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2. Abstract39 

Habituation, the most ancient and fundamental form of learning, manifests already before birth. 40 

Neuroscientists have been fascinated for decades by its function as a firewall protecting our 41 

brains from sensory information overload and its indispensability for higher cognitive 42 

processing. Evidence that habituation learning is affected in autism and related monogenic 43 

neurodevelopmental syndromes and their animal models has exponentially grown, but the 44 

potential of this convergence to advance both fields is still largely unexploited. 45 

In this review, we provide a systematic overview of the genes that to date have been 46 

demonstrated to underlie habituation across species. We describe the biological processes they 47 

converge on, and highlight core regulatory pathways and repurposable drugs that may alleviate 48 

the habituation deficits associated with their dysregulation. We also summarize currently used 49 

habituation paradigms and extract the most important arguments from literature that support 50 

the crucial role of habituation for cognition in health and disease. We conclude that habituation 51 

is a powerful tool to overcome current bottlenecks in research, diagnostics and treatment of 52 

neurodevelopmental disorders. 53 

54 

3. Introduction55 

3.1. Habituation learning 56 

Habituation, the response decrement to a repeated irrelevant stimulus, is a fundamental 57 

form of learning that is conserved across the animal kingdom. It represents an essential filter 58 

mechanism that helps to identify salient signals in the environment by reducing the transmission 59 

of previously encountered stimuli to high-order brain regions. This allows organisms to 60 

distinguish the known from the novel, prevents information overload, and preserves cognitive 61 

resources for important matters. Habituation is the earliest form of learning that manifests 62 

before birth [1-6]. Its properties make it an important prerequisite to acquire higher cognitive 63 
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functions [9,15-19]. In agreement with its fundamental role in cognition, infant habituation has 64 

been found to predict later IQ better than standardized measures [1-7], and deficits in 65 

habituation have been linked to several cognitive disorders [8-10]. 66 

The strong evolutionary conservation of habituation learning allows researchers to use 67 

animal models to dissect the genetic and neuronal mechanisms and study habituation deficits 68 

that are associated with human disease. Such insight from animal models may help to elucidate 69 

disease mechanisms, identify which individuals are more likely to have defective habituation 70 

in (genetically) heterogeneous disease cohorts and stratify patients for targeted pharmacological 71 

treatment strategies. In addition to conventional rodent models such as mouse (Mus musculus) 72 

and rat (Rattus norvegicus), research in cost and time-efficient organisms such as the zebrafish 73 

(Danio rerio), the fruit fly (Drosophila melanogaster), and the roundworm (Caenorhabditis 74 

elegans) has generated major insights into the neuronal and genetic mechanisms of habituation 75 

in health and disease. 76 

3.2. Habituation paradigms 77 

There is a wide range of paradigms available and used to measure habituation in pre-78 

clinical and clinical settings. These paradigms differ in the type of the presented stimulus and 79 

of the response measured, while the defining characteristics of habituation are thought to be 80 

shared between various models and paradigms. These include, in addition to the response 81 

decrement to repeated presentation of the same stimulus (habituation): spontaneous recovery, 82 

recovery of the response when stimulus is changed (stimulus specificity), and recovery when a 83 

novel stimulus is inserted in the series of habituating stimuli (dishabituation) [11, 12]. The most 84 

commonly used habituation paradigms in humans and other organisms are listed in Table 1, 85 

and the latter further discussed in section 5.3. 86 

3.3. Habituation mechanisms 87 

The mechanisms underlying neuronal habituation are incompletely understood. Three 88 

main theories, originated decades ago, are perceived to be relevant. First, the “Stimulus-model 89 
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comparator” theory, where repeated stimulation generates a model that is compared to the 90 

expected stimulus model, and the response is attenuated if the models match [13, 14]. Second, 91 

the “Sometimes opponent processes” theory, an adaptation of the Gnostic unit theory, where 92 

the generation of the stimulus-specific neuronal model activates inhibition of an arousal system 93 

[15, 16]. Third, the “Dual-process theory”, where interaction between sensitization and 94 

habituation in the stimulus-response pathway defines the final response to the stimulus [17]. 95 

The principle elements of these theories were recently embodied in a generalizable habituation 96 

model that defines an essential set of operating elements required for habituation (a stimulation–97 

receiver pair and the habituation element) and can also be applied to aneural forms of 98 

habituation. According to this model, repeated stimulation modifies the receiver output through 99 

time- and stimulus-dependent changes in the habituation element, thereby mediating 100 

habituation [18]. An equivalent of the “habituation element” is required in all three described 101 

neuronal habituation theories but its cellular and molecular basis remains abstract.  102 
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Table 1: The most commonly used behavioral and physiological methods to assess habituation 
across organisms. Since the early stages of research into habituation (see [19] for a review on the 
history of the term “habituation” and habituation research), a range of paradigms to assess 
habituation in different organisms, from worms to humans, have been developed. Some of the most 
commonly applied approaches to assess habituation are listed. They use physiological or behavioral 
read-outs. 

Startle reflex habituation uses startle-inducing stimuli to determine the reduction in 
response strength or response probability over repeated stimulation [20-23]. A 

commonly used stimulus is the acoustic startle stimulus (i.e. presentation of a loud tone; acoustic 
startle reflex (ASR) habituation), but visual, olfactory and somatosensory stimuli are also employed. 
In humans, the response output is most often a measure of blinking through Electromyographic 
(EMG) recording of the orbicularis oculi muscle. In animal models ranging from worms to rats, the 
output measure in this assay is also often a muscle or movement response to the startle stimulus. For 
example, the startle response in rodents is often quantified as the force the animal exerts by extension 
of its limbs onto a pressure-sensitive force transducer. 

Visual habituation, which is also referred to as habituation of looking time, is used in 
rats and humans [24, 25]. In this habituation paradigm, test subjects are repeatedly 

presented with an auditory or visual stimulus (e.g. a real object or digital picture) and habituation is 
determined as a decrease in orienting response or fixation time to the presented stimulus. While in 
humans this paradigm is mostly applied in infants as part of the Visual Recognition Memory task 
[26], it has been succesfully used to study adults with even profound Intellectual Disability (IQ < 
20/25) [27].  

Electrodermal activity (EDA) habituation is also referred to as electrodermal response 
(EDR) habituation, event-related skin conductance response (SCR) habituation, or skin 

conductance orienting response (SCOR) habituation [28-32], or, previously, as Galvanic Skin 
Response (GSR) habituation [33]). In this paradigm, simple auditory, visual, or somatosensory stimuli 
are presented while measuring changes in the probability or magnitude of skin conductance with 
repeated stimulation. A decrease in probability or magnitude of the response represents habituation. 
EDA is performed in humans and various mammalian animal models. 

In Event-related potential (ERP) habituation, the test subjects are exposed to a 
repeated stimulus, while undergoing electroencephalography (EEG), either using an 

electrode cap in humans or cranially implanted electrodes in animals. Habituation is described as a 
decrease in various components of the ERP wave’s latency or amplitude [34-37]. It can assess 
different brain regions, according to the position of the electrodes. A variety of different stimuli 
including simple auditory, visual and somatosensory stimuli, nociceptive stimuli, complex auditory 
or visual stimuli (like speech or faces), as well as startling stimuli are used. 

Functional Magnetic Resonance Imaging (fMRI) habituation can assess habituation 
of specific brain regions (e.g. amygdala habituation; [38, 39]) in humans and rodents 

rats [40]. In this paradigm, participants are presented with an auditory or visual stimulus (simple (e.g. 
tones or shapes) or complex (e.g. speech or emotional faces)), while an fMRI scanner records blood 
oxygen dependent (BOLD) contrast responses. A decrease in BOLD contrast with repeated 
stimulation represents habituation. 

