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Abstract: Optimal use of Hierarchical Bayesian Model (HBM) assembled aerosol optical depth
(AOD)-PM2s fused surfaces in epidemiologic studies requires homogeneous temporal and spatial
fused surfaces. No analytical method is available to evaluate spatial heterogeneity. The temporal
case-crossover design was modified to assess the spatial association between four experimental
AOD-PMazs fused surfaces and four respiratory-cardiovascular hospital events in 12 km? grids. The
maximum number of adjacent lag grids with significant odds ratios (ORs) identified homogeneous
spatial areas (HOSAs). The largest HOSA included 5 grids (lag grids 04; 720 km?) and the smallest
HOSA contained 2 grids (lag grids 01; 288 km?). Emergency department asthma and inpatient
asthma, myocardial infarction, and heart failure ORs were significantly higher in rural grids without
air monitors than in urban grids with air monitors at lag grids 0, 1, and 01. Rural grids had higher
AOD-PM2; concentration levels, population density, and poverty percent than urban grids. Warm
season ORs were significantly higher than cold season ORs for all health outcomes at lag grids 0, 1,
01, and 04. The possibility of elevated fine and ultrafine PM and other demographic and environ-
mental risk factors synergistically contributing to elevated respiratory-cardiovascular chronic dis-
eases in persons residing in rural areas was discussed.

Keywords: spatial heterogeneity, AOD-PMas, respiratory-cardiovascular, lag grids, urban-rural,
season

1. Introduction

Published studies emphasize the detrimental effects of acute and chronic exposure
to elevated ambient PM2s (fine PM) concentration levels on respiratory-cardiovascular
chronic disease morbidity [1-18]. Along with PMz2s, PMoa (ultrafine PM) adversely im-
pacts respiratory-cardiovascular chronic diseases [19-26]. A major difference between
fine PM and ultrafine PM is aerosol particle size, with the latter being smaller than the
former [18,27]. Ambient PMasaerosol particles are inhaled through the mouth and nose
and travel down the trachea and bronchial tubes deep into the lungs [25,27-28]. Ultrafine
PM can traverse lung tissue, enter the circulatory system, and can be deposited into heart
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tissue [27,29]. Various authors have suggested that PM’s adverse physiologic and health
outcome effects are inversely related with aerosol particle size, with smaller aerosol par-
ticles producing greater physiologic and epidemiologic disruptions from normal func-
tioning than larger aerosol particles [21,26,28,30-31]. Currently, ongoing population-
based PM monitoring only occurs for PM2s, and not for ultrafine PM [20]. Several publi-
cations have described associations between ambient ultrafine PM and adverse health
outcomes [19,21,23-24,30]. But a recent review of epidemiologic studies evaluating the
association between PMo.1 and respiratory-cardiovascular outcomes concluded that the
available results are equivocal [26]. Therefore, at this time, epidemiologic study results
have not been able to confirm all of the anticipated worse health outcomes following acute
or chronic exposure to ultrafine PM compared to acute or chronic exposure to fine PM on
respiratory-cardiovascular diseases.

Frequent, accurate, and timely measurements of ambient PM25 concentration levels,
obtained from on-the-ground air monitors, are essential for protecting human health and
decreasing respiratory-cardiovascular morbidity and mortality [5,8,11-12,32-35]. There
are challenges in using ambient PM2s air monitors, especially those maintained by the U.S.
Environmental Protection Agency (EPA) Air Quality System (AQS) in epidemiologic
studies [34]. The majority of these PMos filter-based monitors measure ambient PM2s
concentration levels every three or six days most often in urban areas with higher popu-
lation density [34]. Fewer studies have evaluated the effects of ambient fine PM exposure
on health outcomes in rural areas [36-42]. Increasing the number of stationary ambient
PM25 air monitors in rural areas would provide accurate readings of fine PM concentra-
tion levels and, at the same time, decrease spatial heterogeneity. Epidemiologic studies
could use PM:s readings made in rural areas to determine fine PM’s short- and long-term
contribution to the occurrence of respiratory-cardiovascular hospital events [3]. Unfor-
tunately, this type of enhancement to the AQS air monitoring network would be expen-
sive to implement and maintain.

An alternative and more cost effective solution would be to utilize remote sensing
methodology instead of expanding the on-the-ground ambient fine PM monitoring net-
work especially in rural areas [3,6-7,15,17,36,40,42-45]. Different investigators have com-
bined satellite AOD readings with PM:sair monitor measurements by utilizing HBM or
other statistical procedures to attain continuous (homogeneous) temporal-spatial aerosol
concentration level fused surfaces that purport to accurately represent ambient PM2s
measurements in urban areas that have air monitors as well as concentration level esti-
mates in rural areas that do not have air monitors [3,15,42,46-50]. Urban and rural areas
also differ on residents’ demographics. Urban areas have more poverty, greater popula-
tion density, and more non-Hispanic non-white residents than rural areas [3,33,37-38].
Numerous publications have emphasized the importance of describing the temporal and
spatial attributes of PMzs concentration levels measured by ambient air monitors [33,51-
54] and AOD-PM25model estimates in areas with and without air monitors [3,42,47,55-
61].

The 99 12 km? CMAQ (Community Multiscale Air Quality) grids which define the
Baltimore study area, are temporally and spatially heterogeneous on resident de-
mographics, placement of on-the-ground air monitors, and ambient PM25 concentration
levels. However, the Baltimore study area’s spatial heterogeneity consisted of differ-
ences in ambient fine PM concentration levels between urban grids with air monitors and
rural grids without air monitors [3]. Urban grids with air monitors should represent a
more spatially homogeneous area given the a priori criteria that were used to select those
locations to install permanent on-the-ground ambient air monitors. The 15 urban grids
with air monitors in the Baltimore study area appear to share similar demographic and
air pollution attributes that include higher poverty, greater population density, and ele-
vated ambient PM:s concentration levels. Since the number of rural grids without air
monitors is higher than the number of urban grids with air monitors by 560%, it is pos-
sible there could be a smaller and more homogeneous subgroup of rural grids without air
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monitors that resembles the urban grids with air monitors by also demonstrating higher
poverty, population density, and ambient PM2s concentration levels. Residents in
higher risk homogeneous rural grids should also resemble residents in urban grids by
displaying a similar association between elevated fine PM concentration levels and in-
creases in respiratory-cardiovascular emergency department (ED) visits and inpatient (IP)
hospitalizations.

To identify HOSAs that demonstrate a similar relationship between elevated AOD-
PM25 concentration levels and increased respiratory-cardiovascular ED visits or IP hos-
pitalizations we modified the temporal lag day case-crossover design to identify homoge-
neous spatial grids. In the temporal lag day case-crossover design all exposure-health
outcome assessments occur in the patients’ grid of residence. The date when the patient
received medical care is the index day or lag day 0: The day preceding the index day is
lag day 1. Two-four days before the index day are identified as lag days 2-4, respectively.
The spatial lag grid case-crossover design evaluates the association between exposure and
outcome on the same day but in different grids. The patients’ grid of residence is the
index grid. It has a lag grid value of 0: The grid that is next to and spatially precedes
the index grid is lag grid 1. Two-four grids that spatially precede the index grid are re-
ferred to as lag grids 2-4, respectively. The lag day and lag grid case-crossover formatted
linked exposure-health outcome data files were both analyzed using conditional logistic
regression (CLR). CLR analyses compute ORs for lag days and lag grids. Significant
ORs identify lag days or lag grids with elevated AOD-PM:25 concentration levels and in-
creased respiratory-cardiovascular ED visits or IP hospitalizations.

HOSAs represent grids with significant ORs, while heterogeneous spatial areas (HE-
SAs) included all other grids that do not have significant ORs. HOSA size in km is de-
termined by the number of adjacent grids that have significant ORs and the total area in
km2.  Since each HOSA consists of a single CMAQ grid with the dimensions of 12 km
wide by 12 km tall, or 144 km?, the size of a HOSA will be a multiple of 144 km2. By
implementing the spatial lag grid case-crossover design in the Baltimore study area it
should be possible to identify HOSAs that share the same relationship between AOD-
PM2s5and PMB fused surface concentration levels and increased respiratory-cardiovascu-
lar ED visits or IP hospitalizations in all grids, and in urban grids with air monitors, and
in rural grids without air monitors.

Differences between warm and cold seasons were evaluated in the New York City
[17] and Baltimore study [3] areas. Significantly higher ORs were found during the warm
season versus the cold season in the Baltimore study area, but not in the New York city
study area. Similar warm-cold season analyses will be conducted in this spatial lag grid
case-crossover data analysis study, as they were previously implemented utilizing the
temporal lag day case-crossover design in the New York City and Baltimore study areas.

The first objective will be to determine the size of HOSAs in the entire Baltimore
study area and in urban grids with air monitors and in rural grids without air monitors.
The second aim will be to evaluate AOD-PM2sand baseline PMB fused surface concentra-
tion levels in urban grids with air monitors and in rural grids without air monitors. The
third goal will be to assess warm-cold season differences in in the entire Baltimore study
area. The final objective will be to review results from this spatial lag grid case-crossover
study and the previously completed temporal lag day case-crossover study [3] to identify
similarities and differences between the spatial lag grid analysis and the temporal lag day
analysis.

2. Materials and Methods

This study implemented the spatial lag grid case-crossover design and utilized the
same four experimental AOD-PM:sand PMB concentration level fused surfaces and the
same four respiratory-cardiovascular chronic disease ED visits and IP hospitalizations
that were previously used in the temporal lag day case-crossover studies completed in the
Baltimore [3] and New York City [17] study areas. This section will include spatial lag
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grid case-crossover study details. Other information about the temporal lag day analyses
are in earlier publications describing the Baltimore [3] and New York City [17] study ar-
eas.
2.1. Baltimore Study Area

Table 1 displays the 11 (South [S] to North [N]) by 9 (West [W] to East [E]) 99 12 km?
CMAQ grids — these grids defined the Baltimore study area. The 17 federal reference
method (FRM) ambient PM2s air monitors, which were operational in 2004-2006,

Table 1: Bidirectional Spatial Lag Grid Case-Crossover Analyses for the 99 12 km? CMAQ Grids With
Red) and Without (Clear) Ambient PM2s5 Air Monitors in the Baltimore Study Area!?.

