
 

 
 

Article 

Metaheuristic Algorithms Based on Compromise Programming 

for Multi-Objective Urban Shipment Problem 

Tung Son Ngo 1,2, *, Jafreezal Jaafar 1, Izzatdin Abdul Aziz 1, Muhammad Umar Aftab 3, Hoang Giang Nguyen 2 and 

Ngoc Anh Bui 2  

1 Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, 

Perak Darul Ridzuan, Malaysia; jafreez@utp.edu.my, izzatdin@utp.edu.my. 
2 Information and Communication Department, FPT University,10000 Hanoi, Vietnam; 

giangnhhe150094@fpt.edu.vn, anhbn5@fe.edu.vn. 
3 Department of Computer Science, National University of Computer and Emerging Sciences, Chiniot-Faisal-

abad Campus, Chiniot, 35400, Pakistan; ms.umaraftab@yahoo.com. 

* Correspondence: sonnt69@fe.edu.vn 

Abstract: The Vehicle Routing Problem (VRP) and its variants are found in many fields, especially 

logistics. In this study, we introduced an adaptive method to a complex VRP. It combines multi-

objective optimization and several forms of VRPs with practical requirements for an urban shipment 

system. The optimizer needs to consider terrain and traffic conditions. The proposed model also 

considers customers' expectations, shipper considerations as goals, and the common goal like trans-

portation cost. We offered compromise programming to approach the multi-objective problem by 

decomposing the original multi-objective problem into a minimized distance-based problem. We 

designed a hybrid version of the Genetic algorithm with the Local Search algorithm to solve the 

proposed problem. We evaluate the effectiveness of the proposed algorithm with the Tabu Search 

algorithm, the original Genetic algorithm on the tested dataset. The results show that our method is 

an effective decision-making tool for the multi-objective VRP and an effective solver for the new 

variation of VRP. 

Keywords: Multi Objective Optimization; VRP; Compromise Programming; Genetic Algorithm, Lo-

cal Search, Tabu Search; Metaheuristics; Combinatorial Optimization. 

 

1. Introduction 

1.1. Vehicle Routing Problem and Variants 

In a logistics system, transportation plays an essential role in moving materials from 

supplier to manufacturer, processing plants to the next step in the production process or 

transporting finished products to customers. This scheduling and planning process needs 

to be calculated before the actual operation. However, this is not an easy task because 

many resources such as machines and vehicles need to be arranged. The problem is called 

VRP [1]. A capable fleet of vehicles must serve a dispersed group of customers geograph-

ically at a minimal cost. We can express the VRP with visitations of the vehicles to cus-

tomers through a graph as 𝐺 =  (𝑉, 𝐸)  where 𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑛}  be the set of nodes. 

𝑣1, … , 𝑣𝑛 represent the customers to be visited from the depot 𝑣0. 𝐸 is an edge set inter-

linking two locations where 𝐸 = {(𝑖, 𝑗)| (𝑖, 𝑗) = 0,1, … , 𝑛, 𝑖 ≠ 𝑗}. Fundamental decisions are 

made in the VRP regarding customer assignment to vehicles and the sequence of custom-

ers assigned to each vehicle [2]. Many studies on VRP have been conducted, and accord-

ingly, many variants of VRP have also been identified. Some of the more widely known 

variants include: 

• Capacitated Vehicle Routing Problem (C-VRP): refers to the limitation of vehicle ca-

pacity for classical VRPs. The system uses multiple vehicles and the total demand of 

each route does not exceed the vehicle capacity [3] [4]. An extension of C-VRP is when 
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the vehicles are heterogeneous (CH-VRP), where each vehicle may have a different 

capacity [5], [6]. The package of product with different types can be considered as 

multi product -VRP (MP-VRP) [7]. 

• Multi-Depot Vehicle Routing Problem (MD-VRP): For the classic VRP problem, the 

path of all vehicles can only start from a warehouse. In MD-VRP, the vehicle departed 

from multiple warehouses [7], . Torres et al. reviewed several variants of the MD-

VRP, where it can combine with several constraints such as time windows, batch de-

livery, heterogeneous fleets, scheduled delivery [8].  

• Vehicle Routing Problem with Time Window (VRP-TW): is often encountered in 

many industrial applications. The time window is divided into soft time windows 

(Delivery not within the period can be a penalty) and hard time windows (Delivery 

within the period is mandatory). VRP-TW has received much attention from re-

searchers in recent times [9], [10]. 

• Multi-trip Vehicle Routing Problem (MT-VRP): in MT-VRP, each vehicle is explicitly 

allowed to perform multiple trips during its service time in such a way that the total 

demand of customers served in each route does not exceed its capacity within a given 

deadline [11], [9], [12]. 

VRP is a complex problem that challenges many researchers. Different variants or 

business conditions may require the solution search space to be significantly expanded. 

This paper introduces a method to solve a new VRP that combines multi-objective opti-

mization (MOP) and different form of VRPs. The proposed solver automatically generates 

the routings for shippers to deliver packages to urban customers. The urban delivery sys-

tems have several characteristics that differ from many ideal environments in terrain, traf-

fic, and order-warehouse conditions. The scheduler allows considering the concern of the 

business, customer satisfaction, and the employees in the decision-making process. We 

use MOP-VRP as a shortened name to call the problem. 

1.2. Related Works 

 VRP is a problem with many variations. One can say that each business model can 

potentially become a new variant with countless goals and constraints based on the suc-

cess factors of the business. Table 1 presents some recent studies in this field. In building 

the optimization model, we can see in these studies that the authors are often only inter-

ested in optimizing transportation costs (distance, fuel consumption, transportation cost). 

The objective functions are usually linear. However, many factors affect this calculation, 

especially for the case study of transportation in the inner city, such as traffic conditions 

over time (peak hours) and road conditions (one/two-way roads). In the survey [18], the 

author pointed out that the path optimization problem would raise the trend of real-time 

path optimization problems considering time-varying factors such as real-time terrain and 

real-time traffic conditions involved in MOP-VRP. Therefore, a simple representation 

such as previous studies' use is challenging to cover in many real-life situations. Several 

studies related to time windows have made customer satisfaction one of the essential 

goals. However, besides benefiting businesses through cost optimization or satisfying cus-

tomers, a collaborative economic model requires sharing among stakeholders. Usually, 

urban transport models often use part-time shippers. If there is not enough attention to 

their needs, the job will become less attractive, and it won't be easy to create a long-term 

working environment. The lack of committed employees in a volatile business such as 

logistics brings more difficult constraints to optimize costs and improve service quality. 

Therefore, these factors need to be considered in the modeling process to become the ob-

jectives to be achieved in the scheduler.   

In the decision-making process, decision-makers may not be an individual but a 

group. Therefore, their considerations are critical to any strategies. In real-world business 

environments, the optimizer needs to pay more attention to multiple decision criteria to 

meet customers' requirements. No single solution exists that simultaneously optimizes all 

objectives of the non-trivial multi-objective scheduling problems. The MOP-VRP is not an 
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exception. Several approaches are available to the MOP [19] (including MOP-VRP [20], 

[21]). Generally, they are classified into (1) the preferred approach, where decision-makers 

have the higher information to select the final solution among several options. (2) The 

non-preference approach assumes that no-decision maker is available, or the decision-

maker does not have the higher information to indicate the preferences for the objectives. 