Novel object/environment habituation, frequently used in rodent habituation studies, but 
has no equivalent paradigms in humans or other model organisms. Within this paradigm a 

rodent is placed into a novel or known environment with a novel object in it. Habituation to the novel 
environment/object is defined as the amount of time the rodent is actively investigating the novel 
object, or as how long it takes the animal to present the “normal” behavior seen in a familiarized 
environment. 

Open field habituation is solely employed in rodent habituation studies. Similar to the visual 
habituation paradigm, it makes use of rodents’ innate behavior to explore new stimuli. Mice 

or rats are placed in an open field environment, and habituation is determined as the decrease in 
explorative behavior. This is most commonly measured as total distance traveled, and can be assessed 
over time within a session or over multiple sessions (i.e. intrasession or intersession habituation) [41, 
42]. 

103 
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Few years ago, before the definition of this generalizable habituation model, Mani 104 

Ramaswami highlighted the critical role for stimulus-dependent feedback inhibition [43]. He 105 

and colleagues experimentally demonstrated that odorant selective habituation in Drosophila 106 

relies on recurrent inhibitory potentiation of activated excitatory neurons [44-46]. Reviewing 107 

seminal electrophysiological studies of the Aplysia sifon withdrawal reflex that postulated 108 

homosynaptic depression of excitatory neurons as the mechanism of short-term habituation [47-109 

49], he noted that even in this model with simple circuit organization (receptor neurons forming 110 

synapses with motor neurons), inhibitory potentiation is present [50, 51]. Inhibitory potentiation 111 

can better explain habituation characteristics that are difficult to reconcile with homosynaptic 112 

depression such as dishabituation, long-term habituation and that habituation is more effective 113 

with weak stimuli. Activity of inhibitory neurons can shape stimulus responses and habituation 114 

also in mammalian olfactory bulb [52, 53]. Because most brain regions consist of connected 115 

excitatory neurons that receive inhibitory input, Ramaswami proposed that any repeated 116 

excitatory stimulus can create an inhibitory signal (= negative image) of itself. The negative 117 

image neutralizes incoming signals of the expected stimulus pattern and strength, thereby acting 118 

as the selective filter that suppresses transmission to the downstream brain regions and/or 119 

behavior responses [43]. Inhibitory potentiation may thus represent a key mediator of 120 

habituation - the “habituation element” – operating across species, paradigms and brain regions. 121 

A neuronal algorithm implicating inhibitory potentiation of habituation should also be able to 122 

make predictions and efficiently detect salient features in the environment [54]. The “negative-123 

image model” as defined by Ramaswami can thus serve as a general mechanism for adaptive 124 

filtering, generation of predictions and saliency mapping. Malfunctions of this mechanism are 125 

in line with – and may critically underlie - key features of Autism Spectrum Disorders (ASD), 126 

including sensory hypersensitivities, and information overload that arises from altered salience 127 

landscape [43, 55, 56]. The central molecular mechanism of recurrent inhibitory potentiation 128 

revealed by Ramaswami and colleagues is increased release of inhibitory neurotransmitter γ-129 
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aminobutyric acid (GABA) from inhibitory neurons in response to repeated stimulation. In 130 

short-term habituation, increased release of GABA is trigerred by Calcium/calmodulin-131 

dependent protein kinase II (CamKII)-dependent phosphorylation of synapsin [45]. However, 132 

other additional kinases that are able to phosphorylate synapsin (ERK, PKA, CamKI) [57-59] 133 

may also be involved. Because inhibitory interneurons in the Drosophila olfactory response 134 

pathway are multiglomerular and their activation results in non-selective attenuation of the 135 

behavioral response, synapse-specific NMDA receptor activity in the principle excitatory 136 

neurons is required to allow for habituation to a specific odor [44]. Inhibitory-derived GABA 137 

then attenuates the activity of these neurons by binding to GABAA receptors [44]. Habituation 138 

is also dependent on cAMP activity in inhibitory neurons. While long-term habituation, most 139 

probably associated with changes in synaptic structure, employs cAMP-PKA-mediated 140 

activation of cAMP response element-binding protein (CREB), short-term habituation is 141 

CREB-independent [44] and is probably mediated only by short-term synaptic plasticity 142 

mechanisms. 143 

144 

4. A helicopter view on the molecular basis of habituation145 

Molecular players and mechanisms that are required for habituation can be further146 

inferred from genetic studies in model organisms. Various approaches to identify genes that 147 

control habituation learning have been taken. These include unbiased forward genetic screens 148 

as well as reverse genetic approaches where animals with disruption of known genes were 149 

assessed for habituation deficits. Many of the latter focused on single genes, but a few went 150 

beyond. These efforts have been made by numerous research groups throughout years, and have 151 

not yet been compiled into a joined framework that contributes to a better understanding of 152 

habituation on the molecular level. 153 

With this review, we aim to provide a systematic overview of all genes, and hence 154 

molecular players, that to date have been experimentally associated with decreased habituation. 155 
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We further describe the biological processes and molecular pathways that these genes converge 156 

on and highlight core pathways that are subject to pharmacological targeting with promising 157 

drugs. Finally, we propose to apply habituation and the gained insights in pre-clinical disease 158 

models and in clinical trials to improve patient care for neurodevelopmental disorders. 159 

4.1. A catalog of genes underlying habituation 160 

To provide a comprehensive overview of the genes required for adaptive habituation 161 

responses, we systematically searched the PubMed database. The final search term string used 162 

to extract relevant publications that connect individual genes to habituation deficits is depicted 163 

in Figure 1. Excluded search terms (indicated by NOT) resulted from earlier searches that 164 

exclusively led to studies irrelevant for our aim. The final search string detected 679 165 

publications that were manually screened by at least two of the authors on title and abstract for 166 

suitability. This initial screening resulted in the selection of 241 publications, which were 167 

viewed in full length. 118 of these provided at least one to many unambigous gene – habituation 168 

deficit pairs. Other publications measured but did not find habituation deficits in their genetic 169 

model(s), showed (or claimed) increased habituation, did not or not unambiguously target 170 

individual genes, or described paradigms that did not meet habituation criteria. 171 

172 

173 

PubMed Search 
(genes [MeSH Terms] OR genes [Title/Abstract] OR gene 
[Title/Abstract] OR alleles [MeSH Terms] OR allele* 
[Title/Abstract] OR mutat* [Title/Abstract] OR variant 
[Title/Abstract])  

AND (Habituation, Psychophysiologic [MeSH] 
OR habituat* [Title/Abstract] OR "repetition suppression" 
[Title/Abstract] OR "novelty detection" [Title/Abstract] 
OR repetition priming [MeSH] OR "repetition priming" 
[Title/Abstract] OR "sensory adaptation" [Title/Abstract]) 

NOT (cancer [Title/Abstract] OR plant 
[Title/Abstract] OR plants [Title/Abstract] OR aquatic 
[Title/Abstract] OR neophobia [Title/Abstract] OR 
"habituation phase" [Title/Abstract] OR substance-related 
disorders [MeSH] OR "substance-related disorder" 
[Title/Abstract] OR lesion* [Title/Abstract]) 

N = 438 
excluded on title & abstract

N = 241 
publications full text read 

N = 118 
publications included 

N = 679 
publications identified 

N = 123 
excluded on full text 

Figure 1. Flow chart depicting the search term and selection process of publications for inclusion into 
this review. 
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For the 120 publications, the following aspects were annotated for each monogenic 174 

defect found to cause a habituation deficit (Table S1); 1. Original gene name in the specific 175 

species, 2. Species, 3. Effect on function (LoF, GoF, unknown), 4. Mutation (or manipulation), 176 