(11,1) N (11, 5) (11, 9)
(8, 6/B) (8, 8/H)
(7,5/BC) | (7,6/BC) (7,7/B)
W 1) (6,6/BC) | (6,7/BC) E (6,9)
(5,6/AA) | (5,7/AA)
@, 3/M) @, 5/P]) | @ 6/AA)
3, 5/P)) 3, 7/AA)
(2, 6/P))
(1, 1) S(1,5) (1,9
ICMAQ grid coordinates, shown in black hue, are 1-11 (S to N) rows and 1-9 (W to E) columns. 2Grid
coordinates, displayed in red hue and in bold font had one or more ambient FRM PM25 air moni-

tors. One urban grid (Rs, Ce) in Baltimore City had three different PM2s air monitors. The other 14
urban grids with air monitors had one ambient PMas5 air monitor per grid. 3These are the county/city
abbreviations used in each CMAQ grid: AA = Anne Arundel County; B = Baltimore County; BC = Balti-
more City; H = Hartford County; M = Montgomery County; PJ = Prince George’s County.

are in the 15 grids with air monitors. The grids with ambient air monitors are identified
with row-column grid coordinates, city/county abbreviations, and are displayed in red
hue in Table 1. There were 6 air monitors in BC, 4 in AA, 3in PJ, 2in B, and 1 each in M
and in H Counties.

2.1.1. ED and IP Hospitalization Cases

The assessment included the four respiratory-cardiovascular chronic disease hospi-
talization end points, consisting of ED visits (asthma) and IP hospitalizations (asthma,
myocardial infarction, MI; heart failure, HF). The 4 health data files contained all of the
2004-2006 ED visits and IP hospitalizations in Maryland, reported by State statute, to the
Maryland Health Services Cost Review Commission (HSCRC)[62]. Individual HSCRC
electronic patient records did not include patient names, social security numbers, and res-
idential addresses. However, each electronic patient record had temporal information
about the ED visits and IP hospitalizations (year [2004-2006], quarter [winter, spring,
summer, fall], day of week [Sunday through Saturday], date of birth, gender, race, health
insurance, spatial location for the residential address, five-digit U.S. Postal Service (USPS)
residential Zone Improvement Plan (ZIP) code [63], and one primary and multiple sec-
ondary diagnostic fields, with International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) billing codes (Centers for Disease Control and
Prevention, CDC) [64]. ICD-9-CM codes permitted the identification of electronic patient
records with ED asthma visits and IP asthma (493), MI (410), and HF (428) hospitaliza-
tions in the primary diagnosis field. In addition, ICD-9-CM codes identified which elec-
tronic patient records had one or more of the three comorbid chronic diseases of athero-
sclerosis (414, 440), diabetes mellitus (250), and hypertension (401). The study’s protocol,
including the proposed data analyses, were approved by the Maryland Department of
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Health (MDH) Institutional Review Board (IRB) [65] and the Maryland HSCRC [62]. The
MDH IRB Board concluded that since this study only utilized administrative hospital
data, and because there was no contact with patients, it was approved through an ex-
empted review.

2.1.2. Controls

There were three controls for each case. While the electronic patient records for the
controls were the same as those for the cases, the cases had different quarterly PMzsexpo-
sure values than the quarterly PM2s exposure values assigned to the controls. Three dif-
ferent monthly control exposure sampling strategies were utilized: first control was as-
signed the mean of the PM25 concentration levels for January [winter], April [spring], July
[summer] and October [fall]; second control included mean PMz2s concentration levels
for February [winter], May [spring], August [summer] and November [fall]; and, third
control comprised mean PMzs concentration levels for March [spring], June [summer],
September [fall] and December [winter].

2.1.3. Case-Control Strata

Each stratum included one case and three controls. There were four different quar-
terly strata, each including a case with a different quarterly mean PM2sconcentration level
exposure value. Three controls were in each of the four quarterly strata but, as stated
above, they differed from the cases on the assigned mean quarterly PM:s5 concentration
level values. The case and control means of the monthly ranks were used to confirm that
the Braggio and associates [3] study utilized a bidirectional temporal lag day case-crosso-
ver design [66]. Months were ordered in ascending order, from January (1) through De-
cember (12), and then the 1-12 monthly ordinal ranks were assigned to each month, re-
spectively. Cases with quarterly exposure values had mean monthly ranks of 2.0 for win-
ter, 5.0 for spring, 8.0 for summer, and 11.0 for fall. The mean monthly ranks for the three
controls were 5.5 (1 = January; 4 = April; 7 = July; 10 = October) for the first control, 6.5 (2
= February; 5 = May; 8 = August; 11 = November) for the second, and 7.5 (3 = March; 6 =
June; 9 = September; 12 = December) for the third. For the first and second strata, mean
quarterly ranks for the three controls were higher than the mean quarterly ranks for the
two cases. In the last two strata, the mean quarterly ranks for the three controls were
lower than the mean quarterly ranks for the two cases. Each case and the three associated
controls were matched on age, gender, race, health insurance, residential ZIP code, year,
and day of the week. PMo2sconcentration levels and effect modifiers varied temporally
by year (3), quarter (4), day of the week (7), and spatially by CMAQ grid (99), thereby
resulting in 8316 different possible variable combinations for the four AOD-PM2s and
PMB fused surfaces. Of the 99 CMAQ grids with complete AOD-PMzsand baseline PMB
fused surface fine PM concentration level values, 72 grids also had associated health
data: all 15 grids with air monitors, and 57 of the 84 without air monitors. Warm-cold
season differences were preserved for subsequent analyses by using this bidirectional lag
grid case-crossover design.

2.2. Confounders

The comorbid health conditions included atherosclerosis, hypertension, and diabe-
tes. Other confounders were apparent temperature (AT, AT?), and pollen. Major holi-
days (and the day after) were coded as dummy variables (1 = holiday or the day after, 0 =
no holiday) in each annual ED visit and IP hospitalization file. Dummy variables were
used to code snowstorms (1 = yes, 0 =no) in each of the three annual files.

2.2.1. Effect Modifiers

Poverty and population density were two geographic-based demographic variables
that came from the U.S. Census Bureau (USCB) [67] and the Maryland Department of
Planning, Maryland Data Center [68]. Maryland Zip Code Tabulation Area (ZCTA) spa-
tial polygons for poverty and persons per square mile were obtained from the USCB
website [67].
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2.3. AOD-PM:.5and Baseline PMB Fused Surfaces

The same four experimental AOD-PM:z5and baseline PMB concentration level fused
surfaces, previously described in detail in earlier publications [3,17], were used in this
spatial lag grid case-crossover data analysis study. The MODerate Resolution Imaging
Spectroradiometer (MODIS) instrument on the two orbiting satellites, Terra and Aqua,
obtained daily readings, the first in the morning (10:30 AM), and the other in the afternoon
(1:30 PM), local time. The AOD measurement column was continuous from each satel-
lite’s trajectory in space to the earth’s surface. PMozs particles within the AOD column
changed the light refraction properties, thereby making it possible to obtain AOD unitless
measurements. Thus, the AOD readings represented proxies for ambient PM25 measure-
ments. The previously established relationship between the AOD unitless values and the
ambient PM2smeasurements was used to assign a corresponding PM2sconcentration level
value to each AOD unitless value. Implementation of this algorithm resulted in a con-
tinuous space-time AOD-PMazs fused surface [69-71].

The updated HBM permitted the fusing of two or three different input surfaces with
(not-Kriged) or without (Kriged) missing AOD-PM:5 concentration level values. PMC
represented the inclusion of ambient PM2s monitor measurements with AOD-PMz25 con-
centration levels. Satellite recording failure, or the presence of cloud cover interfered
with obtaining unitless AOD column readings, thereby resulting in missing data values
in the PMC fused surface. To minimize the loss of daily AOD readings, a second AOD-
PM2sfused surface was Kriged, resulting in the PMCK fused surface — the HBM fusion of
monitor PMzsmeasurements with Kriged PMC concentration levels. For the two remain-
ing AOD-PM:s fused surfaces, the HBM was used to combine PMC (not Kriged) or PMCK
(Kriged) with monitor PM2s measurements and CMAQ PMzsmodel estimates to produce
PMCQ and PMCKQ, respectively. Using the HBM, it was also possible to assemble the
updated PMB - the baseline fused surface, by combining ambient PM25monitor measure-
ments with CMAQ PM:zsmodel estimates. The four experimental AOD-PM:25 and base-
line PMB fused surfaces were displayed within the CMAQ grid system by overlying the
National Aeronautics and Space Administration (NASA) native 10 km? AOD grid onto the
EPA native 12 km? CMAQ grid.

2.3.1. Baseline PMB and AOD-PM:.s Correlations

Correlations between the four AOD-PM:s fused surfaces and baseline PMB will be
computed for the entire Baltimore study area, and in grids with and without air monitors.
In grids with air monitors PMB concentration values are influenced more by the presence
of air monitors and less by CMAQ PMzsmodel estimates. But in grids without air mon-
itors PMB concentration level values reflect the greater influence of CMAQ PM25model
estimates. Correlations between PMB and the four AOD-PM:s fused surfaces should be
higher in grids with air monitors than in grids without air monitors. This outcome
should confirm that the concentration levels of the five fused surfaces are influenced by
the addition of ambient fine PM measurements. Lower correlations in grids without
monitors should represent the differential contribution of AOD-PM:2s with or without
CMAQ PM:zsmodel estimates to each of the four experimental AOD-PM:s fused surfaces.

2.4. File Linkage

The use of a previously developed polygon correspondence file minimized the spa-
tial mismatch between the various irregular-shaped polygons [72]. The polygon corre-
spondence file made it possible to assign each USPS ZIP code polygon (health outcome),
USCB ZCTA polygon (poverty percent and population density), and CMAQ 12 km? grid
template (four experimental AOD-PM2s5and PMB concentration level fused surfaces) to
only one CMAQ grid. Assembling the polygon correspondence file necessitated com-
pleting these steps: 1) Obtaining latitude-longitude centroid coordinates for each ZIP code
and ZCTA polygons [67-68]. 2) Using a geographic information system (GIS) to assign
each residential ZIP code polygon or ZCTA polygon to a single CMAQ 12 km? grid, based
on the spatial location of each latitude-longitude centroid coordinate of each polygon
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within a specific CMAQ grid [73-74]. By using the correspondence file, it was possible to
implement the CMAQ 12 km? grid system as the standardized spatial polygon template
for this data analysis study. Each of the four linked AOD-PMasfiles (one for ED asthma,
a second for IP asthma, a third for MI, and a fourth for HF) was sorted on columns first,
and then sorted on rows second.

2.5. Spatial Lag Grid and Temporal Lag Day Analyses

The spatial lag grid case-crossover analysis resembled the temporal lag day case-
crossover analysis, except that the spatial analysis evaluated lag grids, including the index
grid, which always had a value of 0 (as well as all lag grids 0-4, 01, 24, and 04), while the
temporal analysis assessed lag days preceding the index day, which always had a value
of 0 (in addition to all lag days 0-4, 01, 24 and 04). In the New York City and Baltimore
publications, we utilized a bidirectional lag day case-crossover design to determine if
there were differences due to asthma ED visits, and IP asthma, MI, and HF hospitaliza-
tions among the individual lag days (0-4), and summary lag days (01, 24, and 04). The
lag day analysis determined if ambient PM2s concentration levels, evaluated by the four
experimental AOD-PM:sand baseline PMB fused surfaces, differentially contributed to
the subsequent occurrence of one or more respiratory-cardiovascular ED visits or IP hos-
pitalizations. As stated previously, in the lag day analysis, all outcomes were evaluated
on different days but in the same grid. But in the lag grid analysis, all outcomes were
evaluated in different grids but on the same day.