A user needs only one solution from a practical standpoint, no matter whether the opti-

mization problem is. In the case of MOP, the user is now in a dilemma. The idea MOP 

procedure always requires finding the trade-off between solutions with a wide range of 

values for objectives and then choosing one of the obtained solutions using higher-level 

information. Significantly, the objective space is higher-dimensional. It isn't easy to visu-

alize the solutions to the users [22]. In this situation, an adaptive approach to the MOP is 

a challenge to the researchers. The result of solving a real-world problem usually is an 

approximation set A of the objective vectors (any element of A does not dominate or is 

not equal to any other accurate vector in A) and not the Pareto optimal front. Okabe et al. 

reviewed several metrics for accessing the performance of MOP algorithms [23], including 

cardinality metrics, accuracy metrics, diversity metrics. Regardless of which approach is 

used, assessing the quality of the solution is one of the issues that need to be carefully 

considered. 

Table 1: Research and corresponding objective functions 

Research Objective Func-

tions 

VRP Types Highlights Drawbacks 

Zhen et al., 

2020[9] 

Minimize travel-

ing time of all the 

vehicles. 

MD-VRP, 

MT-VRP, 

VRP-TW 

The proposed mixed integer linear 

programming can describe clearly 

the business.  

The proposed metaheuristics can 

provide optimal solutions on a 

large scale.  

The model is not based on a realistic prob-

lem where the data is also randomly se-

lected from the benchmark. 

The model does not involve several factor 

such as traffic conditions 

Babaee 

Tirkolaee et 

al., 2019[10] 

Minimize the 

sum of vehicles 

cost, traveling 

cost, penalty cost 

of soft time win-

dow. 

MT-VRP, 

VRP-TW 

A case study is investigated to 

evaluate the applicability of the 

proposed model in the real world. 

Many business conditions have 

been considered. 

The business rules assume that – The 

time and cost of a route is the same for all 

vehicles. This is may not guaranteed in 

other real-life application. 

The designed solver can solve the prob-

lem in small and medium sizes that only 

offers near-optimal solutions compared 

to the CPLEX solver. 

Alemany et 

al., 2018[7] 

Minimizing dis-

tribution cost 

and distance-

base cost. 

C-VRP, MP-

VRP, MD-

VRP 

The model was developed from a 

realistic case study from an oil pro-

vider company. 

Experiments are conducted on the small-

scale dataset. Evaluations of the pro-

posed method have not shown its perfor-

mance with different techniques. 

Pan et al., 

2021[13] 

Minimizing the 

traveling cost. 

MT-VRP, 

VRP-TW 

The routing solver is designed for 

a vending cafe company to replen-

ish stocks for their geographically 

dispersed outlets. The proposed 

method can work on large-scale in-

stances. 

Authors simulate the experimented data 

by randomly creating data based on an 

existing dataset. 
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Ma et al., 

2017[14] 

Minimizing trav-

eling cost. 

MD-VRP, 

VRP-TW 

An improved ACO algorithm with 

some ideal to improve the search 

speed, is introduced to solve the 

proposed problem. 

The system considers only single depot 

which is not guaranteed in several appli-

cations. 

The research did not show the evalua-

tions on the proposed algorithm to the 

existing methods. 

Zhang et 

al., 2020[15] 

Minimize carbon 

emission. 

MD-VRP The research develops a new ex-

tension model of MD-VRP. The 

proposed algorithms can deal with 

large-scale datasets. 

The proposed mathematical model and 

the heuristic algorithm provide better 

quality than the heuristic but more com-

putational cost. 

Nuca-

mendi-

Guillén et 

al., 2021[16] 

Minimize the 

cost of transport 

and contracts. 

CH-VRP, 

MD-VRP 

The proposed model was obtained 

from the real-world business.  

Business rules are simple. 

The designed metaheuristic was only 

tested with small scale dataset. 

Li et al., 

2020[12] 

Minimize com-

pletion time of 

vehicles. 

MT-VRP, 

VRP-TW 

The solver can apply to some real-

life problem instances. The pro-

posed heuristic algorithm shows a 

better result to the CPLEX solver. 

The model is quite simply cannot adapt 

to other businesses. The designer did not 

consider the concerns of different stake-

holders in the system. 

Shelbourne 

et al., 

2017[17] 

Minimize the 

sum of total dis-

tance cost and to-

tal weighted tar-

diness. 

VRP-TW Proposed solvers based on heuris-

tic evaluated the performance on 

several datasets. 

The optimization model was based on 

several assumption that may not be ap-

plied to other situations 

 

Usually, researchers often model VRP problems using binary decision variables to 

represent relationships between vehicles and destinations, vehicles and depots, etc. These 

links are expanded exponentially to the number of inputs and may not exist solver with a 

deterministic polynomial time. Therefore, the VRPs are classified in NP-Hard and combi-

natorial optimization. The state-of-the-art is identified as two main streams of resolution 

techniques, including exact methods to approximate solution methods (heuristic and 

meta-heuristic) in the literature. Whereas exact methods provide the optimal that is the 

best solutions. Exact algorithm includes branch-and-X (bound, cut) [24], dynamic pro-

gramming [25], Lagrangian relaxation-based methods [26]. (Meta)heuristics include sim-

ulated annealing, population-based methods such as evolutionary algorithm [27], gener-

ally yield near-optimal solutions. The exact method is more suitable for the small size of 

problems, due to the. However, the logistic system is increasingly facing the larger scale 

with the increasing number of orders, customers, and vehicles… this is where (meta)heu-

ristics is a better choice due to flexible search capabilities and easy integration to exploit 

the good properties of different methods.  

Many researchers designed heuristic, metaheuristic, and combinations to the VRP 

and its variant. Samuel Nucamendi-Guillén (2021) [16] developed a metaheuristic proce-

dure to find a solution by improving the initial solution using local search algorithms. 

Zhiwei Liu (2017) [28] proposed a method that combines Tabu with mem-brane compu-

ting to find the solution for VRPTW. Babaee Tirkolaee E (2019)[10] developed simulated 

annealing (SA), a local search algorithm that can escape the local optimum for the MT-

VRPTW in urban waste collection. To solve the MT time-dependent VRP TW. Binbin Pan 

[13] designed a hybrid metaheuristic algorithm, using variable neighborhood descend 
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(VND) for intensive exploitation and adaptive extensive neighborhood search (ALNS) to 

direct the inquiry when VND is stuck in a local optimum.  

Among several branches of metaheuristics, Evolutionary Algorithms (EA) attract 

many researchers. For instance, Hari Kurnia (2018) [29], Cortes (2018) [30], and R Fitriana 

(2019) [31] designed a classical genetic algorithm for the VRP, CVRP, MDVRP, respec-

tively. As for VRP with more features, attributes that reflect the complexity of the real 

problem, a hybrid genetic algorithm, which improves the solution by implementing a lo-

cal search heuristic in the initial phase of the genetic, is proposed by Rabbouch (2019) [32]. 

Jalel Euchi (2021)[33] solves another complex VRP with drones by a modified hybrid ge-

netic algorithm combined with nearest neighbor heuristic and modifying saving heuristic 

in the initial phase. While the nearest neighbor heuristic help improve the initial solutions, 

the saving heuristic keeps the genetic algorithm from the early local optimum. Yanfang 

Ma (2017) [14] proposed an improved ant colony optimization (ACO) combined with the 

nearest neighbor search method for the MD VRP TW. Wei-heng Zhang (2020) [15] de-

signed a 2-stage ACO for MDGVRP, assigning customers to the depot to generate routes. 

