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Abstract: The Vehicle Routing Problem (VRP) and its variants are found in many fields, especially
logistics. In this study, we introduced an adaptive method to a complex VRP. It combines multi-
objective optimization and several forms of VRPs with practical requirements for an urban shipment
system. The optimizer needs to consider terrain and traffic conditions. The proposed model also
considers customers' expectations, shipper considerations as goals, and the common goal like trans-
portation cost. We offered compromise programming to approach the multi-objective problem by
decomposing the original multi-objective problem into a minimized distance-based problem. We
designed a hybrid version of the Genetic algorithm with the Local Search algorithm to solve the
proposed problem. We evaluate the effectiveness of the proposed algorithm with the Tabu Search
algorithm, the original Genetic algorithm on the tested dataset. The results show that our method is
an effective decision-making tool for the multi-objective VRP and an effective solver for the new
variation of VRP.

Keywords: Multi Objective Optimization; VRP; Compromise Programming; Genetic Algorithm, Lo-
cal Search, Tabu Search; Metaheuristics; Combinatorial Optimization.

1. Introduction

1.1. Vehicle Routing Problem and Variants

In a logistics system, transportation plays an essential role in moving materials from
supplier to manufacturer, processing plants to the next step in the production process or
transporting finished products to customers. This scheduling and planning process needs
to be calculated before the actual operation. However, this is not an easy task because
many resources such as machines and vehicles need to be arranged. The problem is called
VRP [1]. A capable fleet of vehicles must serve a dispersed group of customers geograph-
ically at a minimal cost. We can express the VRP with visitations of the vehicles to cus-
tomers through a graph as G = (V,E) where V = {v,, vy, ...,v,} be the set of nodes.
vy, ..., U, Tepresent the customers to be visited from the depot v,. E is an edge set inter-
linking two locations where E = {(i,j)| (i,j) = 0,1, ...,n,i # j}. Fundamental decisions are
made in the VRP regarding customer assignment to vehicles and the sequence of custom-
ers assigned to each vehicle [2]. Many studies on VRP have been conducted, and accord-
ingly, many variants of VRP have also been identified. Some of the more widely known
variants include:

e  Capacitated Vehicle Routing Problem (C-VRP): refers to the limitation of vehicle ca-

pacity for classical VRPs. The system uses multiple vehicles and the total demand of
each route does not exceed the vehicle capacity [3] [4]. An extension of C-VRP is when
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the vehicles are heterogeneous (CH-VRP), where each vehicle may have a different
capacity [5], [6]. The package of product with different types can be considered as
multi product -VRP (MP-VRP) [7].

e  Multi-Depot Vehicle Routing Problem (MD-VRP): For the classic VRP problem, the
path of all vehicles can only start from a warehouse. In MD-VRP, the vehicle departed
from multiple warehouses [7], . Torres et al. reviewed several variants of the MD-
VRP, where it can combine with several constraints such as time windows, batch de-
livery, heterogeneous fleets, scheduled delivery [8].

e  Vehicle Routing Problem with Time Window (VRP-TW): is often encountered in
many industrial applications. The time window is divided into soft time windows
(Delivery not within the period can be a penalty) and hard time windows (Delivery
within the period is mandatory). VRP-TW has received much attention from re-
searchers in recent times [9], [10].

e  Multi-trip Vehicle Routing Problem (MT-VRP): in MT-VRP, each vehicle is explicitly
allowed to perform multiple trips during its service time in such a way that the total
demand of customers served in each route does not exceed its capacity within a given
deadline [11], [9], [12].

VRP is a complex problem that challenges many researchers. Different variants or
business conditions may require the solution search space to be significantly expanded.
This paper introduces a method to solve a new VRP that combines multi-objective opti-
mization (MOP) and different form of VRPs. The proposed solver automatically generates
the routings for shippers to deliver packages to urban customers. The urban delivery sys-
tems have several characteristics that differ from many ideal environments in terrain, traf-
fic, and order-warehouse conditions. The scheduler allows considering the concern of the
business, customer satisfaction, and the employees in the decision-making process. We
use MOP-VRP as a shortened name to call the problem.

1.2. Related Works

VRP is a problem with many variations. One can say that each business model can
potentially become a new variant with countless goals and constraints based on the suc-
cess factors of the business. Table 1 presents some recent studies in this field. In building
the optimization model, we can see in these studies that the authors are often only inter-
ested in optimizing transportation costs (distance, fuel consumption, transportation cost).
The objective functions are usually linear. However, many factors affect this calculation,
especially for the case study of transportation in the inner city, such as traffic conditions
over time (peak hours) and road conditions (one/two-way roads). In the survey [18], the
author pointed out that the path optimization problem would raise the trend of real-time
path optimization problems considering time-varying factors such as real-time terrain and
real-time traffic conditions involved in MOP-VRP. Therefore, a simple representation
such as previous studies' use is challenging to cover in many real-life situations. Several
studies related to time windows have made customer satisfaction one of the essential
goals. However, besides benefiting businesses through cost optimization or satisfying cus-
tomers, a collaborative economic model requires sharing among stakeholders. Usually,
urban transport models often use part-time shippers. If there is not enough attention to
their needs, the job will become less attractive, and it won't be easy to create a long-term
working environment. The lack of committed employees in a volatile business such as
logistics brings more difficult constraints to optimize costs and improve service quality.
Therefore, these factors need to be considered in the modeling process to become the ob-
jectives to be achieved in the scheduler.

In the decision-making process, decision-makers may not be an individual but a
group. Therefore, their considerations are critical to any strategies. In real-world business
environments, the optimizer needs to pay more attention to multiple decision criteria to
meet customers' requirements. No single solution exists that simultaneously optimizes all
objectives of the non-trivial multi-objective scheduling problems. The MOP-VRP is not an
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exception. Several approaches are available to the MOP [19] (including MOP-VRP [20],
[21]). Generally, they are classified into (1) the preferred approach, where decision-makers
have the higher information to select the final solution among several options. (2) The
non-preference approach assumes that no-decision maker is available, or the decision-
maker does not have the higher information to indicate the preferences for the objectives.
A user needs only one solution from a practical standpoint, no matter whether the opti-
mization problem is. In the case of MOP, the user is now in a dilemma. The idea MOP
procedure always requires finding the trade-off between solutions with a wide range of
values for objectives and then choosing one of the obtained solutions using higher-level
information. Significantly, the objective space is higher-dimensional. It isn't easy to visu-
alize the solutions to the users [22]. In this situation, an adaptive approach to the MOP is
a challenge to the researchers. The result of solving a real-world problem usually is an
approximation set A of the objective vectors (any element of A does not dominate or is
not equal to any other accurate vector in A) and not the Pareto optimal front. Okabe et al.
reviewed several metrics for accessing the performance of MOP algorithms [23], including
cardinality metrics, accuracy metrics, diversity metrics. Regardless of which approach is
used, assessing the quality of the solution is one of the issues that need to be carefully
considered.