The primary objective of the lag grid case-crossover assessment was to identify the
number of 12 km-wide grids from the index grid that demonstrated the same association
between experimental AOD-PMzsor baseline PMB fused surface concentration levels and
one of the four respiratory-cardiovascular ED visits or IP hospitalizations - HOSAs.

The implementation of the spatial lag grid case-crossover analysis is described in the
three examples shown in Table 2. The first illustration is for grids without monitors, top
of the table. The Spatial Lag Grid Analyses columns display lag grid values, both

Table 2: Three Examples of Bidirectional Spatial Lag Grid Case-Crossover Analyses, by Ambient
PMz5 Air Monitor Status: No Monitors, Monitors, and Both Monitor Grid Conditions Combined.

. , Spatial Lag Grid Analyses?
Grid Monitor Examples! 0 1 5 3 2 0 " 01

No Monitors

Rows (S to N) Ry | Ro | Ro | Ro | Ro Ry Ry Ry

Columns (W to E) Cr | C | G | C | C | Cor Css Csr
Monitors

Rows (S to N) Re | Re | R | R7 | Ry Re Ry Re,7

Columns (W to E) Cr | C | C | G | C | Cer Csr Ce-7,5.7
Both — All Grids

Rows (S to N) Re | Re | Re | Re | Ra R4 R4 R4

Columns (W to E) C | C | G | G| C | Crs Cs-3 Crs

Row (S to N) and column (W to E) grid coordinates for the Baltimore study area are shown here.
Grids with air monitors are shown in red hue and in bold font, while grids without air monitors
are displayed in black hue and in bold font. The sorting sequence was the column variable (1 to
9) first and the row variable (1 to 11) second. Z2Lag grid 0 is the index grid. Lag grid 1 refers to
the grid that spatially preceded the index grid by 1 grid distance, 12 km. Lag grids 2 through 4
preceded the index grid by 2 to 4 grids, 24 km to 48 km, respectively. Lag grid 01 represents the
mean of grid values 0 and 1. Lag grid 24 refers to the mean for grids 2-4. Lag grid 04 represents
the mean for lag grids 0-4.

individual (0-4) and summary measures (01, 24, 04). The grid location for the individual

grids with monitors is shown in bold red font for grids with air monitors and bold black

font for grids without air monitors. The index grid location for the no monitor example
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is Row =9 and Column =7 (R9, Cr). This index grid has a lag grid value of 0. Moving
from the far-right side of the table (East) to the left side of the table (West), the grid adja-
cent to and immediately to the left of the index grid has a lag grid value of 1, and its grid
location is Ry, Cs. The next three lag grids, with lag grid values 2-4, have sequential grid
locations: Ry, C5; Ry, C4;and Ry, Cs; respectively. Summary lag grids 01, 24, and 04 were
obtained by computing means for individual lag grid values. To illustrate, the summary
lag grid 01 represents the mean for lag grids 0 and 1. Lag grid 24 includes the mean for
lag grids 2-4. Lag grid 04 refers to the mean for lag grids 0-4.

The second example, shown in the middle of the table, is for lag grids with air mon-
itors. Here, the index grid location is Rs, C7. Again, the index grid has a lag grid value
of 0. The first two lag grids with monitors are in the 6t row, while the next three lag
grids with monitors are in the 7t row. Notice that column location decreases by 1 as
the lag grid value increases by 1.

The third example, at the bottom of Table 2, is for both monitor grid conditions com-
bined. The index grid location is R4, C7. All five individual lag grids, with lag grid val-
ues of 0-4, are in the 4 row. Three of the five lag grids, 1, 2, and 4, include air monitors.
The other two lag grids, 0, and 3, represent grids without monitors.

Considering the spatial lag grid analysis descriptions summarized in Tables 1 and 2
above, it is possible to demonstrate that the three types of lag grid analyses described in
Table 2 represent the inclusion of lag grids that either preceded or followed the index grid,
based on the index grid column location. Each complete lag grid sequence always in-
cludes five individual lag grid values, the index grid, and four additional lag grids. The
four lag grids are selected from 1-4 lag grids that always precede the index grid. This
prior selection of lag grids, relative to the location of the index grid, occurs in columns 9
E to 5 W. But, for the remaining four columns, 4 E to 1 W, the selection of the four pre-
ceding lag grids, relative to the location of the index grid, will include 1-4 grids that always
follow the index grid. To illustrate, when the index grid has a column location value of
4, the selection of the four preceding grids will result in the inclusion of column 3 for lag
grid 1, column 2 for lag grid 2, column 1 for lag grid 3, and column 9, in one row above,
for lag grid 4. When the index grid is in column 3, two grids precede the index grid, and
two grids follow the index grid. The index grid for column 2 includes 1 grid that pre-
cedes the index grid and three grids that follow the index grid. For the 4t lag grid, when
the index grid is in column 1, all four lag grids follow the index grid and are in the above
row.

These are the results for all grids that preceded or followed the index grid: For grids
with monitors, 62.0% of the grids preceded the index grids, and 38% followed the index
grids. For grids without monitors, 69.3% preceded the index grids, and 30.7% followed
the index grids. The combined monitor and no monitor condition included 68.4% of the
grids that preceded the index grids, and 31.6% of the grids that followed the index grids.
To summarize, these results support the conclusion that this spatial lag grid case-crosso-
ver design had lag grids that preceded or followed the index grid. This outcome
demonstrates that this study implemented a bidirectional spatial lag grid case-crossover
design [3,66].

2.6. Statistical Analyses

The 20 linked exposure-health outcome files (four experimental AOD-PM2s and
baseline PMB fused surfaces with ED asthma, IP asthma, MI, and HF) were analyzed us-
ing CLR statistical software included in the SAS (Statistical Analysis System)/STAT pro-
portional hazards regression (PHREG) Procedure, version 14.3, along with Base SAS ver-
sion 9.4 [75-79]. PHREG performs CLR analyses on survival data, based on the Cox Pro-
portional Hazards model, by quantifying the effects of explanatory variables on survival
times. The Chi Square test evaluated group differences between categorical variables,
such as case-control status, and race [77]. Assessment of continuous variables of poverty
percent and population density (converted to Lio values before analysis), involved
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comparing a case group mean to a control group mean and its associated 95% Confidence
Interval (CI). Means and 95% Cls were computed by Proc Means in Base SAS [77]. If
the case mean was below or above the 95% CI lower or upper limit of the control group
mean, this outcome was significantly different at p<0.05 [75]. But, if the case mean was
within the 95% CI lower and upper limits of the control mean, this outcome was not sig-
nificant, p>0.05.

2.6.1. Variable Selection

The CLR runs consisted of a PMzsfused surface (baseline PMB, PMC, PMCK, PMCQ,
PMCKQ) and one respiratory-cardiovascular endpoint (ED asthma, IP asthma, MI, or
HF). CLRruns evaluated individual lag grids 0-4, and summary lag grids 01, 24, and 04.
The base CLR analysis controlled for these confounders: apparent temperature, AT — at
each lag grid; AT? - atlag grids 0, 1, 01, and 04; pollen, snowstorms, and major holidays.
Four separate CLR runs evaluated effect modifiers: 1) diabetes mellitus, hypertension,
atherosclerosis; 2) gender, age, race; 3) health insurance coverage, poverty percent, popu-
lation density, and 4) season. An effect modifier was included in subsequent analyses if
the initial CLR OR had a probability value of p< 0.09.

2.6.2. Final CLR Runs

Final CLR runs included the base model, effect modifiers for lag grids 0-4, and sum-
mary lag grids 01, 24, and 04. The three monitor grid conditions included grids without
a monitor (No), grids with at least one monitor (Yes), and grids with or without air mon-
itors (Both). The null hypothesis was rejected if p<0.05. The use of the Akaike Infor-
mation Criterion (AIC) permitted the selection of CLR outcomes with lower values,
thereby representing a better parameter fit [75-76,78]. Follow-up analyses evaluated the
contribution of monitor (No, Yes) and season (Cold, Warm) at lag grids 0-4, 01, 24, and 04.

3. Results
3.1. Correlations Between Baseline PMB and Experimental AOD-PM:s5 Fused Surfaces

Table 3 displays correlations between baseline PMB and the four AOD-PM2s fused
surfaces in all grids, and in grids with and without air monitors. Because there were

Table 3: Correlations Between Baseline PMB and the Four AOD-PM:s Fused
Surfaces by Ambient PM2s Air Monitor Status in the Baltimore Study Area.

Fused CMAQ Grid Ambient PM25 Air Monitor Status!?
Surface | Both (n=8316) | Yes (n=1260) | No (n=7056) | A%

PMC 0.676 (45.7)} 0.858 (73.6)} | 0.642 (41.2)} | 32.4

PMCK | 0.553 (30.6)* 0.788 (62.1)F | 0.515 (26.4)¢ | 35.7

PMCQ | 0.973 (94.7)} 0.987 (97.4)F | 0.971(94.3)¢ | 3.1

PMCKQ | 0.852 (72.6)* 0.928 (86.1)" | 0.838(70.2) | 15.9

'Each cell contains correlation (r**) values. 2Significance identified with { =
p<0.01.

many observations in the exposure dataset (8316), all correlations  were highly signifi-
cant, p<0.01. Nonetheless, there are interesting outcomes which provide clues as to the
differential effectiveness of each of the AOD-PMz2s fused surfaces over the baseline PMB
fused surface in accurately estimating ambient fine PM concentration levels in the entire
Baltimore study area, and in the two grid monitor conditions. First, correlations were
highest between PMB and PMCQ in all grids, and in grids with and without air monitors.
The percentage of shared variance, evaluated as a percentage value of the square of the
correlation coefficient (r2%) was 94.7% for the Baltimore study area, 97.4% in grids with air


https://doi.org/10.20944/preprints202201.0118.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 March 2022

d0i:10.20944/preprints202201.0118.v2

10 of 30

monitors, and 94.3% in grids without air monitors. The 72*(A%) value of 3.1%, computed
as the difference between grids with and without air monitors, was smallest for the PMCQ
fused surface. PMC and PMCK AOD-PM:2s fused surfaces had A% values of 32.4% and
35.7%, respectively. The PMCKQ A% value of 15.9% was between PMCQ’s lowest value
and PMCK’s highest value.