EAs and their hybrid versions have proven effective for single objective VRPs. They can 

obtain a set of solutions present in a solution process, provide the ability to be easily de-

termined with different types of variables, and do not require any assumptions that make 

convexity and separability distinction between objectives and related constraints. In gen-

eral, these algorithms provide a design direction. The suggested search operations are 

based on different designer arguments. In general, many factors determine this problem, 

but in our opinion, building a suitable data structure plays a vital role. A good data struc-

ture can support stochastic operations and help improve population diversity while en-

suring the algorithm's convergence. Multi-Objective EA (MOEA) extends EAs to deal with 

multi-objective optimization problems. They can be classified based on different features. 

A widely accepted classification for MOEA considers Pareto-dominance-based, Decom-

position-based, and Indicator-based algorithms [34]. MOEAs have been applied in several 

applications [35,36] that can search for a set of optimal solutions on the Pareto Front. How-

ever, it involves much higher-level information, often non-technical, qualitative, and ex-

perience-driven, to indicate the final solution with a prohibitive computational cost. This 

cost is not suitable in many experimental conditions. An efficient approach for MOP-VRP 

that does not require pre-determine the trade-off between objectives and is applicable to 

integrate with algorithm design to maintain the solution quality with a reasonable cost 

has always been a challenge in this field [37].          

1.3. Contributions 

This study presents an adaptive method for a variant of MOP-VRP as a scheduler in 

the urban delivery system. The model is built around the real-life requirement fit for an 

urban delivery system. The optimizer needs to provide the solution to archive multiple 

business conditions that comply with essential factors such as terrain and traffic condi-

tions besides other constraints for VRP. We use compromise programming to approach 

the proposed MOP. It allows decision-makers to obtain an optimal solution without de-

fining preferences on each objective function in advance. However, if they do, alternative 

decision strategies are still used generally through the definition of weights to assign the 

effect of objective functions via the distance function. We designed and compared Tabu 

search (TA), genetic algorithm (GA), a combination between GA and local search algo-

rithm (HGA) to solve the proposed model on the tested dataset. Our study suggests a new 

variant of VRP. It can benefit researchers and engineers to develop a better optimizer for 

variants of VRP. This research also contributes to the developed methodology for Multi 

objectives scheduling and planning problems [38]. The rest of this paper is organized as 

follows. The proposed model and algorithm are respectively described in Sections 2 and 

3. To evaluate the proposed approach, we display the experiments and discussion in Sec-

tion 4. Finally, section 5 offers a conclusion. 
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2. Proposed Model 

This study builds a multi-objective optimization solver for the urban shipment prob-

lem. This section describes the mathematical optimization model and the approach to the 

proposed multi-objective optimization problem. The goals to be achieved by the devel-

oped scheduler have been thoroughly discussed with logistic managers as the decision-

makers. Some important business rules are defined as follows: 

• The system is set up with many delivery points corresponding to the customers. 

• Packages that need to be delivered have different weights and delivery periods.  

• Packages are shipped from various warehouses.  

• Each package needs to be collected from the allocated warehouse.  

• The delivery time between any 2 locations is time and terrain-dependent. It is esti-

mated based on statistical data from previous shipments.  

• Shippers also use vehicles with different payloads and transportation costs.  

• To deliver the order, the shipper may need to take several trips. 

2.1. Mathematical Formulation 

The decision variable represents the whole detailed plan to shippers. Besides them, sev-

eral dependent variables that are computed from the decision variables are also intro-

duced in the model as follows: 

• 𝐶 represents the set of deliver points/ customers. 

• 𝐾 denotes the set of shippers. 

• 𝐷 stands for the set of warehouses. 

• 𝑁 = 𝐷 ∪  𝐶 denotes the set of locations, where the first |𝐷| elements are the loca-

tions of the depots, and last |𝐶| elements represent the locations of customers. 

• 𝐵 ∈  ℝ|𝐾| is the vector that represent the capacity of shippers, where 𝐵𝑘  ∈ ℕ∗ is the 

capacity of shipper 𝑘𝑡ℎ. 

• 𝑃 ∈  ℝ|𝐾| is the vector that represent the freight rates of the shippers, where 𝑃𝑘  ∈ R∗ 

is the freight rate of shipper 𝑘𝑡ℎ. 

• 𝑊 ∈  ℝ|𝐶| is the vector used to illustrate the weight of the orders by customers, where 

𝑊𝑐 ∈ ℕ∗ is the weight need to delivery to deliver point 𝑐𝑡ℎ. 

• 𝐿 ∈  ℝ|𝐶| is the vector used to illustrate the load time of the orders by customers, 

where 𝐿𝑐 ∈ ℕ∗ is the time need to load the package of customer 𝑐𝑡ℎ. 

• 𝐴 = {𝐴𝑐|𝐴𝑐 ∈ ℝ2, 𝑐 ∈ 𝐶} is the vector that represent the appointment time of the cus-

tomer, where [𝐴soon
𝑐 , 𝐴late

𝑐  ]  is respectively describe the appointment time and the 

time window that customer 𝑐𝑡ℎ demand for his/her order. 

• 𝑀 = {𝑀𝑘|𝑀𝑘 ∈ ℝ|𝑁|×|N|, 𝑘 ∈ 𝐾}, 𝑀𝑘 = {𝑀𝑖,𝑗
𝑘 |𝑀𝑖,𝑗

𝑘 ∈ ℕ∗, 𝑖, 𝑗 = 1 … |𝑁|} where 𝑀𝑖,𝑗
𝑘  is the 

distance if shipper 𝑘 go from location 𝑖𝑡ℎ to location 𝑗𝑡ℎ.   

• 𝑇 = {𝑇𝑘|𝑇𝑘 ∈ ℝ|𝑁|×|N|, 𝑘 ∈ 𝐾}, 𝑇𝑘 = {𝑇𝑖,𝑗
𝑘 |𝑇𝑖,𝑗

𝑘 ∈ ℕ∗, 𝑖, 𝑗 = 1 … |𝑁|} denotes the time con-

sumptions of transportations between locations for shipper 𝑘, where 𝑇𝑖,𝑗
𝑘  represents 

the time that shipper 𝑘𝑡ℎ take to travel from location 𝑖𝑡ℎ to location 𝑗𝑡ℎ. 𝑇𝑖,𝑗
𝑘  is com-

puted based on 𝑡𝑖𝑚𝑒(𝑖, 𝑗, 𝑘, 𝑡) that is the function to query travelling time of the ship-

per 𝑘𝑠𝑡ℎ  from location 𝑖𝑡ℎ  to location 𝑗𝑡ℎ , 𝑡  stands for start time. The returned 

value is depended on the traffic condition at time 𝑡. 

• 𝑈 ∈ ℝ|𝐶|×|𝐷| is a matrix to represent the warehouse's links that storing the orders and 

their deliver points. 𝑈𝑐,𝑑 = 1 means the order of the customer 𝑐𝑡ℎ  is keep by the 

warehouses 𝑑𝑡ℎ. 