Table 1: Research and corresponding objective functions

Research Objective Func-  VRP Types Highlights Drawbacks
tions
Zhen et al.,  Minimize travel- MD-VRP, The proposed mixed integer linear The model is not based on a realistic prob-
2020[9] ing time of all the MT-VRP, programming can describe clearly lem where the data is also randomly se-
vehicles. VRP-TW the business. lected from the benchmark.
The proposed metaheuristics can The model does not involve several factor
provide optimal solutions on a such as traffic conditions
large scale.
Babaee Minimize the MT-VRP, A case study is investigated to The business rules assume that — The
Tirkolaee et sum of vehicles VRP-TW evaluate the applicability of the time and cost of a route is the same for all
al.,, 2019[10]  cost, traveling proposed model in the real world. vehicles. This is may not guaranteed in
cost, penalty cost Many business conditions have other real-life application.
of soft time win- been considered. The designed solver can solve the prob-
dow. lem in small and medium sizes that only
offers near-optimal solutions compared
to the CPLEX solver.
Alemany et Minimizing dis- C-VRP, MP-  The model was developed from a Experiments are conducted on the small-
al,, 2018[7]  tribution cost VRP, MD- realistic case study from an oil pro- scale dataset. Evaluations of the pro-
and distance- VRP vider company. posed method have not shown its perfor-
base cost. mance with different techniques.
Pan et al,, Minimizing the MT-VRP, The routing solver is designed for ~Authors simulate the experimented data
2021[13] traveling cost. VRP-TW a vending cafe company to replen- by randomly creating data based on an

ish stocks for their geographically
dispersed outlets. The proposed
method can work on large-scale in-

stances.

existing dataset.
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Maetal, Minimizing trav- MD-VRP, An improved ACO algorithm with The system considers only single depot
2017[14] eling cost. VRP-TW some ideal to improve the search which is not guaranteed in several appli-
speed, is introduced to solve the cations.
proposed problem. The research did not show the evalua-
tions on the proposed algorithm to the
existing methods.
Zhang et Minimize carbon =~ MD-VRP The research develops a new ex- The proposed mathematical model and
al., 2020[15]  emission. tension model of MD-VRP. The the heuristic algorithm provide better
proposed algorithms can deal with  quality than the heuristic but more com-
large-scale datasets. putational cost.
Nuca- Minimize the CH-VRP, The proposed model was obtained  Business rules are simple.
mendi- cost of transport ~ MD-VRP from the real-world business. The designed metaheuristic was only
Guillén et and contracts. tested with small scale dataset.
al., 2021[16]
Lietal., Minimize com- MT-VRP, The solver can apply to some real- The model is quite simply cannot adapt
2020[12] pletion time of VRP-TW life problem instances. The pro- to other businesses. The designer did not
vehicles. posed heuristic algorithm shows a  consider the concerns of different stake-
better result to the CPLEX solver.  holders in the system.
Shelbourne  Minimize the VRP-TW Proposed solvers based on heuris- The optimization model was based on
etal, sum of total dis- tic evaluated the performance on several assumption that may not be ap-
2017[17] tance cost and to- several datasets. plied to other situations

tal weighted tar-

diness.

Usually, researchers often model VRP problems using binary decision variables to
represent relationships between vehicles and destinations, vehicles and depots, etc. These
links are expanded exponentially to the number of inputs and may not exist solver with a
deterministic polynomial time. Therefore, the VRPs are classified in NP-Hard and combi-
natorial optimization. The state-of-the-art is identified as two main streams of resolution
techniques, including exact methods to approximate solution methods (heuristic and
meta-heuristic) in the literature. Whereas exact methods provide the optimal that is the
best solutions. Exact algorithm includes branch-and-X (bound, cut) [24], dynamic pro-
gramming [25], Lagrangian relaxation-based methods [26]. (Meta)heuristics include sim-
ulated annealing, population-based methods such as evolutionary algorithm [27], gener-
ally yield near-optimal solutions. The exact method is more suitable for the small size of
problems, due to the. However, the logistic system is increasingly facing the larger scale
with the increasing number of orders, customers, and vehicles... this is where (meta)heu-
ristics is a better choice due to flexible search capabilities and easy integration to exploit
the good properties of different methods.

Many researchers designed heuristic, metaheuristic, and combinations to the VRP
and its variant. Samuel Nucamendi-Guillén (2021) [16] developed a metaheuristic proce-
dure to find a solution by improving the initial solution using local search algorithms.
Zhiwei Liu (2017) [28] proposed a method that combines Tabu with mem-brane compu-
ting to find the solution for VRPTW. Babaee Tirkolaee E (2019)[10] developed simulated
annealing (SA), a local search algorithm that can escape the local optimum for the MT-
VRPTW in urban waste collection. To solve the MT time-dependent VRP TW. Binbin Pan
[13] designed a hybrid metaheuristic algorithm, using variable neighborhood descend
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(VND) for intensive exploitation and adaptive extensive neighborhood search (ALNS) to
direct the inquiry when VND is stuck in a local optimum.

Among several branches of metaheuristics, Evolutionary Algorithms (EA) attract
many researchers. For instance, Hari Kurnia (2018) [29], Cortes (2018) [30], and R Fitriana
(2019) [31] designed a classical genetic algorithm for the VRP, CVRP, MDVRP, respec-
tively. As for VRP with more features, attributes that reflect the complexity of the real
problem, a hybrid genetic algorithm, which improves the solution by implementing a lo-
cal search heuristic in the initial phase of the genetic, is proposed by Rabbouch (2019) [32].
Jalel Euchi (2021)[33] solves another complex VRP with drones by a modified hybrid ge-
netic algorithm combined with nearest neighbor heuristic and modifying saving heuristic
in the initial phase. While the nearest neighbor heuristic help improve the initial solutions,
the saving heuristic keeps the genetic algorithm from the early local optimum. Yanfang
Ma (2017) [14] proposed an improved ant colony optimization (ACO) combined with the
nearest neighbor search method for the MD VRP TW. Wei-heng Zhang (2020) [15] de-
signed a 2-stage ACO for MDGVRP, assigning customers to the depot to generate routes.
EAs and their hybrid versions have proven effective for single objective VRPs. They can
obtain a set of solutions present in a solution process, provide the ability to be easily de-
termined with different types of variables, and do not require any assumptions that make
convexity and separability distinction between objectives and related constraints. In gen-
eral, these algorithms provide a design direction. The suggested search operations are
based on different designer arguments. In general, many factors determine this problem,
but in our opinion, building a suitable data structure plays a vital role. A good data struc-
ture can support stochastic operations and help improve population diversity while en-
suring the algorithm's convergence. Multi-Objective EA (MOEA) extends EAs to deal with
multi-objective optimization problems. They can be classified based on different features.
A widely accepted classification for MOEA considers Pareto-dominance-based, Decom-
position-based, and Indicator-based algorithms [34]. MOEAs have been applied in several
applications [35,36] that can search for a set of optimal solutions on the Pareto Front. How-
ever, it involves much higher-level information, often non-technical, qualitative, and ex-
perience-driven, to indicate the final solution with a prohibitive computational cost. This
cost is not suitable in many experimental conditions. An efficient approach for MOP-VRP
that does not require pre-determine the trade-off between objectives and is applicable to
integrate with algorithm design to maintain the solution quality with a reasonable cost
has always been a challenge in this field [37].