3.1.1. Fused Surface Means by Air Monitor Grid Condition

The three-year concentration level means for baseline PMB and the four AOD-PM:s
fused surfaces, in the three CMAQ grid conditions, are presented in Table 4.

Table 4: Three-Year Mean Concentration Levels for the Four AOD-PM25 and
Baseline PMB Fused Surfaces by Air Monitor Grid Status in the Baltimore Study Area.

Fused CMAQ Grid Ambient PM2s Air Monitor Status!-2
Surface Both Yes No
PMB 14.19 (14.13-14.26)" | 14.60 (14.44-14.76) | 14.12 (14.05-14.19)"*
PMC 13.66 (13.60-13.72)" | 13.90 (13.73-14.06)" | 13.62 (13.55-13.68)"*

PMCK 14.38 (14.31-14.44) | 14.27 (14.10-14.44)" | 14.39 (14.32-14.47)
PMCQ 13.79 (13.74-13.85)" | 14.28 (14.12-14.43)" | 13.71 (13.64-13.77)"F
PMCKQ | 13.91 (13.85-13.97)" | 14.24 (14.09-14.40)" | 13.85 (13.79-13.92)"*

Each cell contains mean (95% CI) values in ug/m3. 2Significant differences

between means are based on the comparison mean exceeding the upper or lower 95%
CI values of the control mean: = p<0.05 (within each column); } = p<0.05 (between last
two columns).

The first interesting observation concerns the fused surface with the highest mean con-
centration level in grids with and without air monitors: PMB in grids with air monitors
(14.60 pg/m?3), and PMCK in grids without air monitors (14.39 pg/m?3). Second, the
PMCK no monitor grid mean was not significantly different from PMCK monitor grid
mean. These results suggest that the PMCK fused surface may provide a more stable
concentration level estimate in grids with and without ambient air monitors.

3.1.2. Fused Surface and Demographic Variable Categorical Analyses

Differences between experimental AOD-PM:s and baseline PMB fused surfaces and
demographic variables for the three grid conditions are in Table 5. The three-year mean

Table 5: Categorical Analyses of Fused Surfaces, Poverty Percent, and Population Density
by Monitor Status in the Baltimore Study Area.

Fused Surfaces & CMAQ Grid Ambient PM2s Air Monitor Status?+
Demographic
Categories! Both Yes No
PMB - Below 38 (38.38)" 4 (26.67)t 34 (40.48)!
Within 6 (6.06) 1(6.67) 5 (5.95)
Above 55 (55.56) 10 (66.67/18.18) 45 (53.57/81.82)*
PMC - Below 52 (52.53)! 7 (46.67) 45 (53.57)}
Within 17 (17.17) 1(6.67) 16 (19.05)
Above 30 (30.30) 7 (46.67/23.33) 23 (27.38/76.77)}
PMCK - Below 36 (36.36) 8 (53.33) 28 (33.33)!
Within 18 (18.18) 2 (13.33) 16 (19.05)
Above 45 (45.45) 5 (33.33/11.11) 40 (47.62/88.89)!
PMCQ - Below 39 (39.39)! 3 (20.0) 36 (42.86)!
Within 7 (7.07) 2 (13.13) 5 (5.95)
Above 53 (53.54) 10 (66.67/18.87) 43 (51.19/81.13)}
PMCKQ - Below 38 (38.38)! 4(26.67) 34 (40.48)*
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Within 9 (9.09) 2 (13.33) 7 (8.33)
Above 52 (52.53) 9 (60.00/17.31) 43 (51.19/82.69)*
Poverty - Below 51 (75.00)* 7 (50.00) 44 (81.48)*

Within 2 (2.94) 0 (0.00) 2 (3.70)

Above 15 (22.06) 7 (50.00/46.67) 8 (14.81/53.33)
Population — Below 36 (52.94)F 3 (21.43) 33 (61.11)}

Within 2 (2.94) 0 (0.00) 2 (3.70)

Above 30 (44.12) 11 (78.57/36.67) 19 (35.19/63.33)

The Below, Within, and Above categories represent cutoffs for the 95% CI lower and upper limits
for each fused surface concentration level and each demographic variable three-year mean values.
Fused surface three-year means (95% CI) in Table 4, above, were used to determine cutoff values
for the three-level categories. 2These are the means (95% Cls) for the two demographic variables:
poverty percent, 8.27 (95% CI, 7.84-8.69); population density (Log 10), 2.77 (95% CI, 2.75-2.78).
3Statistical analyses were completed for the three-level categories (Below, Within, Above) in the
three grid monitor conditions (columns 2-4), and for grids with and without air monitors in the
Above category (rows; columns 3-4). “Significance is based on the Chi Square test: { = p<0.05; {
=p<0.01.

(95% CI) for each fused surface for all 99 grids in the Baltimore study area were used to
create three 95% CI categories: The Below category included all grid means (24 column)
that were below each fused surface 95% lower level value. The Within category in-
cluded all grid means (2" column) with values that were higher than the CI 95% lower
level value and lower than the CI 95% upper level value. The Above category included
all means (2" column) that were higher than the CI 95% upper level value. As can be
seen in Table 5, second column, all Chi Square analyses for the three-category groups were
significant (all p’s<0.01). These results confirm that the three levels in each category group
did not overlap and were thus unique. The remaining two columns in Table 5 show re-
sults for each fused surface category group in grids with air monitors (3¢ column) and in
grids without air monitors (4% column). In grids with air monitors significant Chi Square
results only occurred for PMB and PMCQ fused surfaces (both p’s<0.01). For PMB and
PMCQ fused surfaces the category group totals and percentages were higher for the
Above category than the Within or Below categories. In grids without air monitors Chi
Square analyses were significant for all five fused surfaces (all p’s<0.01). Interestingly,
for the five fused surfaces the Above categories in grids without air monitors were signif-
icantly different from the Above categories in grids with air monitors (all p’s<0.01). For
all five fused surfaces the Above category totals in grids without air monitors were always
larger than the Above category totals in grids with air monitors. Only the PMCK fused
surface had both higher total and percentage values for the Above category in grids with-
out air monitors than in grids with air monitors.

As can be seen at the bottom of Table 5, the same data analysis strategy as described
above for the fused surfaces was implemented to analyze the two demographic variables,
poverty percent and population density. There were minor, but important differences in
the results: Only the poverty percent category analysis in grids without air monitors
was significant (p<0.05). For population density the category analyses were significant
in grids with air monitors (3 column) and also in grids without air monitors (4t column;
both p’s<0.05). The poverty percent and population density Above categories analyses in
grids without air monitors were not significantly different from grids with air monitors
(both p’s>0.05).

3.1.3. Patient Characteristics

Table 6 shows totals and percentages for the four respiratory-cardiovascular ED visit
and IP hospitalization groups stratified on case-control status and patients’ race. Asseen
in the Both column, second from left, ED asthma had the most observations (cases and
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Table 6: Demographic Attributes for Respiratory-Cardiovascular Chronic
Disease Cases and Controls and Patients’” Race by Monitor Status in the Balti-
more Study Area.

. CMAQ Grid Ambient PM25 Air Monitor Status!2
Variables
Both Yes No
ED Asthma 47256 (100.00) 20815 (44.05) 26441 (55.95)
Cases 11723 (24.81) 5152 (10.90) 6571 (13.91)
Controls 35533 (75.19) 15663 (33.14) 19870 (42.05)
Blackt 22696 (48.24) 11844 (25.17) 10852 (23.06)
Other 3060 (6.50) 785 (1.67) 2275 (4.84)
White 21294 (45.26) 8082 (17.18) 13212 (28.08)
IP Asthma 13515 (100.00) 5672 (41.97) 7843 (58.03)
Cases 3376 (24.98) 1417 (10.48) 1959 (14.50)
Controls 10139 (75.02) 4255 (31.48) 5884 (43.54)
Blackt 4510 (33.43) 2358 (17.48) 2152 (15.95)
Other 669 (4.96) 179 (1.33) 490 (3.63)
White 8312 (61.61) 3119 (23.12) 5193 (38.49)
IP MI 19021 (100.00) 7185 (37.42) 12016 (62.58)
Cases 4790 (24.95) 1784 (9.29) 3006 (15.66)
Controls 14411 (75.05) 5401 (28.13) 9010 (46.92)
Black* 2456 (13.28) 1183 (6.17) 1363 (7.11)
Other 848 (4.42) 180 (0.94) 668 (3.48)
White 15780 (82.30) 5811 (30.31) 9969 (51.99)
IP HF 27518 (100.0) 11834 (43.00) 15684 (57.00)
Cases 6826 (24.81) 2928 (10.64) 3898 (14.17)
Controls 20692 (75.19) 8906 (32.36) 11786 (42.83)
Black* 7029 (25.57) 3463 (12.60) 3566 (12.97)
Other 793 (2.88) 285 (1.04) 508 (1.85)
White 19672 (71.55) 8078 (29.38) 11594 (42.17)

Total grids with health data = 72: 15 with monitors, and 57 without monitors.
2Number (%); Chi Square, }=p<0.01.

controls combined, 47256), IP Asthma the fewest (13515), with intermediate totals for MI
(19201) and HF (27518). Totals and percentages for each of the four health outcome
groups were higher in the 57 grids with no monitors than in the 15 grids with monitors.
For each of the four health outcome groups, approximately 25% of observations were
cases and about 75% were controls. The ratio of one case to three controls was also evi-
dent in grids with and without air monitors for ED asthma, IP asthma, MI, and HF (all
p’s>0.05). The ED asthma total (%) for Black patients (22696, 48%) was higher than the
totals (%) for White patients (21294, 45%) and Other patients (3060, 6%). For the three IP
groups the totals (%) were highest for White patients, intermediate for Black patients, and
lowest for Other patients. The Race by CMAQ grid condition analyses were significant
for all four health outcomes (all p’s<0.01). =~ While there were more Black patients with
ED asthma and IP asthma in grids with air monitors than in grids without air monitors,
this relationship was reversed for Other patients and White patients. ~ Black patients,
Other patients, and White patients with IP MI or HF had higher totals (%) in grids with-
out air monitors than in grids with air monitors.

3.2. CLR Analyses
CLR results showed significant differences between AOD-PM:25 and baseline PMB

fused surfaces, health outcome groups, lag grids, monitor conditions, and warm-cold sea-
son differences. For all CLR runs, ORs were significant at lag grids 0, 1, 01, and 04 (all
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p’s<0.05). Effect modifiers were significant only for ED asthma in all grids (PMCQ: pop-
ulation density, lag grid 0, protective OR, p<0.05), and in grids with monitors (PMB, PMC,
PMCK, PMCQ, PMCKQ: season, lag grids 2-4, 04, all p’s<0.05). By using the mean (95%
CI) it was possible to evaluate OR magnitude differences for the four health outcomes,
four AOD-PMz2s5and baseline PMB fused surfaces at lag grids 0, 1, 01, and 04.