• 𝑉 = {𝑉𝑘|𝑉𝑘  ∈ ℕ∗, 𝑘 ∈ 𝐾} is the vector that represents the number of tours each shipper 

takes, where 𝑉𝑘 is the number of tours of shipper 𝑘𝑡ℎ. 

• The decision variable 𝑂 = {𝑂𝑘|𝑂𝑘 ∈  ℝ𝑉𝑘×|𝑁|, 𝑘 ∈ 𝐾} represents the planned paths for 

shippers, where 𝑉𝑘  ∈ ℕ denotes the number of tour that made by the shipper 𝑘𝑡ℎ 
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to deliver all his/her assigned orders. Figure 1Error! Reference source not found. 

illustrates an example of a planned path. 

1 3 2 4 51     0     2    0      0
0     1     0    2      3

 

Figure 1. an example of a planned path with 𝑁 = 5, 𝑉𝑘 = 2 

• 𝑍 = {𝑍𝑘,v,𝑖,𝑗|𝑍𝑘,v,𝑖,𝑗 = 𝑒𝑞𝑢𝑎𝑙({min (𝑂𝑣,𝑗
𝑘 , 1) − min (𝑂𝑣,𝑖

𝑘 , 1) , 1}), ∀ 𝑘 = 1 … |𝐾|, 𝑖 =

1 … |𝑁|, 𝑗 = 1 … |𝑁|, 𝑣 = 1 … 𝑉𝑘   ∧ 𝑍𝑘,𝑣,𝑆𝑣
𝑘,0 = 1 }  represents the sequence of visited 

nodes of the shippers. Shipper 𝑘𝑡ℎ go to node 𝑖𝑡ℎ right after node 𝑗𝑡ℎ  in trip 𝑣𝑡ℎ if 

𝑍𝑘,𝑣,𝑖,𝑗 = 1. 0 otherwise. 

• Denotes 𝑆 = {𝑆𝑐|𝑆𝑐 ∈ ℝ∗, 𝑐 ∈ 𝐶} where 𝑆𝑐 is estimated time that shipper deliver to 

the customer 𝑐. If 𝑆𝑐< 𝐴𝑠𝑜𝑜𝑛
𝑐  then 𝑆𝑐 = 𝐴𝑠𝑜𝑜𝑛

𝑐 , and the duration 𝐴𝑠𝑜𝑜𝑛
𝑐 − 𝑆𝑐  is consid-

ered as waiting time. 

• 𝑌 = {𝑌𝑘|𝑌𝑘 ∈ ℝ∗, 𝑘 = 1 … 𝐾 }  where 𝑌𝑘 = ∑ ∑ ∑ 𝑍𝑘,𝑣,𝑖,𝑗 ∗ 𝑇𝑖,𝑗
𝑘|𝑁|

𝑗=1
|𝑁|
𝑖=1

𝑉𝑘
𝑣=1  represents the 

total traveling time of the shipper 𝑘𝑡ℎ. 

To meet business requirements, the solver must satisfy the following objectives: 

• Minimize of transportation cost of all shippers based on types of vehicles. Traveling 

on long routes increases costs:  

𝑚𝑖𝑛 (𝑓1(𝑂) = ∑ ∑ ∑ ∑ 𝑍𝑘,𝑣,𝑖,𝑗 ∗ 𝑃𝑘 ∗ 𝑀𝑗,𝑖
𝑘

|𝑁|

𝑗=1

|𝑁|

𝑖=1

𝑉𝑘

𝑣=1

|𝐾|

𝑘=1

) 

• The urban delivery requires punctuality, although it is not a hard constraint to the 

model—however, the less late delivery, the more satisfied the customer. The opti-

mizer needs to minimize late delivery to the customers: 

𝑚𝑖𝑛 (𝑓2(𝑂) = ∑ 𝑙𝑎𝑡𝑒(𝑆𝑐)

|𝐶|

𝑐=1

) 

Where: 𝑙𝑎𝑡𝑒(𝑆𝑐) = {
0              𝑖𝑓 𝐴𝑙𝑎𝑡𝑒

𝑐 ≥  𝑆𝑐   

𝑆𝑐 − 𝐴𝑙𝑎𝑡𝑒
𝑐        𝑖𝑓   𝑆𝑐 >  𝐴𝑙𝑎𝑡𝑒

𝑐  

• Serving customers is beneficial for businesses. However, it can be traded off by the 

convenience of the delivery staff. The workforce is usually part-time. Thus, a route 

that saves shippers waiting time provides a competitive environment. Minimize the 

waiting time of the shippers is a goal that needs to archive: 

𝑚𝑖𝑛 (𝑓3(𝑂) = ∑ 𝑤𝑎𝑖𝑡(𝑆𝑐)

|𝐶|

𝑐=1

) 

Where: 𝑤𝑎𝑖𝑡(𝑆𝑐) = {
0               𝑖𝑓 𝐴𝑠𝑜𝑜𝑛

𝑐 ≤  𝑆𝑐  

𝐴𝑠𝑜𝑜𝑛
𝑐 − 𝑆𝑐         𝑖𝑓  𝑆𝑐 <  𝐴𝑠𝑜𝑜𝑛

𝑐  

• Minimize differences in traveling time of the shippers. The shipper's working time is 

only counted as travel time. It does not include waiting time. Therefore, this time 

allocation helps to balance the workload of the shippers.   

𝑚𝑖𝑛 (𝑓4(𝑂) = ∑ (|𝑌𝑘 −
1

|𝐾|
∑ 𝑌𝑖

|𝐾|

𝑖=1

|)

|𝐾|

𝑘=1

) 

Subject to: 

• All of orders must be delivered: 
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∑ ∑ ∑ min (𝑂𝑣,𝑖
𝑘 , 1)

𝑉𝑘

𝑣=1

|𝑁|

𝑖=|𝐷|+1

|𝐾|

𝑘=1

= |𝐶| 

• Each deliver point is assigned to only one shipper: 

∑ ∑ min (𝑂𝑣,𝑖
𝑘 , 1)

𝑉𝑘

𝑣=1

|𝐾|

𝑘=1

= 1     ∀𝑖 = |𝐷| + 1 … |𝑁| 

• Respecting the capacity of shipper on every trip: 

∑ 𝑚𝑖𝑛(𝑂𝑣,𝑐
𝑘 , 1) ∗ 𝑊𝑐

|𝐶|

𝑐=1

≤ 𝐵𝑘      ∀𝑘 = 1 … 𝐾, 𝑣 = 1 … 𝑉𝑘  

• Shipper must load the customer’s package before delivering to the customer in the 

same trip. 

𝑂𝑣,𝑐
𝑘 − 𝑂𝑣,𝑑

𝑘 ≥ 𝑈𝑐,𝑑     ∀𝑘 = 1 … |𝐾|, 𝑣 = 1 … 𝑉𝑘 , 𝑐 = |𝐷| + 1 … |𝑁|, 𝑑 = 1 … |𝐷| 

• Shipper cannot visit more than one location at the same time. 