1.3. Contributions

This study presents an adaptive method for a variant of MOP-VRP as a scheduler in
the urban delivery system. The model is built around the real-life requirement fit for an
urban delivery system. The optimizer needs to provide the solution to archive multiple
business conditions that comply with essential factors such as terrain and traffic condi-
tions besides other constraints for VRP. We use compromise programming to approach
the proposed MOP. It allows decision-makers to obtain an optimal solution without de-
fining preferences on each objective function in advance. However, if they do, alternative
decision strategies are still used generally through the definition of weights to assign the
effect of objective functions via the distance function. We designed and compared Tabu
search (TA), genetic algorithm (GA), a combination between GA and local search algo-
rithm (HGA) to solve the proposed model on the tested dataset. Our study suggests a new
variant of VRP. It can benefit researchers and engineers to develop a better optimizer for
variants of VRP. This research also contributes to the developed methodology for Multi
objectives scheduling and planning problems [38]. The rest of this paper is organized as
follows. The proposed model and algorithm are respectively described in Sections 2 and
3. To evaluate the proposed approach, we display the experiments and discussion in Sec-
tion 4. Finally, section 5 offers a conclusion.
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2. Proposed Model

This study builds a multi-objective optimization solver for the urban shipment prob-

lem. This section describes the mathematical optimization model and the approach to the
proposed multi-objective optimization problem. The goals to be achieved by the devel-
oped scheduler have been thoroughly discussed with logistic managers as the decision-
makers. Some important business rules are defined as follows:

The system is set up with many delivery points corresponding to the customers.
Packages that need to be delivered have different weights and delivery periods.
Packages are shipped from various warehouses.

Each package needs to be collected from the allocated warehouse.

The delivery time between any 2 locations is time and terrain-dependent. It is esti-
mated based on statistical data from previous shipments.

Shippers also use vehicles with different payloads and transportation costs.

To deliver the order, the shipper may need to take several trips.

2.1. Mathematical Formulation

The decision variable represents the whole detailed plan to shippers. Besides them, sev-
eral dependent variables that are computed from the decision variables are also intro-
duced in the model as follows:

C represents the set of deliver points/ customers.
K denotes the set of shippers.
D stands for the set of warehouses.

N =D U C denotes the set of locations, where the first |D| elements are the loca-
tions of the depots, and last |C| elements represent the locations of customers.

B € RI¥l is the vector that represent the capacity of shippers, where B, € N* is the
capacity of shipper k.

P € RI¥! is the vector that represent the freight rates of the shippers, where P, € R*
is the freight rate of shipper k".

W € RI¢is the vector used to illustrate the weight of the orders by customers, where
W, € N* is the weight need to delivery to deliver point c¢*".

L € RIlis the vector used to illustrate the load time of the orders by customers,

where L, € N* is the time need to load the package of customer c‘".

A = {A°|A° € R? ¢ € (C} is the vector that represent the appointment time of the cus-
tomer, where [ASon, Alate | 1S respectively describe the appointment time and the
time window that customer c¢* demand for his/her order.

M = {M¥|M* e RNk € K}, M* = {M}|M}; € N*,i,j = 1..|N|} where M; is the
distance if shipper k go from location i*" to location j*".

T = {T*|T* e RNk € K}, T* = {T|T}; € N*,i,j = 1...|N|} denotes the time con-
sumptions of transportations between locations for shipper k, where T represents
the time that shipper k™ take to travel from location i** to location j™. T}
puted based on time(i, ], k,t) thatis the function to query travelling time of the ship-
per ks from location i*" to location j*™, t stands for start time. The returned
value is depended on the traffic condition at time t.

is com-

U € RIIPl js a matrix to represent the warehouse's links that storing the orders and
their deliver points. U.; = 1 means the order of the customer c¢" is keep by the
warehouses d*".

V = {V,|V, € N*, k € K} is the vector that represents the number of tours each shipper
takes, where V; is the number of tours of shipper k.

The decision variable 0 = {0*|0* € RV¥*IVl k € K} represents the planned paths for
shippers, where V,, € N denotes the number of tour that made by the shipper k**
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to deliver all his/her assigned orders. Figure 1Error! Reference source not found.
illustrates an example of a planned path.

1
0200 - @-O-E-G-C
0O 1 0 2 3
Figure 1. an example of a planned path with N =5,V =2
. = {ZiyvijlZivij = equal({mm (0,,],1) min (01“, 1),1}),Vk =1..|K|,i=

wNLj=1.NLv=1..Vy AZ, sk,=1} represents the sequence of visited

nodes of the shippers. Shipper k™ go to node i*" right after node j** in trip v'" if
Zyvij = 1.0 otherwise.

e Denotes S ={S.|S. € R",c € C} where S, is estimated time that shipper deliver to

the customer c. If S.<A%,,, then S; = A%,on, and the duration 4%, — S, is consid-
ered as waiting time.

o Y={V|VeER,k=1..K} where Y; = ZKLZ'N ZlNl Zypij * T” represents the
total traveling time of the shipper k'".
To meet business requirements, the solver must satisfy the following objectives:

e  Minimize of transportation cost of all shippers based on types of vehicles. Traveling
on long routes increases costs:

[K| Vi IN| IN|

min | f1(0) —Zzzzzkvu * Py *

=1v=1i=1 j=

e The urban delivery requires punctuality, although it is not a hard constraint to the
model—however, the less late delivery, the more satisfied the customer. The opti-
mizer needs to minimize late delivery to the customers:

Il

min | f,(0) = Z late(S,)
c=1

. _ 0 lf Alate =
Where: late(SC) B {Sc - fate lf SC > Alate

e Serving customers is beneficial for businesses. However, it can be traded off by the
convenience of the delivery staff. The workforce is usually part-time. Thus, a route
that saves shippers waiting time provides a competitive environment. Minimize the
waiting time of the shippers is a goal that needs to archive:

Il

min | f3(0) = Z wait(S,)

0 lf Asoon = S

Where: wait(S,) = {Agoon _s, if S. < A,

e  Minimize differences in traveling time of the shippers. The shipper's working time is
only counted as travel time. It does not include waiting time. Therefore, this time
allocation helps to balance the workload of the shippers.