5. Habituation paradigm, 6. Habituation paradigm details, 7. Reference (PubMed identifier,177 

PMID), year of publication plus name of the first and last author. 178 

In total, our literature review identified 356 hits causing reduced habituation learning, 179 

in total corresponding to 278 genes in several species (see below), summarized in Table S1. 180 

The majority of these 356 hits induce (predicted) loss of function (307 hits). 18 hits were 181 

reported to represent gain of function mutations, and for 31 hits the effect on protein function 182 

remained unclear. Our systematic search found experimental evidence that links genes to 183 

habituation deficits in six different organisms; Homo sapiens (human; N = 4 genes), and the 184 

model species Rattus norvegicus (rat; N = 4 genes), Mus musculus (mouse; N = 52 genes), 185 

Danio rerio (zebrafish; N = 37 genes), Drosophila melanogaster (fruit fly; N = 124 genes) and 186 

Caenorhabditis elegans (roundworm; N = 37 genes). 187 

To compile a cross-species catalog of conserved genes linked to habituation deficits (i.e. 188 

genes implicated in habituation deficits in any or several of the six organisms) and allow 189 

subsequent gene ontology (GO) and pathway analyses, we next annotated the human orthologs 190 

of all genes identified in the five model organisms. We submitted the genes to the DRSC 191 

integrative ortholog prediction tool (DIOPT) that compiles evidence from 18 databases [60]. 192 

To include top-ranking orthologs, but exclude more distal homologs, we applied a number of 193 

criteria described in the legend of Table 2. 194 

Of the 278 genes identified in the different species, 20 showed poor conservation, with 195 

the top-ranking genes having a DIOPT score below 3. These were considered as insufficiently 196 

conserved and excluded from further analyses, leaving us with a catalog of 258 evolutionary 197 

conserved genes to be matched across species. 198 
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Due to one-to-many gene orthologies in Drosophila and C. elegans, frequently 199 

associating a single invertebrate gene to two or several human genes forming a related 200 

(potentially functionally overlapping or redundant) gene family, the conversion of the model 201 

organism gene catalog to human genes inflated the total number of genes from 258 to 421 genes. 202 

To illustrate the origin of this inflation, we assigned an inflation score to each organism, 203 

calculated as the number of human orthologs divided by the corresponding number of the 204 

originally identified genes in the respective species (Table 2). Mouse and Rat inflation score 205 

equals 1, reflecting exclusively one-to-one orthology. The inflation score of Drosophila is 1.87. 206 

Thus on average, each fly gene implicated in habituation led to the annotation of almost two 207 

paralogous human genes. C. elegans received the highest inflation score, 2.73, while zebrafish, 208 

due to a genome duplication event in teleost evolution, has an inflation score smaller than 1 209 

(0.76). 210 

211 

Organism Publications Hits Genes Human orthologs Inflation score 
H. sapiens 12 12 4 4 1.00 
R. norvegicus 4 4 4 4 1.00 
M. musculus 59 61 52 52 1.00 
D. rerio 6 38 37 28 0.76 
D. melanogaster 27 165 124 232 1.87 
C. elegans 8 53 37 101 2.73 

212 

All genes required for habituation, the species they were identified in, the corresponding 213 

reference and their annotated human ortholog(s) are listed in Figure 2, in alphabetical order of 214 

the human gene name(s). Genes that have been implicated in habituation in more than one 215 

organism are highlighted in dark color and will be further refer to as multispecies hits, for 216 

simplicity. Two genes, FMR1 and SYNGAP, have been associated with defective habituation in 217 

four out of the six depicted model organisms (human, mouse, fish, and fly). GIGYF2 has been 218 

found to underlie habituation in three species (fish, fly and worm) and an additional 15 genes 219 

Table 2. Demographics of the gene catalog and the inflation score linked to the conversion to human genes. For the 
conversion of species genes to human orthologs we utilized the DIOPT tool. All suggested orthologs with a DIOPT score 
of at least four were adopted if: 1. the ortholog was annotated with "Best score", 2. the ortholog belonged to the same gene 
family and had a comparable DIOPT score as the ortholog with the "Best Score" annotation, 3. the ortholog was the "Best 
reverse" and has a comparable DIOPT score to the “Best score” ortholog even if it did not belong to the same family, 4. 
the ortholog was annotated with “Best reverse” and is a known disease gene.  
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(62) BDNF Cntnap2 (74) CNTNAP2 sax (142) ACVR1/L1 Lcch3 (153) GABRB1/2/3 Oga (162) OGA aps-2 (168) AP2S1
(63-71) FMR1 Dab1 (75) DAB1 rut (44, 143-145) ADCY1 Gad1 (142) GAD1/2 KrT95D (142) PACS1/2 apl-1 (169) APP;APLP1/2

(72) MAOA Grin1 (76) GRIN1 Adk2 (142) ADK Gale (142) GALE Pak (142) PAK1/2/3 let-526 (168) ARID1A/B
(73) SYNGAP1 Tsc1 (77) TSC1 CG18012 (142) ALG1 Galt (142) GALT CG1516 (142) PC unc-2 (168) CACNA1A/B/E

CG11851 (142) ALG9 simj (142, 157)^ GATAD2A/B cp309 (142) PCNT;AKAP9 unc-36 (168) CACNA2D1/2/3/4
AP-1sigma (142) AP1S1/2/3 ppl (142) GCSH dnc (142-144, 163) PDE4A/B/C/D cmk-1 (170) CAMK1D/G;CAMK1;PNCK

Bmal1 (78) ARNTL KCNMA1 rb (142) AP3B1/2 Gdi (142) GDI1/2 Pex1 (142) PEX1 cdkl-1 (168) CDKL1/2/3/4/5
Atp1a2 (79) ATP1A2 LARGE1 CG5316 (142) APTX CG11148 (153) GIGYF1/2 CG6287 (142) PHGDH unc-75 (168) CELF3/4/5/6
Atp1a3 (80) ATP1A3 LSAMP RtGEF (142) ARHGEF6/7 Gyk (142) GK;GK2 PIG-V (142) PIGV crh-1 (170) CREB1;CREM;ATF1

Bsg (81) BSG NLGN3 al (142) ARX CG3999 (142) GLDC row (142, 153, 164)^ POGZ bar-1 (168) CTNNB1
Casp3 (82) CASP3 NR1D1 CG9510 (142) ASL ci (142) GLI1/2/3 for (150, 165, 166) PRKG1 dhp-1 (168) DPYS;DPYSL2/3/4/5;CRMP1
CerS6 (83) CERS6 NRG1 asp (142) ASPM CG4270 (142) GLIPR2 CG6767 (142) PRPS1/1L/2 exc-7 (168) ELAVL1/2/3/4

Chrm2 (84) CHRM2 OMP ATP7 (142) ATP7A/B dally (142) GPC3/5 Pten (142) PTEN cdh-4 (168) FAT1/2/3
Chrna6 (85) CHRNA6 OTX2 XNP (142) ATRX cin (142) GPHN csw (142) PTPN6/11 C18H9.3 (168) GIGYF1/2
Ckap5 (86) CKAP5 PLAT Atx2 (146, 147) ATXN2/2L CG3822 (142) GRIK1/2/3 Rab39 (142) RAB39A/B glr-1 (172-174) GRIA1/2/3/4