𝑂𝑣,𝑖
𝑘 ≠ 𝑂𝑣,𝑗

𝑘   ∀𝑘 = 1 … 𝐾, 𝑣 = 1 … 𝑉𝑘, 𝑖 = 1 … |𝑁|, 𝑗 = 1 … |𝑁|, 𝑖 ≠ 𝑗, 𝑂𝑣,𝑖
𝑘 ≠ 0 , 𝑂𝑣,𝑗

𝑘  ≠ 0   

2.2. Compromise Programming for MOP-VRP 

Compromise programming (CP) [39] is based on the idea not to use any preference 

information or rely on assumptions about the importance of objectives. The method does 

not try to find multiple Pareto optimal solutions. Instead, the distance between some ref-

erence point and the feasible objective region is minimized to find a single optimal solu-

tion, as shown in Figure 2. For this purpose, the weighted 𝐿𝑝 metrics measure the dis-

tance of any solution from the reference point. The ideal objective vector is often used as 

the reference point:  

𝑚𝑖𝑛 (∑ 𝑤𝑖

𝑁

𝑖=1

|𝑓𝑖(𝑥) −  𝑧𝑖
∗|𝑝)

1/𝑝

    𝑠. 𝑡.     𝑥 ∈ 𝑋 

Where x is the decision variable and X is feasible set, 𝑧𝑖
∗ =  min

𝑥∈𝑋
𝑓𝑖(𝑥), 𝑝 can take any 

value between 1  and ∞  (in practice normally 𝑝 = 2 ), weight vector 𝑤 = {𝑤𝑖|𝑤𝑖  ∈

 ℝ+  𝑖 = 1 … 𝑁}, and 𝑁 is the number of objective functions. The literature suggests that to 

normalize the dimensional values in range [0,1] of the distance function. We can rewrite 

the objective function in form of norm 2 as: 𝑚𝑖𝑛 (∑ 𝑤𝑖
𝑁
𝑖=1 |

𝐹𝑖− 𝑧𝑖
∗

 𝑧𝑖
𝑤𝑜𝑟𝑠𝑡− 𝑧𝑖

∗ |2)
1/2

 where  𝑧𝑖
𝑤𝑜𝑟𝑠𝑡 =

max
𝑥∈𝑋

𝑓𝑖(𝑥).  

There are many studies that have used CP to approach the MOP problem such as for 

university timetabling [40], [41], [42], or in team selection [43], in knowledge based rec-

ommender [44], project task assignment [45]. However, it may require pre-defined mini-

mal and maximal values of the objective functions. Some of these values are predictable 

[43], most of other cases require to solve the problem as single objective function multiple 

times, which may be costly. Other studies [44] [46] show that the referential point may be 

selected from business estimations could provide better performance for the agents in 

searching process. However, in this study, the normalization method using both of  𝑧∗  

and  𝑧𝑤𝑜𝑟𝑠𝑡  brings a better quality of the solution. 
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Figure 2: Scanned area of the search process in CP-based approach 

3. Proposed Algorithms 

In this section, we introduce the proposed algorithms. The main focused algorithm 

is HGA, an algorithm that combines GA and Local Search. The first part of this section 

describes GA. We use the same principle for the search agent's stochastic process and data 

structure for proposed algorithms. The algorithms described after GA share several com-

mon strategies. The second part describes how we implement HGA. Another algorithm 

that does not belong to the class of Evolutionary algorithm is proposed, the TA.  

3.1. Genetic Algorithm 

GA is one of the most well-known metaheuristic algorithms used to solve NP-hard 

problems and belong to Evolution Algorithms family [47]. The process of natural evolu-

tion inspires the idea of GA. The algorithm begins with a random population, with each 

individual represents a solution for the problem. The final solution is obtained through 

the evolution of the population. The designed scheme of GA is shown in Figure 3. The 

fundamental difference between our design and traditional flow is that we introduce the 

repair step to fix the instances violating the constraints during the random process. To 

initialize the first population, we randomly create the 𝑟𝑜𝑢𝑡𝑒 for each solution of the initial 

population. With an initial 𝑟𝑜𝑢𝑡𝑒, we get the list of assigned customers for each and then 

sort them by their demand time in ascending order. After modifying the 𝑟𝑜𝑢𝑡𝑒, the 𝑡𝑟𝑖𝑝 

is created using the idea that shippers only need to return to the depot whether their job 

is finished, or the trip's capacity is overloaded. They need to return to the depot.  
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Figure 3: The flow of proposed GA scheme. 

1. Initialize the population: The structure of the individual is equivalent to decision var-

iable 𝑂 as described in the proposed optimization model. We generate the popula-

tion 𝑃 is the set of 𝜋 individuals. For programming convenience, the chromosome 

is represented by 2 arrays with the size of (𝐶 + 𝐾 − 1) , denoted by 𝑟𝑜𝑢𝑡𝑒𝑠  and 

𝑡𝑟𝑖𝑝𝑠. The 𝑟𝑜𝑢𝑡𝑒𝑠 represents the paths of the shippers by storing the ids of 𝐶 cus-

tomers and (𝐾 − 1) shippers and arrange in random order. Positive integers used to 

represent the customer ids and negative integers used to present the shipper ids. 

𝑡𝑟𝑖𝑝𝑠  used to identify the trips of the shippers. Figure 4 shows the chronosome 

representation for an example of 12 customers with ids from 1 to 12, 3 shippers with 

ids 1 to 3, 2 warehouses A and B. In the figure, first three elements of 𝑟𝑜𝑢𝑡𝑒𝑠 are 12,2 

and 5. It means the shipper with id 1 is assigned to deliver to these customers. The 

corresponding elements in 𝑡𝑟𝑖𝑝𝑠  are binary only. 0 means shipper can directly 

continue to travel, meanwhile 1 means shipper has to comeback related warehouse 

to load the package before devering to the next customer. 𝑡𝑟𝑖𝑝𝑠 stores only 𝐾 − 1, 

in this case shipper id 1 is not nessessary stored in the 𝑟𝑜𝑢𝑡𝑒𝑠 for more convinent in 

ramdom process. 

12 2 5 3 1 6 8 7 2 4 10 3

0 1 1 0 0 0 1 0 1 0

11

1

Routes

Trips

A 12 2 B 5

B A 1 6 8 7

A 4 10 B 3 11

Shipper 1

Shipper 2

Shipper 3

Warehouses

A = {2,4,6,8,10,12}

B = {1,3,5,7,9,11}

Shippers ids

1

→ trips:

Chronosome

No considered values to indicate the 
trips

 

Figure 4: Chromosome representation. 
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2. Fitness function: we used the compromise euclidean distance based fucntion for the 

individual as: 

𝑝. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = (∑ 𝑤𝑖

4

𝑖=1

|
𝐹𝑖 −  𝑧𝑖

∗

 𝑧𝑖
𝑤𝑜𝑟𝑠𝑡 −  𝑧𝑖

∗ |2)

1/2

      ∀ 𝑝 ∈ 𝑃 

All proposed algorithms give optimal results for single-objective optimization prob-

lems.  𝑧𝑖
∗ and  𝑧𝑖

𝑤𝑜𝑟𝑠𝑡  can be considered as pre-computed in this procedure. 

3. Selection: we chose φ elite individuals and bypassed them from the crossover and 

mutation phase to keep them in the next generation. 

4. Crossover: creates a new solution that retains the good properties of its parent. We 

select a crossover rate 𝜇. There are 5 steps to implement the crossover for the whole 

remaining individuals of the next generation (see Figure 5Error! Reference source not 

found.) as following: 

Step 1: select randomly 2 individuals as the parents denoted by 𝑝1, 𝑝2. 