3.2.1. ED Asthma

Figure 1 shows ED asthma ORs (95% Cls) for the four AOD-PM:zsand PMB fused
surfaces. There are separate panels in Figure 1, one for each of the four lag grid values
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Figure 1: ED asthma ORs (95% ClIs) for the four AOD-PM:5and baseline PMB fused surfaces, in all grids (Both),
and in grids with (Yes) and without (No) air monitors, and in separate panels for lag grids 0 (1a), 1 (1b), 01 (1c),
and 04 (1d).

of 0,1,01,and 04. In the Both monitor grid condition, for lag grids 0, 1, and 01, ORs
for each of the four AOD-PM:s fused surfaces were significantly higher than the baseline
PMB ORs (all p’s<0.05). In the Both monitor grid condition, for lag grid 04, the PMC,
PMCK, and PMCKQ ORs were significantly higher than the PMB ORs (all p’s<0.05). In
lag grids 0, 1, and 01, the no monitor PMC and PMCK ORs were significantly higher
than monitor PMC and PMCK ORs (all p’s<0.05).

3.2.2. IP Asthma

Figure 2 shows IP asthma ORs (95% ClIs) for the four AOD-PM2s and baseline PMB
fused surfaces, and in separate panels for lag grids 0, 1, 01, and 04. In the Both monitor
grid condition, for lag grids 0, 1, and 01, the PMC, PMCK, and PMCKQ ORs were
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Figure 2: IP asthma ORs (95% Cls) for the four AOD-PM:sand baseline PMB fused surfaces, in all grids (Both), and in
grids with (Yes) and without (No) air monitors, and in separate panels for lag grids 0 (2a), 1 (2b), 01 (2c), and 04 (2d).

significantly higher than the PMB ORs (all p’s<0.05). Inlag grids 0, and 01, only the no
monitor PMCK ORs were significantly higher than the monitor PMCK ORs (both
p’s<0.05).
3.23. 1P MI

IP MI ORs for the four AOD-PM2s and baseline PMB fused surfaces, for lag grids 0,
1, 01, and 04, are displayed in Figure 3. In the Both monitor grid condition, for lag grids
0, 1, and 01, the PMC, PMCK, and PMCKQ ORs were significantly higher than PMB ORs
(all p’s<0.05). Also in lag grids 0, 1, and 01, the no monitor PMC and PMCK ORs were
significantly higher than the monitor PMC and PMCK ORs (all p’s<0.05).
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Figure 3: IP MI ORs (95% ClIs) for the four AOD-PM:2s5and baseline PMB fused surfaces, in all grids (Both),
and in grids with (Yes) and without (No) air monitors, and in separate panels for lag grids 0 (3a), 1 (3b),
01 (3¢), and 04 (3d).

3.2.4.IP HF

IP HF ORs for the five fused surfaces, three monitor grid conditions, and four lag grid
values are displayed in Figure 4. In the Both monitor grid condition, for lag grids 0, 1, and
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Figure 4: IP HF ORs (95% ClIs) for the four AOD-PM2sand baseline PMB fused surfaces, in all grids (Both), and in
grids with (Yes) and without (No) air monitors, and in separate panels for lag grids 0 (4a), 1 (4b), 01 (4c), and 04 (4d).

01, the PMC, PMCK, and PMCKQ ORs were significantly higher than the baseline PMB
ORs (all p’s<0.05). Also, for the Both monitor grid condition, for lag grid 04, only the
PMCK OR was significantly higher than the PMB OR (p<0.05). In lag grids 0, 1, and 01,
the no monitor PMC and PMCK ORs were significantly higher than monitor PMC and
PMCK ORs (all p’s<0.05).

3.3. No Monitor - Monitor OR Percent

The no monitor — monitor OR percent (AOR%) values for the four AOD-PM:25 and
baseline PMB fused surfaces and four lag grids 0, 1, 01, and 04, are displayed, in four
separate panels, one for each of the four health outcomes, in Figure 5. For the four health
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Figure 5: The no monitor — monitor OR percent (AOR%) values for the four AOD-PMzsand baseline PM fused
surfaces for lag grids 0, 1, 01, and 04, and in separate panels for ED asthma (5a), IP asthma (5b), IP MI (5c¢),
and IP HF (5d).

outcomes, AOR% values were larger for PMC and PMCK than the other three fused sur-
faces. These differences occurred for each one of the four lag grid values. For the four
health outcomes, PMC, PMCK, and PMCKQ fused surface AOR% values at lag 04 were
smaller than the AOR% values at lag grids 0, 1, and 01. For the four health outcomes,
PMB AOR% values were negative at lag grids 0, 1, 01, and 04. Results were mixed for
PMCQ and PMCKQ. IP asthma PMCQ had negative AOR% values as did IP asthma
PMB. PMCKQ AOR% at lag grids 0, 1, and 01 were positive, resembling PMC and
PMCK. One difference, however, was the PMCKQ AOR% values were lower than the
PMC and PMCK AOR% values at lag grid 04. PMCQ AOR% values were negative for
ED asthma and IP asthma, resembling baseline PMB ED asthma and IP asthma AOR%
values.

3.4. Size of Homogeneous Spatial Area
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The largest size of the HOSA was identified by the presence of a significantly higher
AOD-PM:s fused surface OR than the baseline PMB OR for each chronic disease group
(ED asthma, IP Asthma, MI, and HF) at lag grids 0, 1, 01, and 04. Table 7 summarizes
the HOSA findings. For both monitor grid conditions combined (Both, top of Table 7)

Table 7: Lag Grid Analyses Identified the Size of HOSAs, in Multiples of one 12 km-wide CMAQ Grid, When the
AOD-PM2s5 Fused Surface ORs are Greater than the Baseline PMB ORs (Top), and the AOD-PM:2s5 and Baseline PMB
Fused Surface ORs in Grids Without Air monitors are Compared to ORs in Grids With Air Monitors (Bottom).

Grid Monitors! Respiratory-Cardiovascular Chronic Disease Groups
ED Asthma IP Asthma 1P MI IP HF
Both
PMC 4(0,1,01,04) 3(0,1,01) 3(0,1,01) 3(0,1,01)
PMCK 4(0,1,01,04 3(0,1,01) 3(0,1,01) 4(0,1,01, 04)
PMCQ 0 0 0 0
PMCKQ 4(0,1,01,04) 3(0,1,01) 3,(0,1,01) 30,1,01)
Yes
PMC 0 0 0 0
PMCK 2(0,1,01) 0 0 0
PMCQ 0 0 0 0
PMCKQ 0 0 0 0
No
PMC 4(0,1,01,04) 3(0,1,01) 4(0,1,01, 04) 4(0,1,01,04)
PMCK 4(0,1,01, 04 3(0,1,01) 4(0,1,01,04) 4(0,1,01, 04
PMCQ 3(0,1,01) 0 0 0
PMCKQ 4(0,1,01,04) 3(0,1,01) 3(0,1,01) 3(0,1,01)
Monitor-No Monitor?
PMB = = = =
PMC <(0,1,01) <(1,01) <(0,1,01) <(0,1, 01)
PMCK <(0,1,01) <(0,01) <(0,1,01) <(0,1,01)
PMCQ = = = =
PMCKQ = = = =

!Each AOD-PMzs fused surface OR is compared to the baseline PMB fused surface OR (95% CI). Only significant
differences are shown, p<0.05. 2AOD-PM:s and baseline PMB fused surface ORs in grids without air monitors are
compared to ORs (95% ClIs) in grids with air monitors. Significant outcome at p<0.05 is displayed with the symbol of
“<”. A non-significant outcome for p>0.05 is shown with symbol of “=".

analyses of ED asthma and IP HF with the PMCK fused surface produced ORs that were
significantly higher than the PMB ORs at lag grid values of 0, 1, 01, and 04 (all p’s<0.05).
ORs for ED asthma with the PMC and PMCKQ fused surfaces were significantly higher
than the PMB ORs at lag grids 0, 1, 01, and 04 (all p’s<0.05). Based on these significant
outcomes at lag grid 04 for these three AOD-PMo:s fused surfaces, it was concluded that
the largest HOSA for PMC, PMCK and PMCKQ fused surfaces was 5 grids (one 12 km-
grid-wide x 5 grids) or 60 km. In grids with air monitors, only the ED asthma PMCK ORs
were significantly higher than the PMB ORs at lag grids 0, 1, and 01 (all p’s<0.05). The
width of the largest HOSA for PMCK was 2 grids wide, or 24 km. In grids without air
monitors the analyses of ED asthma, IP MI, and HF with the PMC and PMCK fused sur-
faces produced ORs that were significantly higher than PMB ORs at lag grids 0, 1, 01, and
04 (all p’s <0.05). The analyses of ED asthma with PMCKQ resulted in ORs that were
significantly higher than the PMB ORs at lag grids 0, 1, 01, and 04 (all p’s<0.05). The max-
imum size of the HOSA for PMC, PMCK, and PMCKQ was 5 grids wide, or 60 km.
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3.4.1. Monitor-No Monitor Differences

The purpose of these analyses was to determine if the AOD-PM:sand baseline PMB
fused surfaces had ORs that differed between grids without and with air monitors. Re-
sults are presented at the bottom of Table 7. The ED asthma, IP asthma, MI, and HF
health outcomes evaluated with PMC and PMCK fused surfaces had ORs that were sig-
nificantly higher in rural grids without air monitors than in urban grids with air monitors
(all p’s<0.05).

3.5. Warm-Cold Season

There were warm-cold season differences for the four the AOD-PMzs fused surfaces
and the four health outcomes (Online Resource includes electronic supplementary mate-
rial consisting of Figures S1 [ED asthma: a-d, lag grids 0, 1, 01, 04, respectively] though
S4 [IP HF: a-d, lag grids 0, 1, 01, 04, respectively] for ED asthma, IP asthma, MI, and HF,
respectively. These outcomes were expressed as larger ORs during the warm season and
smaller ORs during the cold season. Specifics for each health outcome will be presented
below.

ED asthma (Figure S1), IP asthma (Figure S2), and MI (Figure S3) PMB, PMC, PMCK,
PMCQ, and PMCKQ warm season ORs were significantly higher than cold season ORs at
lag grids 0, 1, and 01 (all p’s<0.05).  ED asthma, IP asthma, and MI PMCK warm season
ORs were significantly higher than cold season ORs at lag grid 04 (all p’s<0.05). IP HF
PMB, PMC, PMCK, PMCQ, and PMCKQ warm season ORs were significantly higher than
cold season ORs at lag grids 0, 1, 01, and 04 (all p’s<0.05).