Cln8 (87) CLN8 PPARGC1A BOD1 (148) BOD1 Nmdar2 (153) GRIN2A/B/C/D CG42684 (153) RASAL2;DAB2IP;SYNGAP1 glr-2 (174) GRIA1/2/3/4
Clock (78) CLOCK PRKN Blos1 (149) BLOC1S1 sgg (158) GSK3A/B CG13690 (142) RNASEH2A irx-1 (168) IRX1/2/3/4/5/6
Dgki (88) DGKI PTPRA Raf (142) BRAF;ARAF;RAF1 Ih (142) HCN1/2/3/4 ssp3 (142) SCAPER kqt-1 (168) KCNQ2/3/4/5

Disc1 (89) DISC1 PTPRR Ca-alpha1T (142) CACNA1G/H/I Ras1 (142) HRAS;KRAS;NRAS Prosap (142) SHANK1/2/3 jmjd-3.3 (168) KDM6A/B
Drd1 (90, 91) RAG1 Camta (150) CAMTA1/2 scu (142) HSD17B10 kar (142) SLC16A2/10 set-16 (168) KMT2C/D

Dtnbp1 (92, 93) S100B CASK (142, 151) CASK Sh (159) KCNA1/2/3/4/5/6/7/10 CG1628 (142) SLC25A2/15 epi-1 (168) LAMA3/4/5
Egr3 (94) EGR3 SHANK3 Dronc (142) CASP2 Hk (159, 160) KCNAB1/2/3 CG18347 (142) SLC25A18/22 magi-1 (174) MAGI1/2/3

Epm2a (95) EPM2A SLC6A3 Cbs (142) CASP2 Task7 (142) KCNK3/9/15 nac (142) SLC35C1 ogt-1 (170) OGT
Esr2 (96) ESR2 SRF CG43370 (142) CC2D2A/B slo (159, 160) KCNMA1;KCNU1 CG4300 (142) SMS pax-2 (168) PAX2/5/8
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Figure 2: Conserved genes causing reduced habituation upon manipulation. Genes are grouped by the organism in which they were investigated, and alphabetically ordered 
according to the name of the human ortholog. Depicted is the original gene name with the reference(s), followed by the human gene ortholog(s) as determined by the authors. Human 
orthologs supported by evidence in multiple species are highlighted in dark color (termed multispecies hit), while orthologs that are supported by multiple evidence in the same species 
are highlighted in light (monospecies multihit). ^ depicts results that have been reused by a second study. Since based on the same data these genes are not considered monospecies 
multihits. * indicates transgenic human alleles expressed in mice.
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have been found in two species (AP2S1, CNTNAP2, DTNBP1, GRIA1, GRIN1, GRIN2A, 223 

KCNA1, KCNMA1, NF1, PC, POGZ, SHANK3, TCF4, TSC1, UPF3A/B). 38 further genes are 224 

highlighted in light color. For these independent evidence for a role in habituation has been 225 

presented either by multiple models by the indicated reference or in two or more independent 226 

studies within the same species. These genes are referred to as monospecies multihit genes. 227 

The compiled catalog contains genes with diverse protein functions. In the next section, 228 

we aimed to identify the biological processes that they contribute to, with a focus on signaling 229 

pathways that comprise multiple habituation genes and are druggable. 230 

4.2. Gene Ontology 231 

To identify molecular pathways and biological processes that are required for 232 

habituation learning, the compiled gene catalog was subjected to Gene Ontology (GO) analysis 233 

using AmiGO2 [175-178] (DOI: 10.5281/zenodo.4495804 Released 2021-02-01). To provide 234 

a broad overview on the biological processes identified by this analysis, we have limited the 235 

complexity of the outcome by combining functionally related individual GO term into 236 

compound GO terms [179]. The GO terms covered by the compound GO terms are described 237 

in detail in Table S2. 238 

Figure 3 depicts 13 compound GO terms associated with large and/or very enriched 239 

gene groups. Together, they describe (one or more) biological functions of 290 human gene 240 

orthologs (i.e. for 73% of the identified 398 human genes). Genes that are connected only to a 241 

single of the 13 compound GO groups are shown (N = 152, 53%) on a dark background. Genes 242 

related to more than one compound GO term are depicted on a light background (N = 138, 243 

47%). The six compound GO groups contributing the most genes associated only to a single 244 

compound GO group are included in a Venn diagram, highlighting that these processes are 245 

molecularly connected. Seven further compound GO groups are depicted separately, to limit 246 

complexity of the Venn diagram. These overlap very considerably with the genes already 247 
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Figure 3: Venn diagram of compound GO terms describing biological processes linked to genes required for habituation. Compound GO terms represent functionally related GO terms 
(Table S2). The Venn diagram connects the 6 compound GO that contribute most genes only connected to a single compound GO term (dark background). Genes connected to multiple compound 
GO terms are shown on a light background. 
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present in at least one other compound GO group and thus add in rather few genes only 249 

associated to a single compound GO group. 250 

The Venn diagram highlights genes associated with the compound GO terms: 251 

Regulation of transcription (N = 91 genes | of which 35 associated with a single compound GO 252 

term), Cation transport (N = 65 | 35), Metabolic process (N = 35 | 27), MAPK cascade (N = 46 253 

| 14), Synaptic transmission (N = 92 | 10) and Chromatin organization (N = 43 | 9). The genes 254 

operating in the largest number of represented biological functions are APP (associated with 8 255 

of 13 compound GO terms), PTEN (8 of 13), CTNNB1 (7 of 13), DLG1 (7 of 13), and NRXN1 256 

(7 of 13). 257 

It is not surprising that our gene list identifies biological processes related to synaptic 258 

transmission, learning or memory, postsynaptic processes, and neurotransmission; these are 259 

established biological processes linked to habituation learning. However, we also find 260 

biological processes such as the regulation of transcription, chromatin organization, metabolic 261 

processes, and Wnt signaling are well-represented. These processes are highly implicated in 262 

neurodevelopmental disorders [179, 180] and are at least in part known to regulate other forms 263 

of learning, but have not gotten much attention in relation to habituation learning. Additionally, 264 

we find biological processes related to cell junction assembly and gliogenesis, pointing to a 265 

contribution of neurodevelopmental components to habituation. 266 

4.3. Molecular pathways and processes controlling habituation, and their 267 

drugability 268 

Whereas the GO analysis provided an overview on the biological functions prominently 269 

involved in habituation, it does not capture all genes and, with the exception of MAPK and Wnt 270 

signaling, points to very broad processes. Not only with an eye to clinical applications, we 271 

found it worthwhile zooming in further to define additional molecular pathways in which genes 272 

required for habituation operate. Because of the large number of genes and space constrains, 273 

we in Figure 4 focused on depicting those pathways and processes that aggregate a number of 274 
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genes with strong evidence from multiple species (in red). These include (1) central cellular275 

signal transduction cascades - PI3K-AKT-mTOR, Ras-MAPK, and cAMP-PKA (Figure 4A), 276 

(2) mechanisms of neuronal plasticity and excitability, in addition to these signal transduction277 

cascades (Figure 4B), and (3) the control of protein translation (Figure 4C). Because these 278 

interconnected processes align well with the major mechanistic themes in neurodevelopmental 279 

disorders [181], they also are attractive targets for pharmacological intervention. 280 