Step 2: Randomly select a substring from a parent for both 𝑟𝑜𝑢𝑡𝑒𝑠 and 𝑡𝑟𝑖𝑝𝑠. 

Step 3: Create a proto-child by phase the substring into its corresponding position. 

Step 4: Delete the all the elements that already in the proto-child of the remand 

parents. This creates an array that have the elements that proto-child need.  

Step 5:  

▪ For 𝑟𝑜𝑢𝑡𝑒𝑠: Place the elements of the result array into unfix position of proto-

child from left to right. 

▪ For 𝑡𝑟𝑖𝑝𝑠: Place the elements of the result array into unfix position of proto-

child in the corresponding position. 

5. Mutation: Modify a solution to create a new solution to expand the search space of 

the algorithm. We select a mutation rate 𝜔. There are two steps to implement the 

mutation for the whole remaining individuals of the next generation as follows: 

Step 1: Randomly select a substring from the individual. 

Step 2:  

▪ For 𝑟𝑜𝑢𝑡𝑒𝑠: shuffle the element in the substring to create a new route. 

▪ For 𝑡𝑟𝑖𝑝𝑠: flip each element in the substring to create a new trip. 

Step 3

Step 4

Step 5

Step 2 1 2 2 4 3 1 0 1 1 1Routes TripsP1

P2 3 2 1 4 2 0 1 0 0 1Trips

5

5

0

1

Proto-child

2 4 3 1 1 1Trips

P2 3 2 1 4 2 0 1 0 0 1Trips5 1

Proto-child

2 5 2 4 3 0 1 1 1 1Trips1 1

Substring

Routes

Routes

Routes

Routes

Substring

 

Figure 5: step 2 to step 5 of the Crossover phase. 

6. Repair: In this phase we fix the solutions that violate the defined constraints. There 

are some principal rules to guide the repairing process: 
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▪ The 𝑡𝑟𝑖𝑝𝑠  array controls the trips of the shippers that are related to the 

capacity. If the customers’ weight is already surpassed the corresponding 

shipper in a journey, the 𝑡𝑟𝑖𝑝𝑠 array must be fixed for that shipper to go back 

for supply after the current customer. 

▪ We keep the principal to minimize number of trips, therefore we check the trips 

if there is any 𝑡𝑟𝑖𝑝𝑠[𝑖] = 1 that can be removed without violate the capacity 

constraint and remove it if possible. 

▪ At the end of each trip, the corresponding element value in the 𝑡𝑟𝑖𝑝𝑠 array 

must be 1. 

▪ 𝑡𝑟𝑖𝑝𝑠[𝑖] = 1 ∀ 𝑖 = 1 … (𝐶 + 𝐾 − 1)  ∧ 𝑟𝑜𝑢𝑡𝑒𝑠[𝑖] < 0 . 

3.2. Hybrid Genetic Algorithm 

3.2.1. Local Search 

Local search [48] is an algorithm using a single search path (searching in the neigh-

borhood) to improve the initial solution for a better solution. The solution point is struc-

tured the same as the chromosome representation of GA as described in the section 3.1. 

The process of the Local search can be described in 2 steps as follows: 

1. Denote 𝑠 is starting solution. 

2. Find 𝑆 = 𝑠𝑒𝑎𝑟𝑐ℎ𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑠, 𝑘) is the set of neighbor’s solutions of 𝑠. 

Where: 𝑘 is the size of 𝑆.  

𝑠𝑒𝑎𝑟𝑐ℎ𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑠, 𝑘) function to return 𝑘 neighbor’s solutions.  

3. Repair every solution 𝑠’ in 𝑆 that violates the defined constraints. 

4. Return s* = argmax
𝑠′∈𝑆

(𝑠′. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠). 

3.2.1. Combination of GA and Local Search 

One risk for GA is that individuals can become trapped in local optima, often caused 

by designs that fail to maintain population diversity or an insufficient number of search 

agents. In this study, we take advantage of the better neighborhood search feature of Local 

Search to give individuals a better chance of overcoming the stuck in Local Optima. We 

run the Local Search several times corresponding to the elite individuals obtained by GA 

as starting points to retrieve better solutions. These solutions in the next generation then 

replace the inputs. The process is illustrated in Figure 6. 

    

GA 
Operations

Set of Elite Individuals

Individual I
(Initial point)

Local Search
Replace I by I  in 
the Population

New 
Individual I 

 

Figure 6: Combination of GA at 𝑔𝑡ℎ generation and the Local Search in HGA. 

3.3. Tabu Search 

Tabu search is an improved version of the Local Search used for mathematical opti-

mization [49]. Local Search methods tend to get stuck in suboptimal regions. TA enhances 

the performance of these techniques by banning accessed solutions or other solutions 

through user-supplied rules. We implement the principal mechanism of TA and reuse the 
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data structure and algorithms described in the previous parts. The flow of TA is illustrated 

in Figure 7. 
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Figure 7:The flow of TA 

4. Experimental Results 

4.1. Experimental Design 

To evaluate the effectiveness of the proposed method, we use a collected dataset in 

one business day received from the shipment company in Hanoi, Vietnam. It consists of 

200 orders, distributed from 5 warehouses, orders delivered by ten shippers. Customer 

locations are collected via GPS. To avoid detailed measurements in the scheduling pro-

cess, the company transformed the customer's precise coordinates to the center of the 

street. Travel time, the average speed of shippers on given time is measured based on 

collected data from google map and check-in data of the shippers. Figure 8 illustrates the 

overview of the experimental design.  

TS

Tested 
data

GA

HGA

Proposed Algorithms

Decision Making 
Scenarios

Evaluation and 
Discussion

 

Figure 8: Overview of Experiment Design 

We conducted experiments and analyzed the results of three proposed algorithms, 

including TA, GA, and HGA, in terms of convergence, processing speed, and solution 

quality. Then, the best-performing algorithm is selected for testing with different decision 

scenarios. The experiments are implemented in the computer with detailed configuration, 

as shown in Table 2.  

Table 2: System configurations for experiments 

Item Info 

CPU Intel(R) Core (TM) i5-8350U CPU @ 1.70GHz   1.90 GHz 

RAM Corsair Vengeance LPX 8GB 

Programming Platform java 8 
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Operating System Window 10 

Parameters govern metaheuristic algorithms. We have tested several different val-

ues. Each of them can affect both the computational cost as well as the quality of the solu-

tion. For example, the more search agents have been used, the higher the chance of finding 

the global optima, but the search time of each agent is also generated. It significantly in-

creases the computation time. The following experiments are performed with the appro-

priate settings to highlight the performance of each designed algorithm, as shown in Ta-

ble 3. 

Table 3: Parameters to conduct the experiments. 

Parameter GA HGA TA 

Population size 1000 100 1 

Crossover rate 0.9 0.9 None 

Mutation rate 0.3 0.3 None 

Selection rate 0.1 0.1 None 

Stop condition 100 100 100 

Neighborhood structure None Replace Replace 

Scanned Neighbors None 1000 - 

Tabu tenure None None 3 

4.2. Results 

As mentioned in section 2.2, the original objective functions are transformed to the 

distance function using compromise programming. We solve the problem as separated 

single-objective problems. The worst point is identified in the same way as the ideal point 

but using the max function for the objective function. The ideal point and worst point are 

shown in Table 4. Three designed algorithms give the same result when solving these 

single-objective problems. 

