

1 Genetics, molecular control and
2 clinical relevance of habituation
3 learning.
4

5 Laura E.R. Blok¹, Marina Boon^{1,§}, Boyd van Reijmersdal^{1,§}, Kira D. Höffler¹, Michaela
6 Fenckova^{1, 2, §}, Annette Schenck^{1, §, *}

7

8 1. Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour,
9 Radboud University Medical Center, Nijmegen, Netherlands.

10 2. Department of Molecular Biology and Genetics, Faculty of Science, University of South
11 Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech
12 Republic

13 § equal contribution

14 § shared last authors

15 * correspondence to: Annette.Schenck@radboudumc.nl

16

17 1. Contents

18	1. Contents	2
19	2. Abstract.....	3
20	3. Introduction	3
21	3.1. Habituation learning	3
22	3.2. Habituation paradigms.....	4
23	3.3. Habituation mechanisms.....	4
24	4. A helicopter view on the molecular basis of habituation	8
25	4.1. A catalog of genes underlying habituation	9
26	4.2. Gene Ontology.....	13
27	4.3. Molecular pathways and processes controlling habituation, and their drugability..	15
28	4.3.1. PI3K-AKT-mTOR, Ras-MAPK, and cAMP-PKA pathways	18
29	4.3.2. Synaptic plasticity and excitability	20
30	4.3.3. Translational control	22
31	5. Clinical relevance, applications and assessment of habituation learning.....	23
32	5.1. Habituation deficits in disease	23
33	5.2. Habituation and Cognition.....	27
34	5.3. Habituation tests in neuroscience and the clinic	28
35	6. Conclusions	29
36	7. References	31

37

38

39

2. Abstract

40 Habituation, the most ancient and fundamental form of learning, manifests already before birth.
41 Neuroscientists have been fascinated for decades by its function as a firewall protecting our
42 brains from sensory information overload and its indispensability for higher cognitive
43 processing. Evidence that habituation learning is affected in autism and related monogenic
44 neurodevelopmental syndromes and their animal models has exponentially grown, but the
45 potential of this convergence to advance both fields is still largely unexploited.

46 In this review, we provide a systematic overview of the genes that to date have been
47 demonstrated to underlie habituation across species. We describe the biological processes they
48 converge on, and highlight core regulatory pathways and repurposable drugs that may alleviate
49 the habituation deficits associated with their dysregulation. We also summarize currently used
50 habituation paradigms and extract the most important arguments from literature that support
51 the crucial role of habituation for cognition in health and disease. We conclude that habituation
52 is a powerful tool to overcome current bottlenecks in research, diagnostics and treatment of
53 neurodevelopmental disorders.

54

55

3. Introduction

56

3.1. Habituation learning

57 Habituation, the response decrement to a repeated irrelevant stimulus, is a fundamental
58 form of learning that is conserved across the animal kingdom. It represents an essential filter
59 mechanism that helps to identify salient signals in the environment by reducing the transmission
60 of previously encountered stimuli to high-order brain regions. This allows organisms to
61 distinguish the known from the novel, prevents information overload, and preserves cognitive
62 resources for important matters. Habituation is the earliest form of learning that manifests
63 before birth [1-6]. Its properties make it an important prerequisite to acquire higher cognitive

64 functions [9,15-19]. In agreement with its fundamental role in cognition, infant habituation has
65 been found to predict later IQ better than standardized measures [1-7], and deficits in
66 habituation have been linked to several cognitive disorders [8-10].

67 The strong evolutionary conservation of habituation learning allows researchers to use
68 animal models to dissect the genetic and neuronal mechanisms and study habituation deficits
69 that are associated with human disease. Such insight from animal models may help to elucidate
70 disease mechanisms, identify which individuals are more likely to have defective habituation
71 in (genetically) heterogeneous disease cohorts and stratify patients for targeted pharmacological
72 treatment strategies. In addition to conventional rodent models such as mouse (*Mus musculus*)
73 and rat (*Rattus norvegicus*), research in cost and time-efficient organisms such as the zebrafish
74 (*Danio rerio*), the fruit fly (*Drosophila melanogaster*), and the roundworm (*Caenorhabditis*
75 *elegans*) has generated major insights into the neuronal and genetic mechanisms of habituation
76 in health and disease.