Because habituation learning as well as its genetic and molecular mechanisms appear to 281 

be deeply conserved, and small animals offer the opportunity to conduct drug testing in vivo at 282 

reasonable costs in bigger scale, such screens may uncover novel lead compounds. This has 283 

been impressively demonstrated by a compound screen that assessed the effect of 1760 284 

compounds on acoustic startle habituation in wild-type zebrafish larvae [182]. 19 compounds 285 

were found to improve habituation learning. Most of these are targeting neurotransmitter 286 

systems, and eight are targeting disease mechanisms highlighted here, including intracellular 287 

signaling molecules (GSK3B, PKC, and PDE3), post-synaptic receptors (DRD and CHRM) 288 

and channels (CACNA1C) (Figure 4). 289 

Figure 4D provides a synopsis of compounds either with a demonstrated positive effect 290 

on habituation (Figure 4D, left column) from the above or other studies, or a hypothetical 291 

suitability, based on targeting the depicted habituation-relevant pathways and evidence on the 292 

beneficial effect of these drugs for cognition (Figure 4D, right column). Many of these drugs 293 

are repurposable; 11 of them are approved by the U.S. Food & Drug Administration (FDA). 294 

Four additional drugs are currently being investigated in clinical trials. In the following 295 

subsections, these central habituation pathways and their drugability will be discussed further. 296 
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Drugs improving habituation learning 
Drug 1: [68], Drug 2: [182], Drug 3: [182], Drug 4: [182], Drug 5: [182], Drug 10: [182, 183], Drug 11: [182, 184], Drug 15: [182, 185], Drug 17: [138], 
Drug 18: [182, 186], Drug 19: [138, 187], Drug 20: [138, 188, 189], Drug 23: [190, 191], Drug 26: [69] 

Drugs hypothetically improving habituation learning 
Drug 6: [192], Drug 7: [193], Drug 8: [194], Drug: 9: [195, 196], Drug 12: [197], Drug 13: [198, 199], Drug 14: [200], Drug 16: [201], Drug 21: [202], Drug 
22: [203], Drug 24: [204, 205], Drug: [206], Drug 27: [207], Drug 28: [208]. 

Reference in legend 
[179] 

297 

Figure 4. Schematic overview of the molecular processes and mechanisms comprising 17 of the 18 multispecies hits that are required for habituation. Not represented is PC (Pyruvate 
Carboxylase). The processes include A. PI3K-AKT-mTOR, Ras-MAPK, and cAMP-PKA pathways B. Synaptic plasticity and excitability and C. Translational control. D. Onto these processes 
we projected drugs with experimental evidence for their potential (left column), or which can be hypothesized to improve habituation learning; Monogenic causes of neurodevelopmental 
disorders [179] are highlighted with blue outline; *= FDA/EMA-approved, **= Off-label/clinical trials, ***= Only preclinical; ALS = Amyotrophic lateral sclerosis, COPD = Chronic 
obstructive pulmonary disease, TSC = Tuberous sclerosis complex, NF1 = Neurofibromatosis 1. Panels A.-C. were created using Biorender.com. Shown are gene not protein names, for 
simplicity. 
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4.3.1. PI3K-AKT-mTOR, Ras-MAPK, and cAMP-PKA pathways 298 

PI3K-AKT-mTOR and Ras-MAPK signal transduction cascades are key players of cell 299 

growth, proliferation, and cancer, but they also play a well-established, crucial role in neuronal 300 

development and synaptic plasticity. The cascades cross-talk at multiple levels (Figure 4A). 301 

Presynaptically, mTOR-dependent protein translation is important for growth and regeneration 302 

of axonal terminals. Postynaptically, activation of mTOR by N-methyl D-aspartate (NMDA) 303 

and metabotropic glutamate (mGluR) receptors increases local protein synthesis in dendrites 304 

contributing to structural plasiticity (reviewed in [209]). Phosphorylation of synapsin by ERK 305 

(Ras-MAPK) is required for presynaptic neurotransmitter release and hippocampus-dependent 306 

learning in mouse [210] (Figure 4A,B). 307 

Germline mutations in the key players and their regulators of all three cascades are 308 

known to cause monogenic neurodevelopmental syndromes characterized by intellectual 309 

disability (ID) and, frequently, also ASD [181, 211]. Moreover, the baseline activity of PI3K-310 

Akt-mTOR and Ras-MAPK is increased in idiopathic ASD cohorts and correlates with clinical 311 

severity [212]. In Drosophila light-off jump habituation, Ras-MAPK signaling is sensitive to 312 

opposing perturbation depending on the type of neuron. Increase of Ras-MAPK in inhibitory, 313 

GABAergic neurons and decrease of Ras-MAPK in excitatory, cholinergic neurons impairs 314 

habituation learning [141]. Partial loss of negative Ras-MAPK regulators SYNGAP1 and NF1 315 

are associated with habituation deficits in Drosophila and zebrafish. Using parallel EEG 316 

analysis approaches, SYNGAP1 mutations were shown to cause habituation deficits in mice 317 

and patients [72]. NF1 haploinsufficiency causes Neurofibromatosis type 1 (NF1), a genetic 318 

disorder with high frequency of ID and ASD. Deficits in long-term habituation in the zebrafish 319 

NF1 model were successfully rescued with drugs that inhibit MAPK (U0126), or PI3K 320 

(Wortmannin and Buparlisib) activity. Deficits in short-term habituation were rescued by drugs 321 

that enhance cAMP, including 8-BR-cAMP, Rolipram, and Roflumilast [138]. Furthermore, 322 

post-hoc assessment of four combined trials evaluating the MEK inhibitor Selumetinib in 323 
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treating NF1-associated neurofibromas suggests no adverse and some beneficial effects on 324 

cognitive readouts [199]. 325 

cAMP acts as a second messenger in numerous signal transduction pathways. In 326 

neurons, an increase of cAMP levels is triggered by binding of neurotransmitters to G-protein 327 

coupled receptors, and by increased calcium influx. cAMP-activated PKA phosphorylates 328 

SNARE regulatory proteins and synapsins, which leads to enhanced synaptic vesicle release 329 

[213, 214] (Figure 4B). Transcriptional regulation by cAMP-PKA signaling is mediated by the 330 

cAMP response element-binding protein (CREB). Thes orchestrated transcriptional programs 331 

are required for structural plasticity and memory consolidation [215]. cAMP in local 332 

GABAergic interneurons of the Drosophila antennal lobe is required for both short- and long-333 

term olfactory habituation. While long-term habituation requires activation of CREB, short-334 

term habituation is CREB-independent [44]. Targeting cAMP-PKA may thus have the potential 335 

to correct both short- and long-term habituation deficits. Promoting cAMP-PKA activity by 336 

pharmacological inhibition of phosphodiesterases (PDEs - negative regulators of cAMP), has 337 

shown promising results in correcting cognitive impairment in animal models of 338 

neurodevelopmental and neurodegenerative disorders, as well as in patients [216]). PDE3 and 339 

PDE4 inhibitors have been shown to improve habituation in wild-type and NF1-deficient 340 

zebrafish models, respectively. Two clinical trials with the PDE4 inhibitor Roflumilast in older 341 

individuals and patients with schizophrenia showed improvement in verbal memory but not 342 

other aspects [188, 189]. In addition, PDE5 (Sildenafil) and PDE9 (PF-04447943) inhibitors 343 

are drugs of interest that may improve habituation learning. Sildenafil is approved for treatment 344 

of erectile dysfunction and hypertension, but studies in mice suggested that it also has beneficial 345 

effects on learning and memory [203]. PF-04447943 demonstrated to improve performance in 346 

a rodent attention task [202]. The drug did not show an effect in clinical trials for Alzheimer 347 

Disease, but has not been evaluated for other disorders. 348 
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4.3.2. Synaptic plasticity and excitability 349 

Synaptic plasticity is considered a major neuronal mechanism of habituation. It is 350 

therefore not surprising that products of many genes with evidence for habituation deficit from 351 

multiple species act in synaptic plasticity, in addition (and using) the signaling pathways 352 

highlighted above. They control presynaptic neurotransmitter release (dysbindin encoded by 353 