Table 8 shows the three-year mean (95% CI) PMzs concentration levels for the four
AOD-PM:s and baseline PMB fused surfaces and three-year mean ambient temperature
values in F° by season (Both, Warm, Cold). The Both season condition shows the

Table 8: Three-Year Means (95% Cls) for AOD-PM2s and Baseline PMB Fused Surfaces and Ambient
Temperature, and Correlations Between Fine PM and Temperature, by Monitor Status (Both, Yes, No)
in Rows, and Season (Both, Warm, Cold) in Columns, Baltimore Study Area.

Season

Variables!

Both?

Warm

Cold

Monitors — Both

PMB

14.19 (14.13-14.26) [4.6]*

14.89 (14.81-14.96)*

13.50 (13.41-13.60

PMC

13.66 (13.60-13.72) [40.7]¢

15.29 (15.21-15.38)*

12.03 (11.97-12.08

PMCK

14.38 (14.31-14.44) [59.3]¢

16.65 (16.57-16.74)*

12.10 (12.06-12.14

PMCQ

13.79 (13.73-13.85) [10 4]+

t

12.90 (12.82-12.99

PMCKQ

13.91 (13.85-13.97) [37.3]¢

15.52 (15.44-15.59)*

12.31 (12.25-12.36

Temperature (F°)

55.86 (55.55-56.18)

( )
( )
( )
14.69 (14.61-14.76)
( )
( )

68.97 (68.77-69.16)*

)
)
)
)
)
)

42.76 (42.55-42.96

Monitors — Yes

PMB

14.60 (14.44-14.76) [11.2]¢

15.38 (15.17-15.60)*

13.81 (13.59-14.03

PMC

13.90 (13.73-14.06) [37.1]¢

15.46 (15.23-15.69)*

12.33 (12.17-12.49

PMCK

14.27 (14.10-14.44) [50.2]¢

16.25 (16.02-16.47)*

12.30 (12.16-12.43

PMCQ

14.28 (14.12-14.43) [16.5]

t

13.31 (13.11-13.51

PMCKQ

14.24 (14.09-14.40) [34.0]¢

15.69 (15.48-15.90)*

12.79 (12.63-12.96

Temperature (F°)

57.32 (56.50-58.13)

( )
( )
( )
15.24 (15.03-15.46)
( )
( )

70.61 (70.11-71.11)*

)
)
)
)
)
)

44.02 (43.54-44.51

Monitors - No

PMB

14.12 (14.05-14.19) [3.6]+

14.80 (14.71-14.88)*

13.45 (13.34-13.55

PMC

13.62 (13.55-13.68) [41.3]

15.26 (15.17-15.35)*

11.97 (11.92-12.03

PMCK

14.39 (14.32-14.47) [61.2]¢

PMCQ

13.71 (13.64-13.77) [9.3]*

14.59 (14.51-15.57)*

12.83 (12.74-12.92

PMCKQ

13.85 (13.79-13.92) [37.8]¢

( )
( )
16.72 (16.63-16.82)*
( )
( )

15.49 (15.41-15.57)*

)
)
12.06 (12.03-12.10)
)
)

12.22 (12.16-12.28
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| Temperature (F°) | 55.60 (55.26-55.94) 68.68 (68.46-68.89) 42.53 (42.31-42.75) |
ISignificance for correlations between fine PM and ambient temperature for the five fused surfaces (sec-
ond column), and differences between warm vs. cold season PM2s concentration level values (last two
columns): t = p<0.05, { =p<0.01. 2The r** for each correlation is in brackets, in second column.

significant correlations between each fused surface PM2s concentration level and ambient
temperature (all p’s<0.01). The measure of association shown is r?%, the square of the cor-
relation (r) expressed as a percent. The r?* value quantifies the percentage of the variance
that is shared by each fused surface PM2s concentration level and ambient temperature
value. The 2% measures are largest for PMCK, smallest for PMB and PMCQ, and inter-
mediate for PMC and PMCKQ), in all three monitor grid conditions (Both, No, Yes). PMB
r2%»was higher in grids with monitors (11.2%), and lower in grids without monitors (3.6%).
PMCQ’s r?% was also higher in grids with monitors (16.5%) than in grids without monitors
(9.3%). Differences in the 2% measure between grids without and with air monitors were
positive for PMC (41.3% - 37.1% =4.2%), PMCK (61.2% - 50.2% = 11%), and PMCKQ (37.8%
- 34.0% = 3.8%), and negative for PMB (3.6% - 11.2% = -7.6%) and PMCQ (9.3% - 16.5% =-
7.2%). Fine PM concentration levels for the five PM:s fused surfaces were significantly
higher during the warm season than during the cold season, in all three grid conditions
(all p’s<0.05). As expected, ambient temperature during the warm season was signifi-
cantly higher than during the cold season, for the three grid conditions (all p’s<0.05).

3.5.1. Warm-Cold Season OR Percent

Figure 6 displays the warm—cold season AOR% values. The AOR% measures were

Olag0 Olagl Olag0l1 Olag04
35.0% 35.0%
30.0% £ 30.0% £ —
2\225.0% S 25.0% £
S 20.0% S 20.0%
15.0% £ 15.0% £
10.0% + 10.0% +
5.0% £ 5.0% £
0.0% £ 0.0% £
PMB PMC PMCK PMCQ PMCKQ PMB PMC PMCK PMCQ PMCKQ
AOD-PM, ; Fused Surfaces - 6a AOD-PM, 5 Fused Surfaces - 6b
35.0% 35.0%
o 30.0% ) 30.0% +
X 25.0% + S 250% 1
@) E E
3 200% + S 200% ¢
15.0% + 15.0% +
10.0% + 10.0% ¢
5.0% + 5.0% +
0.0% £ SRR
PMB  PMC PMCK PMCQ PMCKQ PMB PMC PMCK PMCQ PMCKQ
AOD-PM, ; Fused Surfaces - 6¢ AOD-PM, ¢ Fused Surfaces - 6d

Figure 6: Warm — cold season AOR% values for the four AOD-PM:s5 and baseline PMB fused surfaces
atlag grids 0, 1, 01, and 04 for ED asthma (6a), IP asthma (6b), IP MI (6¢), and IP HF (6d), in different panels.

positive for each of the four AOD-PMas and baseline PMB fused surfaces, ED asthma
(panel a), IP asthma (b), MI (c), and HF (d), at lag grids 0, 1, 01, and 04. All four panels
in Figure 6 demonstrate that PMC and PMCK had consistently higher AOR% values than
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the other two AOD-PM:s5 (PMCQ, PMCKQ) and baseline PMB fused surfaces at lag grids
of 0, 1, and 01. ED asthma AOR% values were smaller than the AOR% values for IP
asthma, MI, and HF. Also, for all four health outcomes and the four AOD-PM:2s and
PMB fused surfaces, AOR% values were smaller at lag grid 04 than at the other three lag
grid values of 0, 1, and 01.

3.6. Lag Grids Verus Lag Days

There were similarities and differences between the spatial lag grid and temporal lag
day monitor (Table S1, Supplemental Material) and season (Table S2, Supplemental Ma-
terial) results. The no monitor — monitor AOR% values in Table S1 were the same for the
five fused surfaces (PMB, PMC, PMCK, PMCQ, and PMCKQ) and four health outcomes
(ED asthma, IP asthma, MI, and HF) at lag grid 0, and lag day 0. The analysis of the four
health outcomes with PMC and PMCK resulted in higher AOR% values at lag day 1
than at lag grid 1. Lag day 01 AOR% values were also higher than lag grid 01 AOR%
values for PMC, PMCK, and PMCKQ with the four health outcomes. The combination
of PMCQ with IP asthma and HF at lag value of 1, and PMCQ with IP asthma and MI at
lag value of 01 resulted in lower AOR% lag day than lag grid AOR% values. Baseline
PMB, in combination with the four health outcomes, resulted in lower AOR% values at
lag day 1, and 01, than at lag grid 1, and 01, respectively. Lower lag day than lag grid
values also occurred for PMCKQ with ED asthma at lag day 1. There were significant
lag grid values that included 0, 1, 01, and 04. Lag day values were only significant for
0, 1, and 01, but not 04 (all p’s<0.05). These outcomes occurred in grids with or without
ambient air monitors in the spatial lag grid and temporal lag day analyses.

The AOR% measure was also used to evaluate warm-cold season differences ob-
tained with the spatial lag grid analyses and the temporal lag day analyses. The AOR%
lag grid and lag day values were the same for the five fused surfaces and four health out-
comes at lag value of 0. But for the five fused surfaces and four health outcomes at lags
of 1 and 01 all AOR% values were higher for lag days than lag grids. Only the warm
season ORs were significant for some of the lag grid and lag day analyses. PMCK iden-
tified more significant warm season ORs in the lag grid and lag day analyses than the
other three AOD-PM:s fused surfaces (all p’s<0.05). There were non-significant warm
season ORs for baseline PMB in combination with the four health outcomes (all p’s>0.05).
The other difference was due the length of the lag grid values versus the lag day values,
with the former having significant ORs for all four lag grids (0, 1, 01, and 04) while the
latter only had significant ORs for three of the four lag days (0, 1, 01).

4. Discussion

This study implemented, for the first time, a spatial lag grid analysis of HBM as-
sembled experimental AOD-PMoasand baseline PMB fused surfaces and respiratory-car-
diovascular ED visits and IP hospitalizations with patient residences uniquely assigned
to 12 km2 CMAQ grids. Because the spatial lag grid analyses were completed using the
same concatenated exposure-health outcome data files that were previously used to eval-
uate temporal lag days [3], it was possible to identify unique differences and similarities
associated with these two case-crossover data analysis procedures. Unique findings in-
clude a description and interpretation of differences among the size of HOSAs, greater
risk of manifesting a respiratory-cardiovascular chronic disease as a result of exposure to
higher AOD-PM25 concentration levels in rural areas, and warm-cold season differences
that showed associations between ambient temperature and AOD-PM:s5 concentration
levels, and increases in respiratory-cardiovascular chronic disease ED visits for asthma,
and IP hospitalizations for asthma, MI, and HF. Each of these four topics will be cov-
ered in greater detail below after reviewing correlations and descriptive statistical anal-
yses for baseline PMB and the four experimental AOD-PM:s fused surfaces.

Correlations and three-year fine PM concentration level means suggest that PMCK
may be more representative of ambient PM2s concentration levels in urban grids with air
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monitors and in rural grids without air monitors than baseline PMB, or the other three
AOD-PM:s fused surfaces. The percentage decrease in shared variance between PMB-
PMC and PMB-PMCK in grids with and without air monitors was 32.4% and 35.7%, re-
spectively. In grids without air monitors the baseline PMB concentration levels reflect
less emphasis on air monitor readings and greater importance on CMAQ PM2smodel es-
timates. But, in grids without air monitors PMC uses AOD-PM2sreadings (with missing
values) while PMCK utilizes Kriged AOD-PM2s5readings (without missing values) to es-
timate ambient fine PM concentrations. One interpretation could be that in grids without
air monitors AOD-PM:s concentration levels are more representative of ambient monitor
PM:25 measurements than the CMAQ PM2smodel estimates.