77 3.2. Habituation paradigms

78 There is a wide range of paradigms available and used to measure habituation in pre-
79 clinical and clinical settings. These paradigms differ in the type of the presented stimulus and
80 of the response measured, while the defining characteristics of habituation are thought to be
81 shared between various models and paradigms. These include, in addition to the response
82 decrement to repeated presentation of the same stimulus (habituation): spontaneous recovery,
83 recovery of the response when stimulus is changed (stimulus specificity), and recovery when a
84 novel stimulus is inserted in the series of habituating stimuli (dishabituation) [11, 12]. The most
85 commonly used habituation paradigms in humans and other organisms are listed in **Table 1**,
86 and the latter further discussed in section 5.3.

87 3.3. Habituation mechanisms

88 The mechanisms underlying neuronal habituation are incompletely understood. Three
89 main theories, originated decades ago, are perceived to be relevant. First, the “Stimulus-model

90 “comparator” theory, where repeated stimulation generates a model that is compared to the
91 expected stimulus model, and the response is attenuated if the models match [13, 14]. Second,
92 the “Sometimes opponent processes” theory, an adaptation of the Gnostic unit theory, where
93 the generation of the stimulus-specific neuronal model activates inhibition of an arousal system
94 [15, 16]. Third, the “Dual-process theory”, where interaction between sensitization and
95 habituation in the stimulus-response pathway defines the final response to the stimulus [17].
96 The principle elements of these theories were recently embodied in a generalizable habituation
97 model that defines an essential set of operating elements required for habituation (a stimulation–
98 receiver pair and the habituation element) and can also be applied to aneural forms of
99 habituation. According to this model, repeated stimulation modifies the receiver output through
100 time- and stimulus-dependent changes in the habituation element, thereby mediating
101 habituation [18]. An equivalent of the “habituation element” is required in all three described
102 neuronal habituation theories but its cellular and molecular basis remains abstract.

Table 1: The most commonly used behavioral and physiological methods to assess habituation across organisms. Since the early stages of research into habituation (see [19] for a review on the history of the term “habituation” and habituation research), a range of paradigms to assess habituation in different organisms, from worms to humans, have been developed. Some of the most commonly applied approaches to assess habituation are listed. They use physiological or behavioral read-outs.

	<p>Startle reflex habituation uses startle-inducing stimuli to determine the reduction in response strength or response probability over repeated stimulation [20-23]. A commonly used stimulus is the acoustic startle stimulus (i.e. presentation of a loud tone; acoustic startle reflex (ASR) habituation), but visual, olfactory and somatosensory stimuli are also employed. In humans, the response output is most often a measure of blinking through Electromyographic (EMG) recording of the orbicularis oculi muscle. In animal models ranging from worms to rats, the output measure in this assay is also often a muscle or movement response to the startle stimulus. For example, the startle response in rodents is often quantified as the force the animal exerts by extension of its limbs onto a pressure-sensitive force transducer.</p>
	<p>Visual habituation, which is also referred to as habituation of looking time, is used in rats and humans [24, 25]. In this habituation paradigm, test subjects are repeatedly presented with an auditory or visual stimulus (e.g. a real object or digital picture) and habituation is determined as a decrease in orienting response or fixation time to the presented stimulus. While in humans this paradigm is mostly applied in infants as part of the Visual Recognition Memory task [26], it has been successfully used to study adults with even profound Intellectual Disability (IQ < 20/25) [27].</p>
	<p>Electrodermal activity (EDA) habituation is also referred to as electrodermal response (EDR) habituation, event-related skin conductance response (SCR) habituation, or skin conductance orienting response (SCOR) habituation [28-32], or, previously, as Galvanic Skin Response (GSR) habituation [33]. In this paradigm, simple auditory, visual, or somatosensory stimuli are presented while measuring changes in the probability or magnitude of skin conductance with repeated stimulation. A decrease in probability or magnitude of the response represents habituation. EDA is performed in humans and various mammalian animal models.</p>
	<p>In Event-related potential (ERP) habituation, the test subjects are exposed to a repeated stimulus, while undergoing electroencephalography (EEG), either using an electrode cap in humans or cranially implanted electrodes in animals. Habituation is described as a decrease in various components of the ERP wave’s latency or amplitude [34-37]. It can assess different brain regions, according to the position of the electrodes. A variety of different stimuli including simple auditory, visual and somatosensory stimuli, nociceptive stimuli, complex auditory or visual stimuli (like speech or faces), as well as startling stimuli are used.</p>
	<p>Functional Magnetic Resonance Imaging (fMRI) habituation can assess habituation of specific brain regions (e.g. amygdala habituation; [38, 39]) in humans and rodents rats [40]. In this paradigm, participants are presented with an auditory or visual stimulus (simple (e.g. tones or shapes) or complex (e.g. speech or emotional faces)), while an fMRI scanner records blood oxygen dependent (BOLD) contrast responses. A decrease in BOLD contrast with repeated stimulation represents habituation.</p>
	<p>Novel object/environment habituation, frequently used in rodent habituation studies, but has no equivalent paradigms in humans or other model organisms. Within this paradigm a rodent is placed into a novel or known environment with a novel object in it. Habituation to the novel environment/object is defined as the amount of time the rodent is actively investigating the novel object, or as how long it takes the animal to present the “normal” behavior seen in a familiarized environment.</p>
	<p>Open field habituation is solely employed in rodent habituation studies. Similar to the visual habituation paradigm, it makes use of rodents’ innate behavior to explore new stimuli. Mice or rats are placed in an open field environment, and habituation is determined as the decrease in explorative behavior. This is most commonly measured as total distance traveled, and can be assessed over time within a session or over multiple sessions (i.e. intrasession or intersession habituation) [41, 42].</p>