DNTBP1 [217]), synaptic vesicle recycling (AP2S1 [218]) (Figure 4B) and postsynaptic 354 

receptor function (NMDA Receptor subunits encoded by GRIN1, GRIN2A and GRIN2B; α-355 

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encoded by GRIA1; 356 

Dopamine receptor D1 encoded by DRD1; Acetylcholine muscarinic receptor encoded by 357 

CHRM2) (Figure 4A). Interestingly, NMDA receptor antagonist Memantine was reported to 358 

successfully restore impaired habituation in patients with fragile X-associated tremor/ataxia 359 

syndrome, as measured with EEG in an auditory oddball paradigm [219]. Memantine was also 360 

tested in three phase 2 clinical trials in ASD cohorts. In the first lead-in open-label trial, 517 361 

(59.6%) individuals responded with improved Social Responsive Scale (SRS). While the 362 

following double-blind withdrawal trial found no difference in loss of treatment response 363 

between continued Memantine treatment and placebo, an open-label extension trial revealed 364 

further SRS improvement with extended Memantine treatment, which may be of clinical 365 

importance [220]. A recent small double-blind trial with focus on neurocognitive measures 366 

found beneficial effect of Memantine on verbal recognition memory and verbal intelligence 367 

quotient (VIQ). The authors further hypothesize that Memantine’s effect more likely originates 368 

from cognitive enhancement than reduction of behavioral problems [221]. 369 

Disruption of several genes encoding the voltage-gated calcium ion (Ca2+) channels 370 

(zebrafish cacna1c (human CACNA1C) and cacnb2a/b (CACNB2), Drosophila Ca-alpha1T 371 

(CACNA1G/H/I), C. Elegans unc-2 (CACNA1A/B/E) and unc-36 (CACNA2D1-4)) result in 372 

impaired habituation learning. These channels play a key-role in neuronal signal propagation, 373 

including through signal transduction cascades depicted in Figure 4A. Mutations in these genes 374 
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cause ID and ASD syndromes, and aberrant function has been associated with various 375 

psychiatric disorders (reviewed in [222]). Two Ca2+ channel inhibitors, Verapamil and 376 

Nimodipine, are FDA-approved for hypertension and cognitive protection after subarachnoid 377 

hemorraghe, respectively. Interestingly, both drugs showed also positive effect on habituation 378 

learning in wild-type zebrafish in the already mentioned compound screen [182], suggesting a 379 

substantial role of Ca2+ channels in habituation learning. 380 

It is worth to highlight the emerging importance of intrinsic excitability (IE) that in 381 

synergy with synaptic plasticity shapes synaptic strength, synchronic neuronal activity and 382 

engram formation. A role for IE in habituation is substantiated by numerous voltage-, calcium-383 

, or hyperpolarization-gated potassium (K+) channels in the gene catalog, incl. KCNA1, 384 

KCNMA1, KCNQ, HCN1, KCNU1 as well as by further proteins that affect excitability by 385 

modulation of K+ channels (CNTNAP2 [223]) or neurotransmitter release (PRKG1 [224]). 386 

Disruption of KCNMA1 results in habituation learning deficits in Drosophila, mouse, and rat 387 

and is associated with autistic traits in humans [225]. This gene encodes a subunit of big 388 

calcium-gated K+ channels (BK-channels) that locate close to the glutamatergic pre-synapse 389 

and are essential for synaptic depression, one of the underlying mechanisms of habituation. 390 

Local administration of BK-channel activator Flindokalner in the region where auditory 391 

afferent synapses project on sensorimotor neurons enhanced habituation of the acoustic startle 392 

response in rats[190]. BK-channels are widely expressed and the drugs currently available exert 393 

too many side effects to be safely administered in humans. Ezogabine and Lamotrigine, 394 

however, are K+ channel targeting drugs that are FDA-approved for epilepsy, Lamotrigine also 395 

for bipolar disorder. Interestingly, Lamotrigine was found to improve associative learning 396 

deficits in a mouse model of NF1, as its target HCN1 channel interacts with neurofibromin 397 

[206] and a clinical trial to assess cognitive improvement in patients with Neurofibromatosis 1398 

is ongoing (NCT02256124). 399 
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4.3.3. Translational control 400 

Fragile X syndrome (FXS), the most frequent ID and ASD syndrome, is caused by 401 

transcriptional silencing of the FMR1 gene. It has been extensively studied and habituation 402 

deficits have been reported in animal models of multiple species and in FXS patients [66]. The 403 

encoded fragile X mental retardation protein (FMRP) is a synaptic activity-dependent repressor 404 

of translation with a critical role in synaptic plasticity [226]. Preclinical studies in animal 405 

models improved the understanding of FXS biology and provided promising drug targets. 406 

However, numerous FXS clinical trials failed to meet the primary endpoints that were usually 407 

based on questionnaires and caretaker reports [227]. However, here we would like to highlight 408 

a small, double-blind, placebo-controlled crossover treatment trial that incorporated 409 

electrocortical activity measures as a sensitive, objective method for monitoring treatment 410 

responses. This trial showed that three months of treatment with Minocycline restored abnormal 411 

habituation of event-related potentials (ERPs) in an auditory oddball task in a group of children 412 

with FXS [69]. As an antibiotic, Minocycline is thought to exert those beneficial effects through 413 

repression of neuroinflammation. However, its habituation-improving action has been linked to 414 

inhibition of matrixmetalloprotease-9 (MMP-9), a target of FMRP-mediated translational 415 

inhibition that is upregulated in the auditory cortex of Fmr1 KO mice [228]. MMPs are 416 

proteases that are involved in activity-dependent organization of the extracellular matrix [229]. 417 

In line with this, mechanosensory habituation to taps was impaired in two zebrafish models 418 

with loss-of-function mutations in mmp16a and mmp16b, orthologues of human MMP-16 419 

[135]. Adjunctive treatment with Minocycline to the antipsychotic Risperidone in 46 children 420 

with ASD showed positive effects on irritability and hyperactivity scores, but not for 421 

lethargy/social withdrawal, stereotypic behavior, and inappropriate speech scores [230], once 422 

more highlighting the need for cognitive or cognition-relevant outcome measures. 423 

Beyond translational control, also aspects of mRNA processing are crucial to 424 

habituation, as identified by two further ‘multispecies hit’ genes. UPF3A/B (orthologues to 425 
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Drosophila Upf3 and C. Elegans smg-4) is involved in nonsense-mediated mRNA decay and 426 

human variants have been associated with neurodevelopmental disorders including ASD [231]. 427 

GIGYF1/2 (orthologues to zebrafish gigyf2, Drosophila CG11148, and C. Elegans C18H9.3) 428 

regulates decay of transcripts mostly associated with secretory, membrane-bound, and actin-429 

related processes [232], but also of DUSP6, a negative regulator of ERK (Ras-MAPK signaling) 430 

[233]. Variants in GIGYF1/2 have been associated with both neurodegenerative and 431 

neurodevelopmental disorders in animal models and human cohorts [234, 235]. 432 

5. Clinical relevance, applications and assessment of habituation433 

learning434 

Having extracted genes and molecular pathways involved in habituation, and 435 

highlighted targets for intervention, we in this section summerize the spectrum of disorders and 436 

clinical phenotypes that have been associated with habituation deficits. We point to disease 437 

symptoms that that may be a direct consequence of habituation deficits and highlight further 438 

evidence linking habituation to cognitive functions. We also provide an overview of various 439 

methods to assess habituations in human research, with a focus on those that have been applied 440 

in monogenic neurodevelopmental disorders.  441 

5.1. Habituation deficits in disease 442 

Habituation deficits have been reported in multiple cognitive disorders, including 443 

neurodevelopmental, -psychiatric and -degenerative disorders [8]. Our inventory of genes and 444 

molecular pathways implicated in habituation, mostly through animal work, illustrates that the 445 

overlap with disease genes causally implicated in monogenic neurodevelopmental syndromes 446 

is large (see Figure 4A-C and SysID database [179] at www.sysid.dbmr.unibe.ch), instantly 447 

supporting a correlation between habituation and higher cognitive functioning. It should be 448 

noted though that we and others have intentionally investigated disease genes and hence the 449 

high degree of overlap is not unbiased. Yet, mutations in disease gene orthologs have also been 450 
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identified to cause habituation deficits in unbiased approaches (e.g., PDE4E, CAMTA1, 451 

