and alkaloids. 

These secondary metabolites are more adaptable, associated with fewer environmental 

consequences compared to chemical pesticides, and are more acceptable to consumers. 

Bioactive compounds are part of an innate response elicited by most living organism, and are 

produced ubiquitously in plant roots, seeds, flowers, stems, and leaves, highlighting their 

physiological importance. Garlic is a well-known plant with anti-microbial activity. Wilson et 

al, (1997) reported that in the laboratory test of effects of 345 plant extracts on Botrytis cinerea, 

the garlic extract had an amazing inhibition reaction. The bioactive ingredients of VEG’LYS 

(https://phytoauxilium.com/) are proprietary; however, previous research on Allium-based 

compounds indicated that the thiosulphinate allicin and its derivatives account for the 

antibacterial activity of garlic (Hughes et al. 1991). Allicin acts by disrupting the sulfhydryl 

groups of proteins and the pools of other thiol stress constituents, such as glutathione (Miron 

et al. 2000; Müller et al. 2016). Based on the universality of the target sites of allicin, it is 

predicted that the activity of VEG’LYS would be durable, with no anticipated development of 

microbial resistance. 

To determine the antimicrobial properties of VEG’LYS on the growth of plant pathogenic 

microorganisms such as fungi, oomycetes, and bacteria, in vitro, curative and preventive 

applications were tested. 
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In vitro Inhibition Assays 

The inhibitory activity of VEG’LYS was initially evaluated by determining the concentration 

needed to inhibit microbial colony growth by 100% (IC100) on agar medium. Both C. 

gloeosporioides and P. cactorum had an IC100 value of 0.01%. This result is consistent with 

those of Okubara et al. (2017) who has shown that the inhibitory activity of VEG’LYS on 

various fungi and oomycetes had an IC100 value of 0.01% such as for Alternaria dauci and 

Botrytis cinerea. Reduction in growth rates of a group of soil borne fungal pathogens of cereals 

was observed at sub inhibitory concentrations of VEG’LYS. It was concluded that the 

Inhibition range may depend both on the pathogen and treatment (Okubara et al., 1997). 

 

The curative and preventive effects of VEG’LYS on carrot plants 

To evaluate the effects of VEG’LYS against pathogens on carrot plants, two different 

approaches were employed, namely curative and preventive methods. The results further 

confirmed the effect of VEG’LYS to prevent the growth of the necrotrophic grey mould fungus 

B. cinerea. Recently, several genes and signalling factors have been identified to play roles in 

pathogenesis, particularly in appressorium formation and penetration and these include the 

NOX complex, MAPK cascades, heterotrimetric G proteins, Histidine kinases and the Cyclic 

adenosine monophosphate (cAMP) signalling pathways (Castillo et al., 2017; Kumar et al. 

2021,  review article). In the present study differential expression levels of the PR 10 gene were 

analysed by RT-qPCR after VEG’LYS treatment on infected carrots. Both in treated and 

untreated plants, the expression level of PR-10 correlated with the magnitude of infection. 

 

Pre-harvest application of VEG’LYS in a strawberry field 

Strawberry fruits are consumed and beloved all over the world due to their taste, aroma, soft 

texture, nutritional and curative values. The fruit has high anthocyanin, phenol and vitamin C 

contents and these compounds are imperative for an effective free radical scavenging activity 

(Terefe et al., 2009). However, strawberry fruits are highly susceptible to fungal pathogens. In 

the past, the use of fungicides for their preservation and longer shelf life was common but 

nowadays WHO prevents the use of chemicals for preservation and warns about their effects 

on public health and the environment (Samadi et al., 2017). Strawberry contains 90 percent 

water, and the high levels of respiration make it vulnerable to microbial contamination and 

transpiration, which results in a short shelf life (Wright et al., 1997). Some studies suggested 
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increasing strawberry shelf life by applying ascorbic acid, salicylic acid, radiations and various 

plant extracts (Boyraz and Ozcan, 2005). All these methods have their pros and cons. In this 

study, the effectiveness of VEG’LYS in extending the shelf life of strawberry fruits was further 

analysed. The results showed that even 17 days post-harvest, 75 percent of fruits treated with 

VEG’LYS were still not infected by fungi. Presence of pathogenic growth was confirmed by 

phenotyping in which there was a heavy infection detectable on fruits sprayed with sterilized 

water (the first row) with a massive loss of the bright red color, juicy texture and the sweetness 

of the fruits due to the presence of pathogen(s). This was in contrast to fruits treated with 

different concentrations (0.1 and 0.2 %) of VEG’LYS in which no pathogen presence could be 

ascertained but some had a slight loss of the bright red color and the succulence of the fruits. 