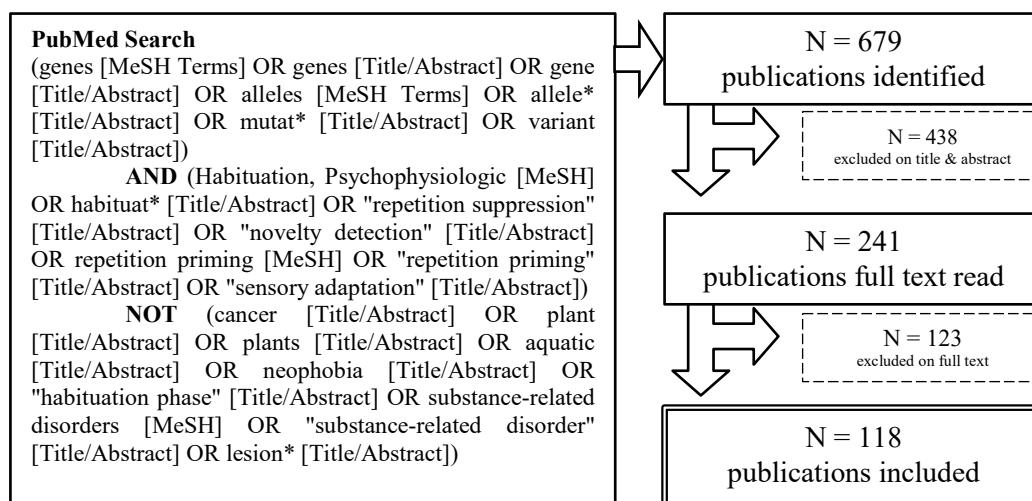
104 Few years ago, before the definition of this generalizable habituation model, Mani
105 Ramaswami highlighted the critical role for stimulus-dependent feedback inhibition [43]. He
106 and colleagues experimentally demonstrated that odorant selective habituation in *Drosophila*
107 relies on recurrent inhibitory potentiation of activated excitatory neurons [44-46]. Reviewing
108 seminal electrophysiological studies of the *Aplysia* sifon withdrawal reflex that postulated
109 homosynaptic depression of excitatory neurons as the mechanism of short-term habituation [47-
110 49], he noted that even in this model with simple circuit organization (receptor neurons forming
111 synapses with motor neurons), inhibitory potentiation is present [50, 51]. Inhibitory potentiation
112 can better explain habituation characteristics that are difficult to reconcile with homosynaptic
113 depression such as dishabituation, long-term habituation and that habituation is more effective
114 with weak stimuli. Activity of inhibitory neurons can shape stimulus responses and habituation
115 also in mammalian olfactory bulb [52, 53]. Because most brain regions consist of connected
116 excitatory neurons that receive inhibitory input, Ramaswami proposed that any repeated
117 excitatory stimulus can create an inhibitory signal (= negative image) of itself. The negative
118 image neutralizes incoming signals of the expected stimulus pattern and strength, thereby acting
119 as the selective filter that suppresses transmission to the downstream brain regions and/or
120 behavior responses [43]. Inhibitory potentiation may thus represent a key mediator of
121 habituation - the “habituation element” – operating across species, paradigms and brain regions.
122 A neuronal algorithm implicating inhibitory potentiation of habituation should also be able to
123 make predictions and efficiently detect salient features in the environment [54]. The “negative-
124 image model” as defined by Ramaswami can thus serve as a general mechanism for adaptive
125 filtering, generation of predictions and saliency mapping. Malfunctions of this mechanism are
126 in line with – and may critically underlie - key features of Autism Spectrum Disorders (ASD),
127 including sensory hypersensitivities, and information overload that arises from altered salience
128 landscape [43, 55, 56]. The central molecular mechanism of recurrent inhibitory potentiation
129 revealed by Ramaswami and colleagues is increased release of inhibitory neurotransmitter γ -