K] IX|

min | £,0) = > | ¥ —%Zn

Subject to:

e All of orders must be delivered:


https://doi.org/10.20944/preprints202201.0130.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2022 d0i:10.20944/preprints202201.0130.v1

K| Nl Vi
> min (0%, 1) = [€]
k=1i=|D[+1v=1
e  Each deliver point is assigned to only one shipper:
K| Vi
ZZmin 0k, 1) =1 Vi=|D|+1..|N|
k=1v=1
e  Respecting the capacity of shipper on every trip:
IC|
Zmin(o,';’;c, 1)*W,<B, Vk=1..Kv=1.V
c=1
e  Shipper must load the customer’s package before delivering to the customer in the
same trip.

0f.—0f,>2U.y Vk=1.lK|,v=1..V,,c=|D|+1..IN,d=1..|D|
e  Shipper cannot visit more than one location at the same time.
05 # 05 Vk=1..K,v=1.V,i=1.|N,j=1..|N|,i#j05 #0,0f; #0

2.2. Compromise Programming for MOP-VRP

Compromise programming (CP) [39] is based on the idea not to use any preference
information or rely on assumptions about the importance of objectives. The method does
not try to find multiple Pareto optimal solutions. Instead, the distance between some ref-
erence point and the feasible objective region is minimized to find a single optimal solu-
tion, as shown in Figure 2. For this purpose, the weighted L, metrics measure the dis-
tance of any solution from the reference point. The ideal objective vector is often used as

the reference point:
1/p

N
min(ZWi |fi(x) — zi*|p) s.t. x€X
i=1

Where x is the decision variable and X is feasible set, z; = mi)r(l fi(x), p can take any
X€E

value between 1 and o (in practice normally p = 2), weight vector w = {w;|lw; €
R* i =1..N},and N is the number of objective functions. The literature suggests that to
normalize the dimensional values in range [0,1] of the distance function. We can rewrite

. 1/2
. . . . . Fi—2z;
the objective function in form of norm 2 as: min (Z’i":l W; | =worsr— |2) where z}V°TSt =
z{ -z

T ).

There are many studies that have used CP to approach the MOP problem such as for
university timetabling [40], [41], [42], or in team selection [43], in knowledge based rec-
ommender [44], project task assignment [45]. However, it may require pre-defined mini-
mal and maximal values of the objective functions. Some of these values are predictable
[43], most of other cases require to solve the problem as single objective function multiple
times, which may be costly. Other studies [44] [46] show that the referential point may be
selected from business estimations could provide better performance for the agents in
searching process. However, in this study, the normalization method using both of z”
and z"°"*" brings a better quality of the solution.
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Figure 2: Scanned area of the search process in CP-based approach

3. Proposed Algorithms

In this section, we introduce the proposed algorithms. The main focused algorithm
is HGA, an algorithm that combines GA and Local Search. The first part of this section
describes GA. We use the same principle for the search agent's stochastic process and data
structure for proposed algorithms. The algorithms described after GA share several com-
mon strategies. The second part describes how we implement HGA. Another algorithm
that does not belong to the class of Evolutionary algorithm is proposed, the TA.

3.1. Genetic Algorithm

GA is one of the most well-known metaheuristic algorithms used to solve NP-hard
problems and belong to Evolution Algorithms family [47]. The process of natural evolu-
tion inspires the idea of GA. The algorithm begins with a random population, with each
individual represents a solution for the problem. The final solution is obtained through
the evolution of the population. The designed scheme of GA is shown in Figure 3. The
fundamental difference between our design and traditional flow is that we introduce the
repair step to fix the instances violating the constraints during the random process. To
initialize the first population, we randomly create the route for each solution of the initial
population. With an initial route, we get the list of assigned customers for each and then
sort them by their demand time in ascending order. After modifying the route, the trip
is created using the idea that shippers only need to return to the depot whether their job
is finished, or the trip's capacity is overloaded. They need to return to the depot.
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Figure 3: The flow of proposed GA scheme.

1.  Initialize the population: The structure of the individual is equivalent to decision var-
iable O as described in the proposed optimization model. We generate the popula-
tion P is the set of m individuals. For programming convenience, the chromosome
is represented by 2 arrays with the size of (C + K — 1), denoted by routes and
trips. The routes represents the paths of the shippers by storing the ids of C cus-
tomers and (K — 1) shippers and arrange in random order. Positive integers used to
represent the customer ids and negative integers used to present the shipper ids.
trips used to identify the trips of the shippers. Figure 4 shows the chronosome
representation for an example of 12 customers with ids from 1 to 12, 3 shippers with
ids 1 to 3, 2 warehouses A and B. In the figure, first three elements of routes are 12,2
and 5. It means the shipper with id 1 is assigned to deliver to these customers. The
corresponding elements in trips are binary only. 0 means shipper can directly
continue to travel, meanwhile 1 means shipper has to comeback related warehouse
to load the package before devering to the next customer. trips stores only K — 1,
in this case shipper id 1 is not nessessary stored in the routes for more convinent in
ramdom process.

Chronosome _ Shippersids

- ~~—_
— ~
~

2[4 10]3]11]
~Jof1]ol1]

Routes112[ 2[5 ]3 [1]6]8]7

Trips [0 1] 1] -[0]0]0]1

\
Warehouses No considered values to indicate the
A =1{2,4,6,810,12} trips
B={1357911}
> trips:

Shipper 1 e @ G e e
Shipper 2 e e e e e 0
Shipper 3 e e @ e e @

Figure 4: Chromosome representation.
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Step 2

2. Fitness function: we used the compromise euclidean distance based fucntion for the
individual as:
1/2

4
. _ FL'_Z; 2
p.fltneSS— WL-IWI Vp eEPpP
i=1 i '

i

All proposed algorithms give optimal results for single-objective optimization prob-

lems. z{ and z!°"' can be considered as pre-computed in this procedure.

3. Selection: we chose @ elite individuals and bypassed them from the crossover and
mutation phase to keep them in the next generation.