CNTNAP2, CASK, PC, OGT). Unfortunately, human habituation data to complement the 452 

animal studies are lacking for the vast majority of these monogenic neurodevelopmental 453 

syndromes. Assessing habituation in these individuals is challenging, because these syndromes 454 

are rare (posing a logistic challenge) and often come with moderate to severe cognitive 455 

impairment, interfering with the ability of individuals to partake in standard habituation 456 

paradigms. Low-burden, passive protocols and special expertise are required, examples of 457 

which are discussed below in section 5.3. Using such procedures, habituation deficits have been 458 

reported in patients with co-occurring ID and ASD [236], most importantly in Fragile X 459 

syndrome, the most common monogenic cause of ID and ASD [62-65, 67, 237-239]. The 460 

requirement of the human Fragile X protein FMRP for habituation is matched by extensive 461 

preclinical evidence from mouse [96, 240], Drosophila [141, 241], and zebrafish [137], 462 

providing first support for conserved mechanisms and the translational value of multiple 463 

habituation measures across species. Whereas Fragile X syndrome for two decades remained 464 

the only syndrome in which habituation was investigated, recently others have followed ([72] 465 

and several ongoing). Clearly, expanding assessment of habituation in monogenic 466 

neurodevelopmental syndromes could greatly contribute to consolidate and further unravel the 467 

genetic landscape of habituation. At the same time, these disorders could tremendously profit 468 

from habituation as an objective outcome measure, e.g. in clinical trials. 469 

Compared to monogenic neurodevelopmental syndromes, habituation is much better 470 

explored in ASD. In ASD cohorts, impairments in habituation have been found throughout 471 

development (e.g.[55, 242-244]. Reduced habituation has been observed as early as 3 or 6 472 

months of age in infants at familial risk for ASD [245, 246]. In children diagnosed with ASD 473 

of age 7 to 13 years, habituation deficits have been shown to correlate with several clinical 474 

scores associated with competence along diverse phenotypic dimensions, such as a social 475 

communication score and parents’ questionnaire scoring the severity of sensory difficulties 476 
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[244]. Reduced habituation is also widely observed in adults diagnosed with ASD (e.g. [247, 477 

248]). Habituation deficits are thought to contribute to some of the core symptoms of ASD, 478 

such as learning difficulties, social deficits and sensory hypersensitivities, caused by defective 479 

filtering and resulting information overload [249]. A functional study into hypersensitivity has 480 

shown that ASD individuals with high sensory overresponsitivity showed reduced ability to 481 

maintain habituation in the amygdala and relevant sensory cortices and to maintain inhibition 482 

of irrelevant sensory cortices [55], providing empirical support for the “intense world” theory 483 

of ASD,  and fitting with the network plasticity model of habituation [43]. 484 

Habituation abnormalities have also been observed in several other neurodevelopmental 485 

disorders, including Attention-deficit/hyperactivity disorder (ADHD), schizophrenia, 486 

Obsessive Compulsive Disorder (OCD), and Tourette Syndrome (TS). In ADHD, impaired 487 

habituation has been reported in both children [250] and adults [251]. However, other studies 488 

reported enhanced habituation associated with the disorder [252-254]. 489 

A larger body of studies has reported habituation deficits in Schizophrenia (e.g. [255-490 

257]) reported reduced hippocampal habituation in schizophrenic patients to correlate with 491 

memory performance for word pairs, and suggested that reduced habituation may contribute to 492 

the memory deficits commonly observed in schizophrenia. In OCD, habituation has recently 493 

emerged as a potential mechanism underlying sensory symptoms of OCD [258-260]. Benito, 494 

Machan [258] used independent observers to continuously rate fear changes during exposure-495 

based Cognitive Behavioral Therapy (CBT), and determined habituation by summing decreased 496 

fear that could not be explained by an observable exposure event (i.e. that could not be 497 

explained by a change in the exposure stimulus, safety signals, distractors, rituals, etc., but 498 

rather occurred “on its own”, thereby signaling therapeutic learning). They found that patients 499 

with OCD and greater habituation showed larger reductions in symptom severity, greater global 500 

improvement, and increased odds of treatment response. 501 
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Also in patients diagnosed with TS, impaired habituation has been described [261, 262] 502 

and was hypothesized to contribute to sensory feelings that give rise to the urge frequently 503 

preceding a tic [263]. 504 

Another disorder for which numerous electrophysiological studies have described 505 

hyperresponsivity to repeated sensory stimuli and impaired habituation is migraine [9]. 506 

Habituation is usually assessed in the periods between migraine attacks (i.e. the interictal phase) 507 

in episodic migraine patients. In these periods, reduced to complete loss of habituation is 508 

reported [264-266]. Children with migraine with the most defective habituation have been 509 

shown to have the worst behavioral symptomatology (as assessed by the Child Behaviour 510 

Checklist, CBCL) [265]. 511 

Abnormal habituation has also been observed in the neurodegenerative movement 512 

disorders Huntington’s and Parkinson’s diseases (HD, PD). In contrast to the habituation deficit 513 

phenotype that is most often observed in the previously discussed disorders, studies in HD 514 

mostly report enhanced habituation [267-270]). The most commonly used paradigm in HD 515 

patients is habituation of the blink reflex in response to taps on the forehead (sometimes referred 516 

to as habituation of the Glabella Tap Reflex) or in response to electrical stimulation. The 517 

enhanced habituation phenotype in HD has been suggested to underlie the associated motor 518 

abnormalities (i.e. chorea), as supported by the positive correlation between habituation and the 519 

severity and distribution of the facial chorea [271]. Although there is some support for the idea 520 

that enhanced habituation in HD reflects over-inhibition of dopaminergic receptors in the 521 

striatum [268], it may be necessary to exclude that enhanced habituation cannot be attributed 522 

to muscle fatigue. We found no clinical follow-up studies on habituation ability in HD patients 523 

from the past two decades. The most recent studies of habituation in HD, in mouse models, 524 

have provided seemingly conflicting results. Two studies reported habituation deficits, in 525 

habituation to novel environment and open field habituation respectively [133, 134], whereas 526 

another reported enhanced open field habituation in an HD mouse model [272]. Also in this 527 
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mouse study, muscle fatigue has not been excluded to cause the reduction in exploratory 528 

activity. In PD patients, habituation deficits are well-established and have been used as a 529 

diagnostic tool for decades, with habituation of the Glabella Tap Reflex as the most common 530 

paradigm for assessment [273-275]. The habituation impairments in PD patients have been 531 

shown to positively correlate with the years since PD diagnosis [10] and severity of motor 532 

symptoms [276-278]. 533 

These findings of abnormal habituation patterns in HD and PD are contrasted by the 534 

absence of habituation deficits in another common neurodegenerative disease; in patients 535 

diagnosed with Alzheimer’s Disease (AD), there have been numerous reports showing 536 

preserved habituation despite severe associative learning and memory deficits [279-282]. The 537 

clear absence of habituation deficits in AD demonstrates that habituation deficits are not merely 538 

a side effect of any type of neurological dysfunction. 539 

5.2. Habituation and Cognition 540 

In addition to the relevance of habituation for a variety of neuronal disorders, there is a 541 

large body of evidence showing the importance of habituation abilities for neurotypically 542 

developing individuals. As already indicated in the introduction, habituation has been proposed 543 

to be a building block for higher forms of cognition [12, 283-285]. It is the earliest form of 544 

learning to develop, with habituation responses to an auditory stimulus occuring in fetuses as 545 

young as gestational age of 22 weeks [286], and many studies reported habituation in older 546 

fetuses [287-292]. Since the earliest measurement of a habituation response to an auditory 547 

stimulus coincides with the onset of fetal auditory abilities [293], other forms of habituation 548 

might already be present before this gestational age [294]. Gonzalez-Gonzalez, Suarez [292] 549 

showed that fetal habituation rate correlates to neonatal habituation rate at 1-2 days after birth. 550 