130 aminobutyric acid (GABA) from inhibitory neurons in response to repeated stimulation. In
131 short-term habituation, increased release of GABA is triggered by Calcium/calmodulin-
132 dependent protein kinase II (CamKII)-dependent phosphorylation of synapsin [45]. However,
133 other additional kinases that are able to phosphorylate synapsin (ERK, PKA, CamKI) [57-59]
134 may also be involved. Because inhibitory interneurons in the *Drosophila* olfactory response
135 pathway are multiglomerular and their activation results in non-selective attenuation of the
136 behavioral response, synapse-specific NMDA receptor activity in the principle excitatory
137 neurons is required to allow for habituation to a specific odor [44]. Inhibitory-derived GABA
138 then attenuates the activity of these neurons by binding to GABAA receptors [44]. Habituation
139 is also dependent on cAMP activity in inhibitory neurons. While long-term habituation, most
140 probably associated with changes in synaptic structure, employs cAMP-PKA-mediated
141 activation of cAMP response element-binding protein (CREB), short-term habituation is
142 CREB-independent [44] and is probably mediated only by short-term synaptic plasticity
143 mechanisms.

144

145 4. A helicopter view on the molecular basis of habituation

146 Molecular players and mechanisms that are required for habituation can be further
147 inferred from genetic studies in model organisms. Various approaches to identify genes that
148 control habituation learning have been taken. These include unbiased forward genetic screens
149 as well as reverse genetic approaches where animals with disruption of known genes were
150 assessed for habituation deficits. Many of the latter focused on single genes, but a few went
151 beyond. These efforts have been made by numerous research groups throughout years, and have
152 not yet been compiled into a joined framework that contributes to a better understanding of
153 habituation on the molecular level.


154 With this review, we aim to provide a systematic overview of all genes, and hence
155 molecular players, that to date have been experimentally associated with decreased habituation.

156 We further describe the biological processes and molecular pathways that these genes converge
 157 on and highlight core pathways that are subject to pharmacological targeting with promising
 158 drugs. Finally, we propose to apply habituation and the gained insights in pre-clinical disease
 159 models and in clinical trials to improve patient care for neurodevelopmental disorders.

160 **4.1. A catalog of genes underlying habituation**

161 To provide a comprehensive overview of the genes required for adaptive habituation
 162 responses, we systematically searched the PubMed database. The final search term string used
 163 to extract relevant publications that connect individual genes to habituation deficits is depicted
 164 in **Figure 1**. Excluded search terms (indicated by NOT) resulted from earlier searches that
 165 exclusively led to studies irrelevant for our aim. The final search string detected 679
 166 publications that were manually screened by at least two of the authors on title and abstract for
 167 suitability. This initial screening resulted in the selection of 241 publications, which were
 168 viewed in full length. 118 of these provided at least one to many unambiguous gene – habituation
 169 deficit pairs. Other publications measured but did not find habituation deficits in their genetic
 170 model(s), showed (or claimed) increased habituation, did not or not unambiguously target
 171 individual genes, or described paradigms that did not meet habituation criteria.