Table 4: Obtained results by solving the problem as separated single objective problems 

𝒊  𝒛𝒊
∗  𝒛𝒊

𝒘𝒐𝒓𝒔𝒕 

1 699.32 5045.18 

2 0 701979.5 

3 0 12137.6 

4 1.35 9582.21 

The detailed solution of each Single Objective problem is described in Figure 9. In 

the first case, we try to maintain the lowest transport costs. The system only needs to use 

7 out of 10 shippers, as shown in Figure 9A. However, the late delivery time is consider-

able (181801.5), the time the shippers wait and the difference in workload is 2705.85 and 

2274.8 time-units, respectively. All shippers are mobilized to deliver on time (Figure 9B). 

However, the transport cost also increased to 2438.09. To avoid late delivery, shippers 

must arrive earlier than the scheduled time for several orders then wait until the right 

time to deliver. The total waiting time is 6894.85. The difference in workload is also rela-

tively significant when the shipper with the highest workload has to work more than 

257,875 time-units to the average. Figure 9C and Figure 9D show the results when the 

scheduler optimizes the objectives f3 and f4 as respectively (𝑓1 = 2676.491; 𝑓2 =

152876.1; 𝑓3 = 0; 𝑓4 = 2649.96),(𝑓1 = 2734.456018; 𝑓2 = 99640.8; 𝑓3 = 6635.5; 𝑓4 = 1.35). 
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A B

C D  
Figure 9: Generated travelling paths for shippers by solving single objective problems. A) 𝑓1; B) 𝑓2; C) 𝑓3; D) 𝑓4; 

To compare algorithms, we set the weight parameters to be the same. Although the-

oretically, multi-objective optimization may not exist as the best solution. When other so-

lutions do not entirely dominate other solutions, we base on the obtained values of the 

distance function (objective values) to rank the solutions. The metaheuristics operations 

are stochastic. Therefore, to evaluate the stability of the proposed algorithms, we execute 

the 15 times and the obtained results are shown in Table 5. The numbers show that GA-

based algorithms show that they can receive quality results at a much smaller cost than 

TA. Using multiple search agents in TA, each of which continues to search for quality 

neighbors, is a computationally expensive process. To achieve a similar solution quality 

as HGA, the average processing time of TA is 2.06 times more enormous on the tested 

dataset. We normalize the objective values in the range [0,1] based on obtained values in 

Table 4. We only use a single core to executes the algorithms. The executions can be 

speeded up using parallel mechanism for search agents proposed by Ngo et al [44].     

Table 5: Best obtained results by proposed algorithms 

Algorithm Solution Quality Average 

Time(min) Average 

Fitness 

Best solution Worst 

Fitness Fitness 𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒇𝟒 

TA 0.052 0.048 0.076 0.079 0.021 0.027 0.055 25.4 

GA 0.073 0.068 0.041 0.096 0.013 0.057 0.076 5.35 

HGA 0.050 0.045 0.047 0.068 0.016 0.034 0.053 12.6 
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Both GA and HGA algorithms use a similar search mechanism. The only difference 

is that HGA continued to use local search to find neighbors with better fitness values be-

fore creating a new generation. Theoretically, this ensures that the HGA has a better 

chance to get over the local optima than the original version. It has also been confirmed 

through our experiments. However, because many individuals must perform local search 

operations after genetic operations, the total time to search for solutions for each increased 

significantly. However, HGA can provide high-quality solutions when the obtained solu-

tion completely dominates the solutions of original GA and is slightly better than TA on 

the tested dataset of 200 customers. 

 
Figure 10 A) Fitness Values; B) 𝑓1(𝑂); C) 𝑓2(𝑂); D) 𝑓3(𝑂);E) 𝑓4(𝑂); of designed algorithms change over generations/iterations. 

The change of fitness values can visualize the convergence of the algorithms through 

each generation/iteration in Figure 10. In the figure, we show all algorithms running up 

to 3000 iterations for convenience in comparison. However, these algorithms still re-

spected their stop conditions. The result mentioned in the previous section is the time to 

reach the final solution. The change of fitness values shows that TA has obtained better 

results in the first few iterations than GA-based algorithms. However, up to the 297th 

iteration with a fitness value of 0.048 is a local solution that TA cannot pass. Meanwhile, 

the GA and HGA algorithms show that they have maintained the population diversity as 

the next generations continue to improve the quality of the solution. HGA has provided 

solutions that have been continuously improved over the generations. Until it found the 

final solution (0.046) at 1849-th generation. This continuous improvement is significant in 

practice. The algorithmic stopping condition that can be determined by the number of 

generations with the same result is minor to avoid the computational cost. The different 
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objective functions may increase at some generations, but they are decreased in general 

because the algorithm consistently reduces fitness values. 

 

Figure 11: Number of violated constraints with corresponding iterations of the search process of HGA. 

The stochastic mechanism for generating solutions generates a series of solutions that 

violate constraints. In some cases [45], hose solutions can be eliminated by the searching 

process. We must have a mechanism to correct the error solutions in this problem. This 

process speeds up the algorithm through the acquisition of valid answers. The number of 

invalid solutions decreases after newly generated solutions. For example, for the GA-

based algorithms, unviolated constraints parent solutions genes are selected and crossed. 

However, the mutation process produces a certain number of invalid solutions. Figure 11 

displays the number of violated constraints with corresponding iterations of the search 

process of HGA. The data distribution affects the reduction of values in the distance-based 

fitness function. For example, the value of objective function 𝑓4, the Workload of the ship-

per, seems to have played a more significant role than the dense distribution of the values 

in the objective function 𝑓1, as observed from the generated solution by HGA in Table 6. 

However, the search operations can be directed by calibrating the weight parameters. 

Table 6: generated traveling paths 10 shippers to deliver 200 packages from 5 warehouses by HGA. 

𝒌 𝑶𝒌 𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒇𝟒 

1 3-28-4-3-2-1-102-124-148-154-110-146-123-132-94-137-115-204-205-203-114-158 107.9532 8350.7 4.4 0.255 
2 1-2-4-3-5-60-184-188-198-51-52-162-141-75-40-93-143-92-128-160-67-199-200-29-108-18-66-96-113-171-

25-138-44-35-71-179-2-3-152-32 

125.272 5687.2 57.3 141.555 

3 5-4-2-202-126-151-147-107-142-156-190-193-127-100-30-145-112-165 96.75424 6272.4 1.9 -6.895 

4 5-4-1-3-43-173-125-78-22-6-56-176-81-169-76 78.75142 973.15 0 -37.845 
5 5-2-3-4-1-170-13-79-55-20-185-19-129-15-195-197-24-182-109-136-164-150-133-65-27-201-33-180-99-80-

50 

110.138 4980.6 0 -0.395 

6 
3-9-4-1-175-7-38-59 

24.40988 149 0 -
118.295 

7 
2-4-3-1-5-117-57-134-103-11-14-192-42-41-161-186-166-62-72-23-177-16-194-31-183-10-46-74-58-68 

101.6263 7904.1 0 0.055 

8 5-1-4-3-2-36-187-105-89-39-90-88-116-206-106-159-86-172-168-155-163-12-97 89.68427 3929.95 28.3 -0.845 

9 5-4-3-2-1-178-101-149-181-130-84-82-48-8-191-49-157-189-21-34-77-120-153-91-174-53-131-63-69-37-
85-118 

87.14513 4240.15 92.3 22.205 

10 5-1-2-4-3-87-47-83-73-111-26-119-70-121-64-17-122-167-61-140-104-98-45-54-139-144-196 84.42806 5860.5 14.4 0.205 

 

To evaluate the adaptability of the algorithms to different scales of the system, we 

divided the tested dataset into smaller datasets with 50,100,150,200 customers respectively 
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to conduct experiments, as shown in Figure 12. The processing speed of TA slows down 

proportionally to the system scales. The quality of HGA is slightly better than TA and 

significantly better compared to the original GA. HGA's processing time is growing faster 

than GA but better compared to TA. HGA and TA both use neighbor searching, but ge-

netic operations seem to be more effective to identify initial points before search for neigh-

bor points than TA's hill-climbing mechanism. 