4. Crossover: creates a new solution that retains the good properties of its parent. We
select a crossover rate u. There are 5 steps to implement the crossover for the whole
remaining individuals of the next generation (see Figure 5Error! Reference source not
found.) as following;:

Step 1: select randomly 2 individuals as the parents denoted by py, p,.
Step 2: Randomly select a substring from a parent for both routes and trips.
Step 3: Create a proto-child by phase the substring into its corresponding position.

Step 4: Delete the all the elements that already in the proto-child of the remand
parents. This creates an array that have the elements that proto-child need.

Step 5:

* For routes: Place the elements of the result array into unfix position of proto-
child from left to right.

* For trips: Place the elements of the result array into unfix position of proto-
child in the corresponding position.

5. Mutation: Modify a solution to create a new solution to expand the search space of
the algorithm. We select a mutation rate w. There are two steps to implement the
mutation for the whole remaining individuals of the next generation as follows:

Step 1: Randomly select a substring from the individual.

Step 2:
* For routes: shuffle the element in the substring to create a new route.
* For trips: flip each element in the substring to create a new trip.

Substring Substring

Pl Routes [ 12 [ 2[435 |Tips [T [0 [T 1]1]0]

P2 Routes [3 |21 [a|2|5|mmps{of1]ofof1]1]

Step 3

Proto-child
Routes | [ [2]|afa| |mips| | [21]1]1]| |

Step 4

P2 Routes |3-|-2[ 1 [4[2 |5 |mips|o] 1|60 [2]|1]

Step 5

Proto-child

Routes |2 |5 |2 |a 3|1 |mips|o] 1|11 [1]1]

Figure 5: step 2 to step 5 of the Crossover phase.

6. Repair: In this phase we fix the solutions that violate the defined constraints. There
are some principal rules to guide the repairing process:
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* The trips array controls the trips of the shippers that are related to the
capacity. If the customers’ weight is already surpassed the corresponding
shipper in a journey, the trips array must be fixed for that shipper to go back
for supply after the current customer.

*  Wekeep the principal to minimize number of trips, therefore we check the frips
if there is any trips[i] = 1 that can be removed without violate the capacity
constraint and remove it if possible.

* At the end of each trip, the corresponding element value in the trips array
must be 1.
» trips[li]l=1Vi=1..(C+K—1) A routes[i] <0 .

3.2. Hybrid Genetic Algorithm
3.2.1. Local Search

Local search [48] is an algorithm using a single search path (searching in the neigh-
borhood) to improve the initial solution for a better solution. The solution point is struc-
tured the same as the chromosome representation of GA as described in the section 3.1.
The process of the Local search can be described in 2 steps as follows:

1. Denote s is starting solution.

2. Find § = searchNeighborhood(s, k) is the set of neighbor’s solutions of s.
Where: k is the size of S.
searchNeighborhood(s, k) function to return k neighbor’s solutions.
Repair every solution s’ in S that violates the defined constraints.

Return s* = argmax(s'. fitness).
s'es

3.2.1. Combination of GA and Local Search

One risk for GA is that individuals can become trapped in local optima, often caused
by designs that fail to maintain population diversity or an insufficient number of search
agents. In this study, we take advantage of the better neighborhood search feature of Local
Search to give individuals a better chance of overcoming the stuck in Local Optima. We
run the Local Search several times corresponding to the elite individuals obtained by GA
as starting points to retrieve better solutions. These solutions in the next generation then
replace the inputs. The process is illustrated in Figure 6.

Set of Elite Individuals

Individual I

(Initial point)
GA Replace I by I" in

Operations Local Search the Population

+ A
New
Individual I’

Figure 6: Combination of GA at g'* generation and the Local Search in HGA.

3.3. Tabu Search

Tabu search is an improved version of the Local Search used for mathematical opti-
mization [49]. Local Search methods tend to get stuck in suboptimal regions. TA enhances
the performance of these techniques by banning accessed solutions or other solutions
through user-supplied rules. We implement the principal mechanism of TA and reuse the
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data structure and algorithms described in the previous parts. The flow of TA is illustrated
in Figure 7.

| Generate solution s |
Tabu list T

ocal Searc
Find best s*€S

Decrease T

A
Repair

Compute Fitness

Aspiration criterion
satisfied

No
S=8* |
Update T

No -t
h J
Compute Fitness
Figure 7:The flow of TA

4. Experimental Results

4.1. Experimental Design

To evaluate the effectiveness of the proposed method, we use a collected dataset in
one business day received from the shipment company in Hanoi, Vietnam. It consists of
200 orders, distributed from 5 warehouses, orders delivered by ten shippers. Customer
locations are collected via GPS. To avoid detailed measurements in the scheduling pro-
cess, the company transformed the customer's precise coordinates to the center of the
street. Travel time, the average speed of shippers on given time is measured based on
collected data from google map and check-in data of the shippers. Figure 8 illustrates the
overview of the experimental design.

Proposed Algorithms
— | 15 |
Tested + | Decision Making . | Evaluation and
‘ GA ‘ " Scenarios g Discussion
data
| HGA |

Figure 8: Overview of Experiment Design

We conducted experiments and analyzed the results of three proposed algorithms,
including TA, GA, and HGA, in terms of convergence, processing speed, and solution
quality. Then, the best-performing algorithm is selected for testing with different decision
scenarios. The experiments are implemented in the computer with detailed configuration,
as shown in Table 2.

Table 2: System configurations for experiments

Item Info
CPU Intel(R) Core (TM) i5-8350U CPU @ 1.70GHz  1.90 GHz
RAM Corsair Vengeance LPX 8GB

Programming Platform java 8
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Operating System Window 10

Parameters govern metaheuristic algorithms. We have tested several different val-
ues. Each of them can affect both the computational cost as well as the quality of the solu-
tion. For example, the more search agents have been used, the higher the chance of finding
the global optima, but the search time of each agent is also generated. It significantly in-
creases the computation time. The following experiments are performed with the appro-
priate settings to highlight the performance of each designed algorithm, as shown in Ta-

ble 3.
Table 3: Parameters to conduct the experiments.
Parameter GA HGA TA
Population size 1000 100 1
Crossover rate 0.9 0.9 None
Mutation rate 0.3 0.3 None
Selection rate 0.1 0.1 None
Stop condition 100 100 100
Neighborhood structure None Replace Replace
Scanned Neighbors None 1000 -
Tabu tenure None None 3
4.2. Results

As mentioned in section 2.2, the original objective functions are transformed to the
distance function using compromise programming. We solve the problem as separated
single-objective problems. The worst point is identified in the same way as the ideal point
but using the max function for the objective function. The ideal point and worst point are
shown in Table 4. Three designed algorithms give the same result when solving these
single-objective problems.