172

173 **Figure 1.** Flow chart depicting the search term and selection process of publications for inclusion into this review.

174 For the 120 publications, the following aspects were annotated for each monogenic
175 defect found to cause a habituation deficit (**Table S1**); 1. Original gene name in the specific
176 species, 2. Species, 3. Effect on function (LoF, GoF, unknown), 4. Mutation (or manipulation),
177 5. Habituation paradigm, 6. Habituation paradigm details, 7. Reference (PubMed identifier,
178 PMID), year of publication plus name of the first and last author.

179 In total, our literature review identified 356 hits causing reduced habituation learning,
180 in total corresponding to 278 genes in several species (see below), summarized in **Table S1**.
181 The majority of these 356 hits induce (predicted) loss of function (307 hits). 18 hits were
182 reported to represent gain of function mutations, and for 31 hits the effect on protein function
183 remained unclear. Our systematic search found experimental evidence that links genes to
184 habituation deficits in six different organisms; *Homo sapiens* (human; N = 4 genes), and the
185 model species *Rattus norvegicus* (rat; N = 4 genes), *Mus musculus* (mouse; N = 52 genes),
186 *Danio rerio* (zebrafish; N = 37 genes), *Drosophila melanogaster* (fruit fly; N = 124 genes) and
187 *Caenorhabditis elegans* (roundworm; N = 37 genes).

188 To compile a cross-species catalog of conserved genes linked to habituation deficits (i.e.
189 genes implicated in habituation deficits in any or several of the six organisms) and allow
190 subsequent gene ontology (GO) and pathway analyses, we next annotated the human orthologs
191 of all genes identified in the five model organisms. We submitted the genes to the DRSC
192 integrative ortholog prediction tool (DIOPT) that compiles evidence from 18 databases [60].
193 To include top-ranking orthologs, but exclude more distal homologs, we applied a number of
194 criteria described in the legend of **Table 2**.

195 Of the 278 genes identified in the different species, 20 showed poor conservation, with
196 the top-ranking genes having a DIOPT score below 3. These were considered as insufficiently
197 conserved and excluded from further analyses, leaving us with a catalog of 258 evolutionary
198 conserved genes to be matched across species.

199 Due to one-to-many gene orthologies in *Drosophila* and *C. elegans*, frequently
 200 associating a single invertebrate gene to two or several human genes forming a related
 201 (potentially functionally overlapping or redundant) gene family, the conversion of the model
 202 organism gene catalog to human genes inflated the total number of genes from 258 to 421 genes.
 203 To illustrate the origin of this inflation, we assigned an inflation score to each organism,
 204 calculated as the number of human orthologs divided by the corresponding number of the
 205 originally identified genes in the respective species (**Table 2**). Mouse and Rat inflation score
 206 equals 1, reflecting exclusively one-to-one orthology. The inflation score of *Drosophila* is 1.87.
 207 Thus on average, each fly gene implicated in habituation led to the annotation of almost two
 208 paralogous human genes. *C. elegans* received the highest inflation score, 2.73, while zebrafish,
 209 due to a genome duplication event in teleost evolution, has an inflation score smaller than 1
 210 (0.76).

211 **Table 2. Demographics of the gene catalog and the inflation score linked to the conversion to human genes.** For the conversion of species genes to human orthologs we utilized the DIOPT tool. All suggested orthologs with a DIOPT score of at least four were adopted if: 1. the ortholog was annotated with "Best score", 2. the ortholog belonged to the same gene family and had a comparable DIOPT score as the ortholog with the "Best Score" annotation, 3. the ortholog was the "Best reverse" and has a comparable DIOPT score to the "Best score" ortholog even if it did not belong to the same family, 4. the ortholog was annotated with "Best reverse" and is a known disease gene.