Moreover, several longitudinal studies have shown that the rate of infant habituation is one of 551 

the best predictors of an individual’s later IQ [1-7, 295]. Together, these findings suggest that 552 

habituation performance is a strongly genetically determined nervous system property, and that 553 
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an individual’s habituation ability relative to the habituation ability of others is maintained over 554 

time. 555 

In young healthy adults, a recent study on acoustic startle habituation assessed the 556 

relation between habituation and resiliency to adverse and potentially traumatic events. Walker 557 

et al. found that fast habituating individuals showed lower depression/anxiety and higher 558 

resilience [296]. The authors concluded that their habituation paradigm can be used to overcome 559 

the self-reporting bias in commonly-used psychometric approaches and provide a method for 560 

objective assessment and monitoring of psychological resilience. These studies further 561 

highlight the relevance of habituation in cognitive performance and quality of life, two 562 

parameters that further increase the relevance of habituation as a clinical outcome measure for 563 

various diseases. 564 

In addition to the large amount of clinical and scientific literature supporting habituation 565 

as a disease- and cognition-relevant property, there are also reports that did not find significant 566 

anomalies in habituation in individuals diagnosed with the aforementioned disorders (e.g. in 567 

OCD [297-299], ADHD [300-303], schizophrenia [304], and HD [305, 306]), or found no 568 

correlation between habituation and measures of IQ [244]. We noticed that most of these studies 569 

used an experimental design that was not optimized to assess habituation, but e.g. derived 570 

measures of habituation from other protocols, e.g. assessing pre-pulse inhibition (PPI). 571 

5.3. Habituation tests in neuroscience and the clinic 572 

A multitude of different paradigms, varying in stimulus and type of readout, are used to 573 

assess habituation in human (clinical) research. Usually, the stimuli are repeated a certain 574 

amount of times with a constant inter-stimulus interval and consist of one sensory modality. 575 

These stimuli range from simple visual, olfactory, or auditory (startle) stimuli, such as light 576 

flashes, stationary objects or simple tones, to more complex stimuli like (emotional) faces and 577 

speech. There are studies showing large correlations between habituation ability to different 578 

sensory modalities within individuals. Miller et al. for example, measuring habituation of 579 
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electrodermal responses (EDRs) in individuals with FXS for five modalities of sensory 580 

stimulation in an electrodermal activity (EDA) habituation paradigm, found that the pattern of 581 

EDRs to stimulation in one sensory modality predicted the pattern of EDRs in the other four 582 

[63]. A recent study by Côté et al. employed a multisensory stimulus to assess habituation of 583 

EEG patterns during an audio-visual task in four ID syndromes (i.e. FXS, tuberous sclerosis 584 

complex (TSC), Down syndrome (DS), or ID due to SYNGAP1 mutations) [236]. They 585 

reported intact habituation in individuals with FXS and DS, which they propose might be due 586 

to an increased sensitivity towards the multi-sensory stimulus compared to stimuli of a single 587 

sensory modality. More work is required to get a comprehensive picture of the impact of the 588 

type of stimuli, and this may even depend on the investigated disorder. 589 

Besides the wide variety of utilized stimuli, human (clinical) habituation studies 590 

employ(ed) paradigms with a multitude of different readouts to assess habituation. Commonly 591 

used behavioral and physiological habituation paradigms in human and animal studies are listed 592 

in Table 1, section 3.3. In addition, some studies have assessed habituation by patient self-593 

report or family-report through questionnaires [259, 307, 308]. These self-reported measures of 594 

habituation were shown to partially correlate to physiological habituation measurements in an 595 

EDA habituation paradigm in individuals with OCD [259]. 596 

Taken together, to tap the full potential of habituation as a translational readout to better 597 

understand cognition in health and disease, fundamental questions such as the impact of the 598 

utilized paradigm (i.e. stimuli and readout) onto phenotypes remain to be investigated further. 599 

600 

6. Conclusions601 

In this review, we have identified 258 evolutionary conserved genes that have been602 

demonstrated in the primary literature to underlie habituation in one or several species. Our 603 

species-specific gene catalog shows that most of the genes have been identified in animal 604 

models, particularly in invertebrates amenable to testing behavioural phenotypes on a larger 605 
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scale. The so far small number of genes unambiguously linked to habituation deficits in humans606 

reflects that in contrast to cognitive neuroscientists, clinical researchers investigating cohorts 607 

with specific monogenic neurodevelopmental syndromes have developed interest in habituation 608 

rather recently. Even though assessment of habituation in these cohorts requires dedicated 609 

protocols, expertise and logistic efforts to collect data from these rare disease cohorts, such 610 

efforts are extremely worthwhile as they open unique opportunities into translational 611 

neuroscience and clinical care. Our survey demonstrates that many of the identified genes and 612 

pathways show overlap between different species and various types of habituation. They also 613 

strongly overlap with genes implicated in other forms of learning, memory, ASD and related 614 

neurodevelopmental syndromes. Based on this functional conservation and relevance to disease 615 

mechanisms, we propose that habituation can serve as a superior functional readout to overcome 616 

a number of challenges that the field of neurodevelopmental disorders is facing: 617 

On the preclinical side, research in animal models can identify mechanisms and thereby 618 

treatment targets that underlie habituation deficits. Candidate repurposeable drugs, some of 619 

which highlighted in this review, can be experimentally tested for their potential to alleviate 620 

deficits in habituation as a predictive proxy for cognition; some animal models and habituation 621 

paradigms even are suitable for unbiased drug screening. Furtheron, testing novel candidate 622 

genes and variants of unknown significance identified in the clinic for habituation deficits in 623 

animal models can help to establish causality and contribute to diagnostics. 624 

On the clinical side, habituation as a highly cognition-relevant readout may provide an 625 

outcome measure that is meaningful to daily life quality of patients and can be 626 

objectively/quantitatively measured, of high value to assess treatment efficacy in clinical trails. 627 

 Lastly, habituation measures, collected either preclinically (for cohorts with genetic 628 

data and identified likely gene disrupting mutations) or in the clinic, may proof a useful 629 

stratification tool to improve design and success of clinical trials. High heterogeneity of 630 
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underlying defects, e.g. in autism cohorts, can mask treatment effects if only beneficial for 631 

subsets of patients. 632 

We conclude that habituation has already been studied intensively in animal disease 633 

models, and that its application in the clinic is currently gearing up. Together, preclinical and 634 

clinical habituation may be able to provide the much needed, well-aligned translational 635 

pipeleine that can overcome current bottlenecks in research, diagnostics, preclinical drug 636 

discovery, clincal assessment of disease state and treatment efficacy, and even provide novel 637 

means for stratification. 638 
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