Table 4: Obtained results by solving the problem as separated single objective problems

i P Zworst

i i
1 699.32 5045.18
2 0 701979.5
3 0 12137.6
4 1.35 9582.21

The detailed solution of each Single Objective problem is described in Figure 9. In
the first case, we try to maintain the lowest transport costs. The system only needs to use
7 out of 10 shippers, as shown in Figure 9A. However, the late delivery time is consider-
able (181801.5), the time the shippers wait and the difference in workload is 2705.85 and
2274.8 time-units, respectively. All shippers are mobilized to deliver on time (Figure 9B).
However, the transport cost also increased to 2438.09. To avoid late delivery, shippers
must arrive earlier than the scheduled time for several orders then wait until the right
time to deliver. The total waiting time is 6894.85. The difference in workload is also rela-
tively significant when the shipper with the highest workload has to work more than
257,875 time-units to the average. Figure 9C and Figure 9D show the results when the
scheduler optimizes the objectives f3 and f4 as respectively (f; =2676.491;f, =
152876.1; f; = 0; f, = 2649.96),(f; = 2734.456018; f, = 99640.8; f; = 6635.5; f, = 1.35).


https://doi.org/10.20944/preprints202201.0130.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2022

d0i:10.20944/preprints202201.0130.v1

k 0y f1 k Oy [z

1 0 1 | 51-2-31-30-130-121-78-21-55-71-64-3-4-122-133 0

2| 2-1-3-4-117-63-93-80-85-107-60-7-56-162-71-32-145-40-79-189-42-41 77.39062 2 | 1-3-4-72-158-192-85-54-28 0

3 | 5-4-1-2-36-179-125-161-101-115-193-127-100-191-148-109-62-129-167-49-102-44- 3| 127-77-92-1.2-5-22-62-29 0
1829 14417457 176-6-47 73-99-5-4-3-2-1-197-154-124-120-30-34-13169-76-97- T | 2.31.4.3.2.1.5.23.200.52.9-51-41.168.19.96.11.35.20.155.97-132- 100150 0
163-26-111-22-87-195-205-24-182-21-184-16-177-27-103-11-14-178-175-121-64- =T, PR T ———— 0
188-126-151-190-2-3-4-5-1-204-98-45-54-166-186-55-130-48-138-61-140-139-137- 2 5 E 224172
108-196-201-20-156-142-43- 147 116-187-106-168-172-86-159-183-74-28-758.2-1.4- 6 | 1-34-2-5-203-139-124-85-145-46-16-35-111-8-176-26-67-163-116-89-3-5-2-140-36-
3-83-119-165-12-112-143-113-66-104-77-171-25-75-8-15-157-19-122-17-192-185- 182-185-100-61 0
237970 58-68.173.9-1.34-5-155.37- 50-39-89-38-59-16-1 3615081538284 13 7 | 51-3-4-2-44174-157-10-181-175-49-53-57-75-12-51-114-43-162-129-14-93-98-126-
170-33-65-46-194-31-206-203-114-158-2-3-4-1-160-92-153-132-91-35-123-199-67- H4-66-47-167-33-113-152-3-4-32-154 0
200 542204 8 | 1-2-5-3-4-161-110-69-143-76-171-149-63-164-142-165-84-120-196-118-151-177-83-

T a115002 10798551 §2:127-169-125205-148-16(-128-119-65-4-5.3.195-27-87.79-45.5-170 0

= 5 9 | 3-4-5-2-1-15-91-191-25-153-166-204-159-17-58-183-147-90-18-106-190-136-73-

117-105-138-144-109-202-146-13-180-5-99 0

6 |2198 1.365256 10 | 2-5-4-1-3-156-178-131-187-189-48-56-101-6-199-108-40-123-60-197-194-184-74-

7 | 3-4-2-10-134-141-180-169-133-152-128-146-110-94 41.42976 39-134-137-42-70-50-68-107-19-206-112-3-5-80-86-4-201 0

5 |39 3.066012 Total: | o

9 | 2-4-3-52-149-181-96-90-88-105-51 22.97737

10 0

Total: | 5993214
A B
I I

k Oy f3 k 0y f4

1 | 4-5-146-163-31-54-167-4-5-2-3-1-180-138-100-205-92-183-186-62-121-99 0 1| 1-4-2-3-5-172-8-52-153-147-25-24-44-2-5-3-57-100-202-196 0.045

2 |32 0 2 | 45-2-1-3-23-86-182-123-137-94-9-50-39-114-67-13-155-166-128-126-204-5-3-170-

3 | 2-34-1-5-185-15-173-147-58-85-9-145-18-111-161-60-46-118-70-83-201-8-36-116- 80 -0.005
20-63-96-109-93-29-169-2-4-5-1-3-37-192-149-168-24-154-123-94-26-23-112-164- 3 5-1-4-3-178-99-75-101-174-122-4-3-5-1-2-201-10-30-157-115-161-15-103-32-76-37-
152-206-77-97-21-50-148-59-181-45-79-91-57-141-69-4-1-5-3-2-165-119-178-98-25- 141-158-74 -0.155
157-89-134-40-108-19-75-74-14-128-199-175-137-27-184-85-142-86-196-38-33-171- 4 | 3.2.1-5-56-185-35-121-163-17-109-118-51-45-108-159-5-2-130-31-127-62 -0.405
162-202-3-39-158 0 5 | 2-4-5-1-198-142-27-26-160-20-53-191-48-92-165-193-34-168-180-149-72-116-4-3-

4 | 5193-5-2-166-151 0 179-200 0.145

5 | 4-2-133-53-4-2-1-5-3-104-52-187-13-179-41-6-76-115-67-153-51-82-16-177-204-73- 6 | 4-1-3-2-5-132-119-77-183-113-192-7-68-12-156-139-176-61-173-29-14-43-205-138 | 0.295
17-61-150-84 0 7| 3-2-1-5-4-42-19-6-120-40-194-188-104-144-63-129-82-151-83-107-2-5-4-33-69-105 | 0.145

6 | 2129376 0 8 | 5-1-4-2-3-78-21-177-88-134-117-125-186-140-91-97-55-84-66-150-71-58-162-79-

7 | 3-80-2-4-3-5-1-155-131-124-170-127-87-143-32-200-101-113-189-68-125-64-43- 124-59-171-81-146-110-106-54-85-148 0.045
188-120-66-107 0 9 | 4-2-5-1-3-102-184-46-195-70-154-90-203-36-73-167-38-145-143-11-189-164-112-4-