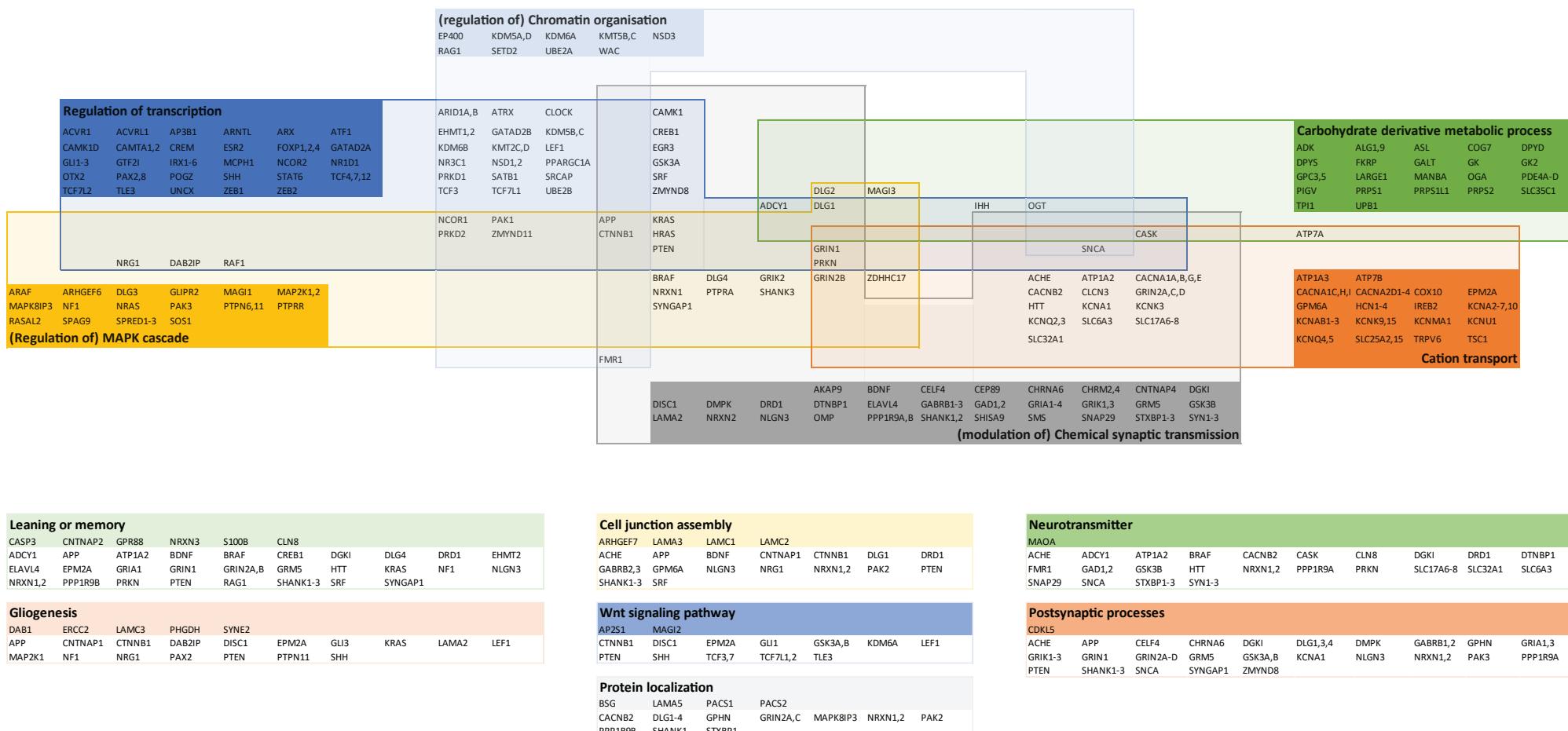
Organism	Publications	Hits	Genes	Human orthologs	Inflation score
H. sapiens	12	12	4	4	1.00
R. norvegicus	4	4	4	4	1.00
M. musculus	59	61	52	52	1.00
D. rerio	6	38	37	28	0.76
D. melanogaster	27	165	124	232	1.87
C. elegans	8	53	37	101	2.73

212
 213 All genes required for habituation, the species they were identified in, the corresponding
 214 reference and their annotated human ortholog(s) are listed in **Figure 2**, in alphabetical order of
 215 the human gene name(s). Genes that have been implicated in habituation in more than one
 216 organism are highlighted in dark color and will be further refer to as multispecies hits, for
 217 simplicity. Two genes, *FMR1* and *SYNGAP*, have been associated with defective habituation in
 218 four out of the six depicted model organisms (human, mouse, fish, and fly). *GIGYF2* has been
 219 found to underlie habituation in three species (fish, fly and worm) and an additional 15 genes