 
Figure 12: A) Fitness Values; B) Execution Time; C) 𝑓1; D) 𝑓2; E) 𝑓3; F) 𝑓4; obtained with different number of customers to serve. 

Approaches to the MOP problem based on the decomposition of multi-objective 

functions to single-objective functions have many advantages. Compromise Program-

ming is a suitable solution when the decision-maker cannot assign preferences for each 

specific goal. They have a weakness that is very difficult to illustrate Pareto Frontier. How-

ever, through weight parameters, decision-makers can experiment with different decision 

criteria. We compared solutions generated by the proposed algorithms. These solutions 

do not fully dominate (all objective values are better) each other. Therefore, to evaluate 

which algorithm performs better in different decision-making situations. In this experi-

ment, we selected the sub-dataset of 100 customers then obtained ten solution points cor-

responding to different values of weight parameters for each algorithm, as shown in Fig-

ure 13. We then calculate the Hypervolume 𝐻𝑉𝐶 [50] for the solutions obtained by the 

algorithm as follows: 

𝐻𝑉𝐶 =
𝑣𝑜𝑙𝑢𝑚𝑒(⋃ (𝑠, 𝑧𝑤𝑜𝑟𝑠𝑡)𝑠∈𝑆 )

𝑣𝑜𝑙𝑢𝑚𝑒(𝑐𝑢𝑏𝑒(𝑧∗, 𝑧𝑤𝑜𝑟𝑠𝑡))
 

Where: 
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• 𝑠 is the solution in the Pareto solutions set 𝑆 that generated by the algorithm.  

• 𝑐𝑢𝑏𝑒(𝑎, 𝑏) denotes the oriented axes hypercube that formulated by points 𝑎 and 𝑏 

in the objective space.  

• 𝑣𝑜𝑙𝑢𝑚𝑒(𝑐) denotes the volume of the hypercube 𝑐 in the objective space.  

 
Figure 13: 10 obtained solutions in 4D objective space by A)GA, B)TA, C)HGA with different of weight parameters 

(D). 

The results listed in Table 7 show that the HGA's hypervolume is similar to TA and 

better than the GA. The larger the HVC value, the closer the algorithm can discover solu-

tions close to the actual Pareto frontier. Through TA's nearest neighbor search, the hill-

climbing mechanism allows it to overcome the local optimal better than the original GA. 

However, GA can effectively integrate with other methods to improve quality without 

trading enormous computational costs. The hybrid version of EA shows its effectiveness 

in different decision-making scenarios. 

Table 7: Best obtained results by proposed algorithms 

Algorithm 𝑯𝑽𝑪 

TA 0.938 

GA 0.885 

HGA 0.941 

To evaluate the capabilities of the proposed CP-based method. We use genetic oper-

ations designed to implement a version of the NSGA-2 algorithm [51]. The parameters to 

execute algorithm and the obtained results on dataset of 200 customers are shown in Error! 

Reference source not found.. This setup is to make NGSA-2 can find the best (possibly) 
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values of each objective function 𝑓1, 𝑓2, 𝑓3, and 𝑓4. NGSA-2 shows its power to search for 

a Pareto front with more than 8000 solutions after more than 6 hours of execution. The 

NGSA-2 can archive the solutions with best values of 𝑓2 = 0 and 𝑓3 = 0, which is similar 

to proposed algorithms; however, the proposed method shows it to be completely supe-

rior when looking for solutions with 𝑓1 and 𝑓4 being better. The normalized distance of 

closest solution to 𝑧∗ (fitness value) obtained by NGSA-2 is 0.122 that is inferior to com-

pare with the generated one by CP-based GA when using the similar searching mecha-

nism. Although our results are not enough to conclude that the CP-based method is better 

than MOEA-2, the obtained Pareto front may contain lower quality solutions to the pro-

posed method. The effort to search for the Pareto frontier leads the search agents not to 

focus on achieving their goal as SOP. It requires a significant computational overhead, 

which is difficult to adapt in a real-world environment. The user has no other choice, even 

if they only need to use one solution in reality. Other factors in the decision problem, such 

as user experience, contribute nothing to this centralized search effort. 

Table 8: Obtained results on the tested dataset by NGSA-2. 

Parameter / Criteria 

 

Applied/Obtained by  

NGSA-2 

Applied/Obtained by  

CP-based GA 

Population 10000 1000 

Stop Condition 1000 100 

Crossover rate 0.8 0.9 

Mutation rate 0.3 0.3 

Average Execution Time (min) ~372  ~5  

Number of Solutions ~8837 1 

Best found 𝑓1 1422 699.32 

Best found 𝑓2 0 0 

Best found 𝑓3 0 0 

Best found 𝑓4 42 1.35 

Best fitness value 0.122 0.0689 

5. Conclusions 

This study presents an adaptive method to solve the urban shipment problem as 

MOP-VRP based on CP and Metaheuristics. The proposed model is a new variant of the 

VRP problem that combines different types of VRP and MOP where terrain and traffic 

conditions over time are integrated. We also designed three algorithms, GA, HGA, and 

TA, to solve the proposed model and compare their performance on the tested dataset. 

Combining compromise programming and metaheuristics is suitable for approaching the 

MOP problem. However, once this approach is chosen, the decision-making process needs 

to respect compromise solutions instead of finding the Pareto frontier and assigning a 

solution based on higher-level information like other approaches such as Pareto-domi-

nance-based MOEA. In return, this approach allows flexible design for many business 

scenarios. Traditional metaheuristics methods or hybrid versions are smoothly applied 

with the CP-based. Although, the CP-based system introduced weight parameters to the 

objective functions. The selection of these values in practice depends heavily on the deci-

sion-makers experience and the business sense using the model because re-executing the 

algorithm with large datasets multiple times leads to a prohibitive computation cost. 

Therefore, it is recommended as an option when the decision-maker does not have sources 

to indicate the preferences that happen more often in practice. The test results show that 

the combination of GA and Local Search in HGA creates a superior advantage in improv-

ing the quality of the solution. The original version of GA may use trivially sampling 

points, but the nearest neighbor search can provide better genes to the next generation. 

This combination produces a high-quality solution without trading off too much compu-
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tational cost like the nearest neighbor search with a memory mechanism in TA. Our up-

coming work is to integrate the VRP model with integral logistics problems. The improve-

ment of the algorithm using recent advances in metaheuristics is the priority. 
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