The first aim was to determine the size of HOSAs. HOSA sizes in km for width
and height or km2for area differed as a function of AOD-PM2sfused surface, respiratory-
cardiovascular ED visits or IP hospitalizations, and monitor grid condition. The largest
HOSAs included 5 interconnected grids (720 km?), and the smallest HOSAs contained 2
grids wide (288 km?). In grids with monitors there was only one 2-grid-wide HOSA for
PMCK-ED asthma. In grids without air monitors there were 7 5-grid-wide HOSAs: 3
each for PMC or PMCK paired with ED asthma, IP MI, or HF, and one for PMCKQ with
ED asthma. The grid sizes of HOSAs in grids without monitors were identical to the grid
sizes of HOSAs in the Baltimore study area for PMCKQ), and similar for PMC and PMCK.
In the both grid monitor condition three 5-grid-wide HOSAs occurred for PMC with ED
asthma, and PMCK with ED asthma or IP HF. These maximum grid-size HOSA results
suggest that the benefit of utilizing the experimental AOD-PM:s fused surfaces may be
only evident when the analyses are completed in rural grids without air monitors. The
other implication is that the same association between an experimental AOD-PM2s fused
surface and a specific respiratory-cardiovascular ED visit or IP hospitalization outcome
can occur up to 60 km from lag grid 0. It is possible that residents in these five intercon-
nected rural grids without air monitors were at equal risk of exposure to higher fine PM
concentration levels and in need of medical care for ED asthma or an overnight stay in the
hospital for MI, or HF. Residents in two interconnected rural grids without air monitors
were also at risk of exposure to higher fine PM concentration levels and in need of medical
care as an IP because of the onset of uncontrolled asthma attacks.

The second objective concerned the presence of differences in AOD-PM:5 concentra-
tion levels between urban grids with air monitors and rural grids without air monitors.
The contribution of PMC or PMCK AOD-PMa2s concentration levels to ED asthma, IP
asthma, MI, and HF produced significantly higher ORs in grids without air monitors than
in grids with air monitors at lag grids 0, 1, and 01. Interestingly, the no monitor — monitor
AOR% values were positive and larger for PMC and PMCK, than for PMCKQ fused sur-
faces. The AOR% values were larger at lag grids 0, 1, and 01, than at lag grid 04. Itis
possible that the PMC and PMCK AOD-PM:s concentration levels were more accurate
approximations of ambient fine PM values in urban grids with air monitors and in rural
grids without air monitors than the PMCKQ concentration levels. Because the number
and percentage of true positive cases and true negative controls were similar in urban
grids with air monitors and in rural grids without air monitors, we concluded that the
concentration-response function between AOD-PMo2s concentration levels and respira-
tory-cardiovascular ED visits and IP hospitalizations could be similar in the entire Balti-
more study area, and in urban grids with air monitors and in rural grids without air mon-
itors [80]. One limitation, however, is that this statement is based on a temporal lag day
analysis and did not utilize the spatial lag grid case-crossover design analysis.

Categorical analyses of the Baltimore study area identified, for the first time, a subset
of homogeneous spatial grids in rural areas without ambient air monitors that resembled
urban grids with ambient air monitors by showing higher poverty percentand increased
population density: In rural areas without air monitors there were 8 grids with poverty
percent values in the Above category, and 7 grids in urban areas with air monitors that
had poverty percent values in the Above category. There were 19 rural grids with
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population density in the Above category and 11 urban grids in the Above category. In
addition, there were higher totals and percentages of IP MI (12016, 62.6%) and IP HF
(15684, 57.0%) in rural areas than in urban areas (7185, 37.4% and 11834, 43.0%, respec-
tively). But the totals and the percentages of Black ED asthma patients (11844, 25.2%)
and IP asthma patients (2358, 17.5%) were higher in urban areas than in rural areas (10852,
23.1% and 2152, 16.0%, respectively). These results support the conclusion that persons
living in rural grids are also at risk of developing respiratory-cardiovascular chronic dis-
eases after exposure to higher fine PM concentration levels as are persons who reside in
urban grids.

Hirshon and associates [81] evaluated PM2s zinc concentration levels and children’s
asthma ED visits and IP hospitalizations. These authors reported that PM2s zinc concen-
trations contributed to increases in asthma hospital events. This publication did not
identify the zinc source, however. One explanation could be that the ambient PM2s zinc
levels recorded at the Baltimore PM25 Supersite [82] may have come, in part, from a nearby
Toxic Release Inventory (TRI) site [83]. The Baltimore PM25 Supersite location can be
remapped onto one of the 99 CMAQ grids utilized in the Baltimore study area. As a
result of this remapping, we discovered that the location of the Baltimore PM2s Supersite
is in CMAQ grid R6, C6. This same grid also had three FRM PM25 air monitors and one
EPA-identified TRI facility that emitted ambient zinc fumes and dust. An adjacent Balti-
more study area grid, Rs, C7, had one TRI facility that released zinc fumes and dust in
the air.

As a follow-up to the Hirshon and associates’ study [81] we also looked at the number
of TRI facilities that released zinc fumes or dust in the Baltimore study area between 2004-
2006. There were five different businesses operating during this three-year timeframe.
One company had facilities in two distinct locations, contributing a total of 11 zinc point
sources: 7 zinc fumes or dust point sources in grids with air monitors (urban grids) and
four in grids without air monitors (rural grids). This analysis suggests that the ambient
PM25 zinc measured at the Baltimore PM2s Supersite in 2002 could have originated from
a nearby TRI facility that emitted zinc fumes and/or dust. Although the FRM PM2s air
monitors data we utilized did not include PM25 zinc measurements, it is possible that am-
bient zinc from TRI zinc emitting facilities in selected at-risk grids (with or without air
monitors) in the Baltimore study area could have indirectly contributed to children’s
asthma ED visits and IP hospitalizations.

Although this study did not evaluate environmental hazards associated with living
close to brownfields [84-85] or EPA TRI facilities [83], several published studies have de-
scribed the environmental contamination from manufacturing efforts in Maryland that
have included EPA TRI facilities in the State [86-89], and brownfields in South Baltimore
[84-85]. Perlin, Sexton, and Wong [87] found that there were 122 TRI sites in Maryland.
About half of the TRI facilities were in Baltimore City, Howard, Anne Arundel, and Bal-
timore Counties. Maryland residents near a TRI site were medically underserved [89].
South Baltimore brownfields have higher respiratory and heart disease mortality rates
among White working-class residents than the rest of Baltimore City and State [84]. Litt,
Tran, and Burke [85] described a variety of environmental hazards in Southeast Baltimore
that included heavy metals, solvents, and insecticides. Living in these environmentally-
compromised areas for long durations could increase residents’ adverse responsiveness
to lower ambient PM2s concentration levels and their enhanced contribution to respira-
tory-cardiovascular ED visits or IP hospitalizations [84-85,90-91].

The third aim was to spatially evaluate warm-cold season differences. For the Bal-
timore study area there were significant correlations between ambient temperature and
fused surface concentration levels. The percentage of shared variance was highest be-
tween ambient temperature and PMCK in all three grid conditions. After controlling for
perceived apparent temperature in the CLRs, only the PMCK AOD-PMz2s fused surface
had the highest number of significant ORs, thereby representing greater risk of warm sea-
son effects on the occurrence of respiratory-cardiovascular ED visits and IP
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hospitalizations at lag grids 0 (all four health outcomes), 1 (ED asthma, IP MI, and HF), 01
(all four health outcomes), and 04 (IP asthma, MI, and HF). The PMCK warm-cold sea-
son AOR% values were smallest at lag grid 04 compared to lag grids 0, 1, and 01. Unlike
these spatial lag grid warm-cold season results, the temporal lag day outcomes had: 1) no
significant lag day 04; 2) higher AOR% values for the five fused surfaces and four health
outcomes at lag days 1, and 01. These new findings suggest that the warm-cold season
differences depend on what AOD-PM:s fused surface is used and the implementation of
the spatial lag grid analysis or temporal lag day analysis.

The last aim was to compile this study’s findings regarding differences between the
spatial lag grid case-crossover method used in this report and the temporal lag day case-
crossover method previously implemented in an earlier publication [3]. There were
more differences than similarities between lag grids and lag days: First, the longest lag
day was two (lag day 01), while the longest lag grid was 5 (lag grid 04). Second, the
longer lag grid (0, 1, 01, 04) and shorter lag day (0, 1, 01) values were also found for the
monitor and season analyses. Third, the no monitor — monitor AOR% lag grid values
were either the same, higher for lag days, or higher for lag grids, based on what fused
surface was used to analyze a specific respiratory-chronic disease. = Fourth, the warm -
cold season AOR% lag grid values were either the same (lag value 0) or higher for lag days
than lag grids (lag values 1, or 01). Fifth, the lag grid and lag day analyses showed that
PMCK identified more significant warm season ORs than either PMC or PMCKQ.

Work on the adverse effects of ultrafine PM on a variety of physiologic measures and
health outcomes has continued for the least three decades, but it is now becoming more
relevant given the unequivocal evidence of the detrimental effects of ambient and mod-
eled fine PM on many health outcomes [28]. Mechanistically, ultrafine PM’s adverse ef-
fects should be even more severe than fine PM’s adverse effects on the occurrence of res-
piratory-cardiovascular chronic diseases [21-22,24-25,27-29,92]. It is possible that tech-
nical issues related to the use of the selected data analytic methods could explain why
there have not been more epidemiologic studies reporting on the significant association
between ultrafine PM and respiratory-cardiovascular outcomes [93-95]. Other possibili-
ties could include: the ambient ultrafine PM air monitor location and its distance from the
residential addresses of study participants [19,26,93-94]; type of study participant selected
with premorbid conditions that would enhance the adverse effects of ultrafine PM on the
occurrence of a respiratory-cardiovascular chronic disease [20,26-27,29]; ultrafine PM’s
adverse physiologic effects could compromise other organs besides the lungs and heart,
e.g., liver, kidney, brain, and this type of system-wide structural damage and physiologic
modification could facilitate the development of respiratory-cardiovascular chronic dis-
eases at a later date [22-23,26,28].