8 | 324-1-5-122-198-194-114-139-90-136-44-126-195-30-65-49-172-34-159-7-160- 5-175-64 -0.105
102-110-71-35-174-132-106-47-81-1-2-22-117 0 10 | 4-2-5-3-1-49-199-152-111-87-41-197-169-93-60-47-18-190-96-131-22-65-206-89-

9 0 133-136-28-181-1-5-3-187-16-98 -0.005

10 | 2-1-4-3-5-182-72-11-156-42-203-48-130-55-10-176-36-105-191-197-103-28-190- Total: | 1.35

144-3-140

Total:

C

D

Figure 9: Generated travelling paths for shippers by solving single objective problems. A) f;; B) f5; C) f3; D) fi;

To compare algorithms, we set the weight parameters to be the same. Although the-
oretically, multi-objective optimization may not exist as the best solution. When other so-
lutions do not entirely dominate other solutions, we base on the obtained values of the
distance function (objective values) to rank the solutions. The metaheuristics operations
are stochastic. Therefore, to evaluate the stability of the proposed algorithms, we execute
the 15 times and the obtained results are shown in Table 5. The numbers show that GA-
based algorithms show that they can receive quality results at a much smaller cost than
TA. Using multiple search agents in TA, each of which continues to search for quality
neighbors, is a computationally expensive process. To achieve a similar solution quality
as HGA, the average processing time of TA is 2.06 times more enormous on the tested
dataset. We normalize the objective values in the range [0,1] based on obtained values in
Table 4. We only use a single core to executes the algorithms. The executions can be
speeded up using parallel mechanism for search agents proposed by Ngo et al [44].

Table 5: Best obtained results by proposed algorithms

Algorithm Solution Quality Average
Average Best solution Worst ~ Time(min)
Fitness  Fitness f1 fa f3 fa Fitness
TA 0.052 0.048 0.076  0.079 0.021 0.027 0.055 25.4
GA 0.073 0.068  0.041  0.096 0.013 0.057 0.076 5.35
HGA 0.050 0.045 0.047  0.068 0.016 0.034 0.053 12.6
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Both GA and HGA algorithms use a similar search mechanism. The only difference
is that HGA continued to use local search to find neighbors with better fitness values be-
fore creating a new generation. Theoretically, this ensures that the HGA has a better
chance to get over the local optima than the original version. It has also been confirmed
through our experiments. However, because many individuals must perform local search
operations after genetic operations, the total time to search for solutions for each increased
significantly. However, HGA can provide high-quality solutions when the obtained solu-
tion completely dominates the solutions of original GA and is slightly better than TA on
the tested dataset of 200 customers.

A
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Figure 10 A) Fitness Values; B) f;(0); C) £,(0); D) f3(0);E) f,(0); of designed algorithms change over generations/iterations.

The change of fitness values can visualize the convergence of the algorithms through
each generation/iteration in Figure 10. In the figure, we show all algorithms running up
to 3000 iterations for convenience in comparison. However, these algorithms still re-
spected their stop conditions. The result mentioned in the previous section is the time to
reach the final solution. The change of fitness values shows that TA has obtained better
results in the first few iterations than GA-based algorithms. However, up to the 297th
iteration with a fitness value of 0.048 is a local solution that TA cannot pass. Meanwhile,
the GA and HGA algorithms show that they have maintained the population diversity as
the next generations continue to improve the quality of the solution. HGA has provided
solutions that have been continuously improved over the generations. Until it found the
final solution (0.046) at 1849-th generation. This continuous improvement is significant in
practice. The algorithmic stopping condition that can be determined by the number of
generations with the same result is minor to avoid the computational cost. The different
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objective functions may increase at some generations, but they are decreased in general
because the algorithm consistently reduces fitness values.
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Figure 11: Number of violated constraints with corresponding iterations of the search process of HGA.

The stochastic mechanism for generating solutions generates a series of solutions that
violate constraints. In some cases [45], hose solutions can be eliminated by the searching
process. We must have a mechanism to correct the error solutions in this problem. This
process speeds up the algorithm through the acquisition of valid answers. The number of
invalid solutions decreases after newly generated solutions. For example, for the GA-
based algorithms, unviolated constraints parent solutions genes are selected and crossed.
However, the mutation process produces a certain number of invalid solutions. Figure 11
displays the number of violated constraints with corresponding iterations of the search
process of HGA. The data distribution affects the reduction of values in the distance-based
fitness function. For example, the value of objective function f,, the Workload of the ship-
per, seems to have played a more significant role than the dense distribution of the values
in the objective function f;, as observed from the generated solution by HGA in Table 6.
However, the search operations can be directed by calibrating the weight parameters.

Table 6: generated traveling paths 10 shippers to deliver 200 packages from 5 warehouses by HGA.

k Oy f1 fa [z fa

1 3-28-4-3-2-1-102-124-148-154-110-146-123-132-94-137-115-204-205-203-114-158 107.9532 8350.7 44 0.255
1-2-4-3-5-60-184-188-198-51-52-162-141-75-40-93-143-92-128-160-67-199-200-29-108-18-66-96-113-171- 125.272 56872 57.3 141.555
25-138-44-35-71-179-2-3-152-32

3 5-4-2-202-126-151-147-107-142-156-190-193-127-100-30-145-112-165 96.75424 62724 1.9 -6.895

4 5-4-1-3-43-173-125-78-22-6-56-176-81-169-76 78.75142  973.15 0 -37.845

5  5-2-3-4-1-170-13-79-55-20-185-19-129-15-195-197-24-182-109-136-164-150-133-65-27-201-33-180-99-80- 110.138  4980.6 0 -0.395
50

6 24.40988 149 0 -
3-9-4-1-175-7-38-59 118.295

7 2-4-3-1-5-117-57-134-103-11-14-192-42-41-161-186-166-62-72-23-177-16-194-31-183-10-46-74-58-68 101.6263 79041 0 0055

8  5-1-4-3-2-36-187-105-89-39-90-88-116-206-106-159-86-172-168-155-163-12-97 89.68427 392995 283 -0.845

9  5-4-3-2-1-178-101-149-181-130-84-82-48-8-191-49-157-189-21-34-77-120-153-91-174-53-131-63-69-37- 87.14513  4240.15 923 22205
85-118

10 5-1-2-4-3-87-47-83-73-111-26-119-70-121-64-17-122-167-61-140-104-98-45-54-139-144-196 84.42806  5860.5 14.4 0.205

To evaluate the adaptability of the algorithms to different scales of the system, we
divided the tested dataset into smaller datasets with 50,100,150,200 customers respectively
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to conduct experiments, as shown in Figure 12. The processing speed of TA slows down
proportionally to the system scales. The quality of HGA is slightly better than TA and
significantly better compared to the original GA. HGA's processing time is growing faster
than GA but better compared to TA. HGA and TA both use neighbor searching, but ge-
netic operations seem to be more effective to identify initial points before search for neigh-
bor points than TA's hill-climbing mechanism.