<i>H. sapiens</i>	<i>R. norvegicus</i>	<i>D. melanogaster</i>	<i>C. elegans</i>
(62) BDNF	Cntnap2 (74) CNTNAP2	sax (142) ACVR1/L1	aps-2 (168) AP2S1
(63-71) FMR1	Dab1 (75) DAB1	rut (44, 143-145) ADCY1	apl-1 (169) APP;APLP1/2
(72) MAOA	Grin1 (76) GRIN1	Adk2 (142) ADK	let-526 (168) ARID1A/B
(73);SYNGAP1	Tsc1 (77) TSC1	CG18012 (142) ALG1	unc-2 (168) CACNA1A/B/E
<i>M. musculus</i>			
Bmai1 (78) ARNTL	Kcnma1 (106) KCNMA1	CG11851 (142) ALG9	unc-36 (168) CACNA2D1/2/3/4
Atp1a2 (79) ATP1A2	Large1 (107) LARGE1	AP-1sigma (142) AP1S1/2/3	cmk-1 (170) CAMK1D/G;CAMK1;PNCK
Atp1a3 (80) ATP1A3	Lsamp (108) LSAMP	rb (142) AP3B1/2	cdkl-1 (168) CDKL1/2/3/4/5
Bsg (81) BSG	Nlgn3 (109) NLGN3	CG5316 (142) APTX	unc-75 (168) CELF3/4/5/6
Casp3 (82);CASP3	Nr1d1 (110) NR1D1	RtGEF (142) ARHGEF6/7	crh-1 (170) CREB1;CREM;ATF1
CerS6 (83) CERS6	Nrg1 (111) NRG1	al (142) ARX	bar-1 (168) CTNNB1
Chrm2 (84) CHRM2	OMP (112) OMP	CG9510 (142) ASL	dhp-1 (168) DPYS;DPYSL2/3/4/5;CRMP1
Chrna6 (85) CHRNA6	Otx2 (113) OTX2	asp (142) ASPM	exc-7 (168) ELAVL1/2/3/4
Ckap5 (86) CKAP5	Plat (114, 115) PLAT	ATP7 (142) ATP7A/B	cdh-4 (168) FAT1/2/3
Cln8 (87) CLN8	Ppargc1a (116) PPARGC1A	XNP (142) ATRX	C18H9.3 (168) GIGYF1/2
Clock (78);CLOCK	Prkn (117, 118) PRKN	Atx2 (146, 147) ATXN2/2L	glr-1 (172-174) GRIA1/2/3/4
Dgki (88);DGKI	Ptpra (119) PTPRA	BOD1 (148) BOD1	glr-2 (174) GRIA1/2/3/4
Disc1 (89) DISC1	ptpr (120) PTPRR	Blos1 (149) BLOC1S1	irx-1 (168) IRX1/2/3/4/5/6
Drd1 (90, 91) DRD1	Rag-1 (121) RAG1	Raf (142) BRAF;ARAF;RAF1	kqt-1 (168) KCNQ2/3/4/5
Dtnbp1 (92, 93) DTNBP1	S100b (122, 123) S100B	Ca-alpha1T (142) CACNA1G/H/I	jmjd-3.3 (168) KDM6A/B
Egr3 (94) EGR3	Shank3 (124) SHANK3	Camta (150) CAMTA1/2	set-16 (168) KMT2C/D
Epm2a (95) EPM2A	Slc6a3 (125) SLC6A3	CASK (142, 151) CASK	epi-1 (168) LAMA3/4/5
Esr2 (96);ESR2	Srf (126) SRF	Dronc (142) CASP2	magi-1 (174) MAGI1/2/3
Fmr1 (97, 98) FMR1	Stat6 (127) STAT6	Cbs (142) CASP2	ogt-1 (170) OGT
Cx36 (99) GJD2	Syngap1 (73) SYNGAP1	CG43370 (142) CC2D2A/B	pax-2 (168) PAX2/5/8
Gpr88 (100) GPR88	Tnc (128) TNC	gek (142) CDC42BPA/B/G;DMPK	row-1 (168) POGZ
Gria1 (101) GRIA1	Tph2 (129) TPH2	CG13889 (142) CEP290	nab-1 (168) PPP1R9A/B
Grin1 (102) GRIN1	Unc5c (130) UNC5C	Cep89 (152) CEP89	dkf-1 (168) PRKD1/2/3
Grm5 (103);GRMS	(131) ACHE*	Nrx-IV (150) CNTNAP1/2/3/3B/5	hgap-1 (168) RALGAP1A/2
gtf2i (104);GTF2I	(132, 133) SNCA*	Cog7 (142) COG7	met-1 (168) SETD2
Immp2l (105) IMMP2L	(134, 135) HTT*	CG5037 (142) COX10	eat-4 (175) SLC17A6/7/8
<i>D. rerio</i>			
akt3b (136) AKT3	mmp16a/b (136) MMP16	CG3925 (142) CCRN	unc-16 (168) SPA69;MAPK8IP3
ap2s1 (137) AP2S1	nf1a/b (139, 140) NF1	hh (142) DHH;SHH;IHH	unc-18 (168) STXBP1/2/3
cacna1c (136);CACNA1C	nr3c1 (141) NR3C1	Dlg1 (142, 153);^ DLG1/2/3/4	anc-1 (168) SYNE1/2
cacnb2a/b (136) CACNB2	ntm (136) OPCML	su(r) (142) DPYD	pop-1 (168) TCF7L1/2;TCF7;LEF1
chrn4a (136) CHRM4	pappa (137) PAPPA	dysb (149) DTNBP1	unc-4 (168) UNCX
clcn3 (136) CLCN3	pcxa (137) PC	G9a (142, 154) EHMT1/2	smg-4 (168) UPF3A/B
elfn1a/b (136) ELFN1	satb1a (136) SATB1	PEK (142) EIF2AK3	bra-1 (168) ZMYND8/11
fmr1 (138) FMR1	sbno1 (136) SBNO1	dom (153) EP400;SRCAP	
gigyf2 (136),GIGYF2	shisa9a/b (136) SHISA9	CG15651 (142) FKRP	
gpm6aa/b (136);GPM6A	slc32a1 (136) SLC32A1	FoxP (142, 155) FOXP1/2/4	
grin2aa/b (136) GRIN2A	syngap1a/b (136) SYNGAP1	Fmr1 (142, 156) FXR1/2;FMR1	
ireb2 (136) IREB2	tcf4 (136) TCF4		
kcna1a (137) KCNA1	tle3a/b (136) TLE3		
mad1l1 (136) MAD1L1	zdhhc17 (137) ZDHHC17		