The suggestion introduced here is that the accuracy of AOD-PM:s concentration lev-
els in estimating ambient monitor PM25 measurements is related to spatial scale [38,96-
99]. Remote sensing studies that have used AOD to estimate ambient PM25 measure-
ments have concluded that smaller grids provide greater accuracy than larger grids. We
utilized the NASA 10 km? grid when we accessed the AOD unitless readings for the Bal-
timore and New York City study areas. Since our initial objective was to evaluate the
accuracy of the four experimental AOD-PM:zs concentration level fused surfaces relative
to the performance of the previously developed baseline PMB, we decided to map the
concentration level values to CMAQ'’s 12 km? native grid system before the Baltimore
and New York City epidemiologic studies were undertaken. For the Baltimore and New
York City study areas we controlled for scale effects by using the CMAQ 12 km? grid
system as the smallest spatial area of analysis. In the Baltimore study analyses all data
files with different spatial polygons, ZIP codes for ED visits and IP hospitalizations, and
ZCTAs for population density and poverty measures, were mapped to CMAQ grids. In
subsequent analyses, the CMAQ grids were categorized into one group including air
monitors (urban grids), and another group without air monitors (rural grids). The larger
groups, consisting of urban grids with air monitors or rural grids without air monitors,
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should not be less accurate than the individual 12 km? grids since the larger areas repre-
sent the inclusion of 12 km? grids into larger spatial grid areas. Likewise, the accuracy of
the identified HOSAs and HESAs should have the same accuracy as each of the individual
CMAQ grids.

There are strengths in the analytical methods utilized in this spatial lag grid case-
crossover study. To our knowledge, this is the first time the case-crossover design has
been modified to evaluate lag grids. The selection of controls that preceded or followed
the cases makes the lag grid case-crossover design spatially bidirectional [66]. The spa-
tial lag grid analytic method permits the identification and assessment of HOSAs and HE-
SAs. Study results demonstrate, also for the first time, the presence of rural grids without
air monitors that resembled urban grids with air monitors in exposing rural residents to
increased fine PM concentration levels and seeking medical care for respiratory-cardio-
vascular chronic disease hospital events. A final contribution was confirmation that
PMCK is a possible replacement for baseline PMB and its use in epidemiologic studies to
evaluate the contribution of AOD-PM2s concentration levels on the future occurrence of
respiratory-cardiovascular ED visits and IP hospitalizations in urban grids with ambient
air monitors and in rural grids without ambient air monitors.

There are unresolved methodological issues that limit the generalizability of study
results. The 99 CMAQ grids that defined the Baltimore study area included 15 urban
grids with air monitors and 84 rural grids without air monitors. All 15 urban grids with
monitors had associated respiratory-cardiovascular hospital event data. Only 57 of the
84 rural grids without air monitors had respiratory-cardiovascular hospital event data.
Grids without air monitors that lacked health data could have been those grids over the
Chesapeake Bay. The Chesapeake Bay CMAQ grids, located in the south-east corner of
the Baltimore study area, included more water than land mass. Residents live on part of
Maryland’s irregular coastline and islands. Underestimates for total patients with res-
piratory-cardiovascular ED visits and IP hospitalizations could have occurred because
some Maryland residents can and do obtain medical treatment out of State, e.g., Washing-
ton, DC; Virginia; Pennsylvania. To be consistent with the way the linear boundaries for
the New York City study area and the Baltimore study area were established for the pur-
pose of developing the AOD-PM:s5 and PMB fused surfaces, it was necessary to include
all 99 CMAQ grids in the Baltimore study area. There were boundary grids that crossed
the Maryland state boundaries into neighboring states. It was not possible to identify
which grids were included in HOSAs. Based on the way the spatial lag grid analytical
method was implemented only HOSA size could be determined. There was no inde-
pendent confirmation of actual ambient PM2s concentration levels in rural grids without
air monitors. There was also (relative) spatial heterogeneity in the 15 urban grids with
air monitors because there were only 17 ambient air monitors for an area of (12 km * 12
km * 15 grids) 2160 km?2. If the 17 fine PM ambient air monitors were equally distributed
among the 15 CMAQ grids, each monitor grid would occupy 144 km?2. Monitor accuracy
for the fine PM measurements is highest at the monitor’s location. Fine PM measurement
accuracy decreases as the distance from the monitor increases [8,33]. It is possible that
ambient PM:zs concentration levels in the most distant grid with a lag grid value of 4 was
the same at the ambient PM2s5 concentration level in lag grid 0. It is not clear to what
extent health care access impacted the results. Available evidence indicated that this may
not have been a bias since, for some respiratory-cardiovascular chronic diseases included
in the Baltimore study area, there were more patients with the four respiratory-cardiovas-
cular chronic diseases in rural grids without air monitors than in urban grids with air
monitors.

Future research efforts should involve the identification of criteria that will lead to
the replacement of the currently used baseline PMB with another AOD-PM:s fused sur-
face, e.g.,, PMCK. Relevant attributes that could facilitate the selection of an updated
AOD-PM2:s baseline could include grid resolution below 10 km?, absence of missing AOD
unitless readings, and improved accuracy of PM2s concentration levels in estimating
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ambient fine PM concentration levels in grids without ambient air monitors. In addition,
to increasing the reliability and validity of AOD-PM2s fused surface concentration levels
in grids without air monitors, it will be necessary to have available, independent on-the-
ground ambient PM25 measurements in grids without ambient air monitors. This more
ambitious goal could be reached by using portable and accurate PM2s monitors to sup-
plement fine PM readings available from the EPA AQS network [50]. In addition, ul-
trafine PM monitoring should be included along with fine PM monitoring within selected
communities in urban and rural areas. The overall goal of these proposed improvements
will be to protect the respiratory-cardiovascular health of residents from the adverse con-
sequences of breathing ambient air with elevated fine PM and ultrafine PM concentration
levels wherever they live, in urban or rural areas of Maryland or other states in the U.S.

5. Conclusions

The spatial lag grid case-crossover results provide support for the use of this new
analytical method to identify HOSAs, areas that demonstrated the same relationship be-
tween elevated AOD-PM:s fused surface concentration levels and increased respiratory-
cardiovascular hospital ED visits and IP hospitalizations in the entire Baltimore study
area, in urban grids with air monitors, and in rural grids without air monitors. With the
PMC and PMCK fused surfaces the largest HOSA was 720 km? for the Baltimore study
area and in rural grids without air monitors. Some rural grids without air monitors re-
sembled urban grids with air monitors in the contribution of increased AOD-PM:2s fused
surface concentration levels to the occurrence of health outcomes evaluated. Results
from categorical data analyses identified a subset of rural grids without air monitors that
also demonstrated higher poverty percent, increased population density and elevated
AOD-PM:s concentration levels as was found for urban grids with air monitors. Warm-
cold season analyses showed that elevated AOD-PM2s5 concentration levels during the
warm season contributed to increases in respiratory-cardiovascular ED visits and IP hos-
pitalizations, especially when the PMCK fused surface was used. New information con-
firmed the association between elevated AOD-PM:s concentration levels and ambient
temperature. PMC and PMCK fused surfaces consistently demonstrated larger differ-
ences between warm and cold seasons than the other two AOD-PM2s fused surfaces that
included CMAQ PM:s estimates (PMCQ and PMCKQ), or the currently used baseline,
PMB. Obtained differences or similarities between spatial lag grid and temporal lag day
analyses varied based on the type of AOD-PM:sfused surface selected, the specific respir-
atory-cardiovascular chronic disease utilized, and what lag value was evaluated. Future
research efforts should continue to evaluate the contribution of increased ambient fine PM
(as well as ultrafine PM) levels and area-specific demographic and environmental hazards
and their contribution to increased susceptibility among persons developing respiratory-
cardiovascular chronic diseases and residing in Maryland’s rural areas, or in rural areas
in other locations.

Supplementary Materials: The following are available online. Online items include
four figures and two tables. The four figures display warm-cold season ORs at spatial
lags 0, 1, 01, and 04, for each of the four experimental AOD-PM:2sand baseline PMB con-
centration level fused surfaces, four respiratory-cardiovascular ED and IP outcomes, in
all CMAQ 12 km? grids, and in grids with and without air monitors: Figure S1, ED
asthma ORs and 95% ClIs for the four AOD-PM:s and baseline PMB fused surfaces dur-
ing the warm and cold seasons at lag grids 0 (S1a), 1 (S1b), 01 (S1c), and 04 (S1d); Figure
S2, IP asthma ORs and 95% Cls for the four AOD-PMa2s and baseline PMB fused surfaces
during the warm and cold seasons at lag grids 0 (S2a), 1 (52b), 01 (S2c), and 04 (52d);
Figure S3, IP MI ORs and 95% Cls for the four AOD-PMzs and baseline PMB fused sur-
faces during the warm and cold seasons at lag grids 0 (S3a), 1 (S3b), 01 (S3c), and 04
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(53d); Figure 54, IP HF ORs and 95% ClIs for the four AOD-PM:25 and baseline PMB
fused surfaces during the warm and cold seasons at lag grids 0 (S4a), 1 (54b), 01 (S4c),
and 04 (54d). The two supplementary tables include AOR% values for the no monitor -
monitor grid conditions and warm - cold season analyses: Table S1, No monitor — moni-
tor AOR% for the four AOD-PM2:5 and baseline PMB fused surfaces and the four respira-
tory-cardiovascular ED visits and IP hospitalizations lag grid and lag day analyses; Ta-
ble S2, Warm - cold season AOR% for the four AOD-PMa25 and baseline PMB fused sur-
faces and four respiratory-cardiovascular ED visits and inpatient hospitalizations lag
grid and lag day analyses.
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ED - Emergency Department

EPA - U.S. Environmental Protection Agency
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HSCRC - Maryland Health Services Cost Review Commission
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IP — Inpatient Hospitalization
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MDH - Maryland Department of Health

MI - Myocardial Infarction

MODIS - MODerate resolution Imaging Spectroradiometer

NASA - National Aeronautics and Space Administration

OR - Odds Ratio

PHREG - Proportional Hazards Regression

PMo.1— Ultrafine PM

PM2;5— Fine Particulate Matter

PMB - PM25Baseline Model (monitor PM25 and CMAQ PM2s)

PMC - AOD PM2s5Model (monitor PM2s5 and AOD PMz2s)

PMCK — AOD PM:.5 Kriged Model (monitor PM2sand AOD PM2.5 Kriged)

PMCKQ - AOD PMazs Kriged and CMAQ PM:zs Model (monitor PMas and AOD PMzs
Kriged and CMAQ PM:s)

PMCQ - AOD PMz.s and CMAQ PMz5 Model (monitor PM2sand AOD PMa2.5 and

CMAQ PMa2.5)

SAS — Statistical Analysis System

TRI - Toxic Release Inventory

USCB - U.S. Census Bureau

USPS - U.S. Postal Service

ZCTA - ZIP Code Tabulation Area (USCB)

ZIP Code — Zone Improvement Plan (USPS)
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