A B
0.11 H e GA e GA
% ®»  HGA 20 % HGA
0.10 % = TA = TA
0.09
v * 15
= @
o
£
EO.OS -~ — — — — . i
| B
g : g 10 *
£0.07 % .
¥
0.06 51 o
g e
0.05 . - PRt
® 0 e
60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200
Customers Cutomers
C D
[ ] : 3
015 ¢ ® GA e - e GA
O »n x HGA ¥0n.10! [ B x HGA
> S £
©0.10 m TA o " - s TA
> > %
n B o -
n-- 0.05 »
0.05 . i .
. o _ .
60 80 100 120 140 160 180 200 a0 80 100 120 140 160 180 200
Cutaé'ners Cutolgners
- 0.06; R -
N e GA e e GA
020 ¥ % HGA ©0.05! #~ HGA
a s TA 2 ¥ TA
- 50.04 u-- )
mo.05 3 - .
X
R oo . 0.03 )
. f x L T 3 N "8
60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200
Cutomers Cutomers

Figure 12: A) Fitness Values; B) Execution Time; C) f;; D) f3; E) f3; F) fy; obtained with different number of customers to serve.

Approaches to the MOP problem based on the decomposition of multi-objective
functions to single-objective functions have many advantages. Compromise Program-
ming is a suitable solution when the decision-maker cannot assign preferences for each
specific goal. They have a weakness that is very difficult to illustrate Pareto Frontier. How-
ever, through weight parameters, decision-makers can experiment with different decision
criteria. We compared solutions generated by the proposed algorithms. These solutions
do not fully dominate (all objective values are better) each other. Therefore, to evaluate
which algorithm performs better in different decision-making situations. In this experi-
ment, we selected the sub-dataset of 100 customers then obtained ten solution points cor-
responding to different values of weight parameters for each algorithm, as shown in Fig-
ure 13. We then calculate the Hypervolume HVC [50] for the solutions obtained by the
algorithm as follows:

volume (U es(s, z7075Y))

HVC =
volume (cube(z*, z%°Tst))

Where:
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e cube(a,b) denotes the oriented axes hypercube that formulated by points a and b
in the objective space.

e volume(c) denotes the volume of the hypercube c in the objective space.
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Figure 13: 10 obtained solutions in 4D objective space by A)GA, B)TA, C)HGA with different of weight parameters

(D).

The results listed in Table 7 show that the HGA's hypervolume is similar to TA and
better than the GA. The larger the HVC value, the closer the algorithm can discover solu-
tions close to the actual Pareto frontier. Through TA's nearest neighbor search, the hill-
climbing mechanism allows it to overcome the local optimal better than the original GA.
However, GA can effectively integrate with other methods to improve quality without
trading enormous computational costs. The hybrid version of EA shows its effectiveness
in different decision-making scenarios.

Table 7: Best obtained results by proposed algorithms

Algorithm HVC
TA 0.938
GA 0.885

HGA 0.941

To evaluate the capabilities of the proposed CP-based method. We use genetic oper-
ations designed to implement a version of the NSGA-2 algorithm [51]. The parameters to
execute algorithm and the obtained results on dataset of 200 customers are shown in Error!
Reference source not found.. This setup is to make NGSA-2 can find the best (possibly)
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values of each objective function fi, f,, f3, and f,. NGSA-2 shows its power to search for
a Pareto front with more than 8000 solutions after more than 6 hours of execution. The
NGSA-2 can archive the solutions with best values of f, =0 and f; =0, which is similar
to proposed algorithms; however, the proposed method shows it to be completely supe-
rior when looking for solutions with f; and f, being better. The normalized distance of
closest solution to z* (fitness value) obtained by NGSA-2 is 0.122 that is inferior to com-
pare with the generated one by CP-based GA when using the similar searching mecha-
nism. Although our results are not enough to conclude that the CP-based method is better
than MOEA-2, the obtained Pareto front may contain lower quality solutions to the pro-
posed method. The effort to search for the Pareto frontier leads the search agents not to
focus on achieving their goal as SOP. It requires a significant computational overhead,
which is difficult to adapt in a real-world environment. The user has no other choice, even
if they only need to use one solution in reality. Other factors in the decision problem, such
as user experience, contribute nothing to this centralized search effort.

Table 8: Obtained results on the tested dataset by NGSA-2.

Parameter / Criteria Applied/Obtained by Applied/Obtained by
NGSA-2 CP-based GA
Population 10000 1000
Stop Condition 1000 100
Crossover rate 0.8 0.9
Mutation rate 0.3 0.3
Average Execution Time (min) ~372 ~5
Number of Solutions ~8837 1
Best found f; 1422 699.32
Best found f, 0 0
Best found f; 0 0
Best found f, 42 1.35
Best fitness value 0.122 0.0689

5. Conclusions

This study presents an adaptive method to solve the urban shipment problem as
MOP-VRP based on CP and Metaheuristics. The proposed model is a new variant of the
VRP problem that combines different types of VRP and MOP where terrain and traffic
conditions over time are integrated. We also designed three algorithms, GA, HGA, and
TA, to solve the proposed model and compare their performance on the tested dataset.
Combining compromise programming and metaheuristics is suitable for approaching the
MOP problem. However, once this approach is chosen, the decision-making process needs
to respect compromise solutions instead of finding the Pareto frontier and assigning a
solution based on higher-level information like other approaches such as Pareto-domi-
nance-based MOEA. In return, this approach allows flexible design for many business
scenarios. Traditional metaheuristics methods or hybrid versions are smoothly applied
with the CP-based. Although, the CP-based system introduced weight parameters to the
objective functions. The selection of these values in practice depends heavily on the deci-
sion-makers experience and the business sense using the model because re-executing the
algorithm with large datasets multiple times leads to a prohibitive computation cost.
Therefore, it is recommended as an option when the decision-maker does not have sources
to indicate the preferences that happen more often in practice. The test results show that
the combination of GA and Local Search in HGA creates a superior advantage in improv-
ing the quality of the solution. The original version of GA may use trivially sampling
points, but the nearest neighbor search can provide better genes to the next generation.
This combination produces a high-quality solution without trading off too much compu-
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tational cost like the nearest neighbor search with a memory mechanism in TA. Our up-
coming work is to integrate the VRP model with integral logistics problems. The improve-
ment of the algorithm using recent advances in metaheuristics is the priority.
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