Most interestingly in fruits harvested from the row sprayed with 0.5% VEG’LYS, tissue 

integrity was maintained (there was no trace of pathogen growth, the bright red color, the juicy 

texture and the sweetness was intact as seen in the graphical result shown) and this 

concentration did not affect the taste and the sweetness of the fruits.  

VEG’LYS inhibited the growth of B. cinerea and A. dauci on carrot plants, applied both 

curatively and preventively. The level of infection or the damage inflicted by the pathogens on 

the inoculated carrot plants was rated by phenotyping, which was supported by molecular 

analysis through qPCR. The data generated from molecular quantification of fungal growth in 

plant samples corroborated with the physical rating of infection levels. These results suggest 

that these plant extracts (i.e. VEG’LYS) have a prospective potential for plant protection and 

can be used in order to keep up with a constantly growing global demand for food supplies. 
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Legends of figures 

Fig.1 Inhibition by VEG’LYS of fungal growth under the lab condition. After 5dpi, the 

concentration at 0.05% completely inhibited the growth of Phytophthora cactorum. The 

concentration at 0.01% allowed a minimal pathogen growth (A and B). 

 

Fig. 2 Inhibition by VEG’LYS of fungal growth under the lab condition. After 5dpi, the 

concentration at 0.05% completely inhibited the growth of Colletotrichum gloeosporioides. 

The VEG’LYS concentration at 0.01 % allowed a moderate pathogen growth (A and B). 

 

Fig. 3 Inhibition by VEG’LYS of bacterial growth under the lab condition.  All the 

VEG‘LYS concentrations tested (0.01% and 0.02%) inhibited the growth of X. fragariae. 

Minimum LC should be determined as below 0.01%. Bars represent standard deviation of three 

replicates and significant changes are marked: * = p < 0.05; ** = P < 0.01; ***= p < 0.001 

(Student’s t test). 

 

Fig. 4. Quantification of fungal DNA in carrot sprayed with fungal conidia. 
 
Relative amount of DNA were quantified by qPCR. (A) Relative amount of DNA (Adgpd gene) 

of A. dauci in carrot plants normalized with carrot ubiquitin gene. (B) Relative amount of DNA 

(β-tubulin gene) of B. cinerea in carrot plants normalized with carrot ubiquitin gene. Bars 

represent standard deviation of three replicates and significant changes are marked: * = p < 

0.05; ** = P < 0.01; ***= p < 0.001 (Student’s t test). : PR = preventive; CU=curative; CA = 

Control non-treated 

 

Fig. 5 Quantification of PR 10 gene expression in carrot sprayed with fungal conidia. 

Relative expression of three different carrot PR 10 genes (syn. Dau c 1.01; Dau c 1.02 and 

Dau c 1.03) was quantified with qPCR and normalized with carrot ubiquitin. (A-C) Plants 

sprayed with A. dauci conidia. (D-F) Plants sprayed with B. cinerea conidia. Bars represent 

standard deviation of three replicates and significant changes are marked: * = p < 0.05; ** = P 

< 0.01; ***= p < 0.001 (Student’s t test). PR = preventive; CU=curative; CA = Control non-

treated 
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Fig. S1 Carrot plants showing infection growth after being sprayed with A. dauci and B. 

cinerea conidia solution. 

Carrot plants shown three weeks (A) and six weeks (B) post inoculation with A. dauci conidia. 

(C) A. dauci conidial development in an infected carrot leaf (arrow) at 7 dpi. (D) Carrot plants 

heavily infected by B. cinerea at 7 dpi.  

 

Fig. S2 The effect of VEG’LYS against B. cinerea and A. dauci on carrot plants.  

(A) Control plants treated with distilled (mock)-water, (B) grey rot symptoms in carrot leaves 

caused by B. cinerea and A. dauci conidia (E) on carrot plants without VEG’LYS treatment. 

Preventive method indicating carrot plants were sprayed with VEG’LYS and subsequently 

followed by B. cinerea (C) and A. dauci conidia (F) solution exactly 48 h post inoculation. 

Curative method with carrot plants being sprayed with B. cinerea (D) andd A. dauci conidia 

(G) solution and subsequent treatment with VEG’LYS after 48 h. 

 

Fig. S3 Experiments with strawberry fruits. 

(A) Strawberry plants growing under field condition. (B) Pre-harvest VEG’LYS application on 

a strawberry field prevented post-harvest pathogenic growth on treated strawberries vs. 

untreated plants at 17 days post-harvest (arrow). At a VEG’LYS concentration of 0.5% (v/v) 

no infected fruits were found. (C) the infections rate were calculated in percent. 
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