Multispecies hit
Multi hit, monospecies
^ The results are from the same underlying data
* Mutated human transgene expressed in mice

Figure 2: Conserved genes causing reduced habituation upon manipulation. Genes are grouped by the organism in which they were investigated, and alphabetically ordered according to the name of the human ortholog. Depicted is the original gene name with the reference(s), followed by the human gene ortholog(s) as determined by the authors. Human orthologs supported by evidence in multiple species are highlighted in dark color (termed multispecies hit), while orthologs that are supported by multiple evidence in the same species are highlighted in light (monospecies multihit). [^] depicts results that have been reused by a second study. Since based on the same data these genes are not considered monospecies multihits. * indicates transgenic human alleles expressed in mice.


223 have been found in two species (*AP2S1*, *CNTNAP2*, *DTNBPI*, *GRIA1*, *GRIN1*, *GRIN2A*,
224 *KCNA1*, *KCNMA1*, *NF1*, *PC*, *POGZ*, *SHANK3*, *TCF4*, *TSC1*, *UPF3A/B*). 38 further genes are
225 highlighted in light color. For these independent evidence for a role in habituation has been
226 presented either by multiple models by the indicated reference or in two or more independent
227 studies within the same species. These genes are referred to as monospecies multihit genes.

228 The compiled catalog contains genes with diverse protein functions. In the next section,
229 we aimed to identify the biological processes that they contribute to, with a focus on signaling
230 pathways that comprise multiple habituation genes and are druggable.

231 **4.2. Gene Ontology**

232 To identify molecular pathways and biological processes that are required for
233 habituation learning, the compiled gene catalog was subjected to Gene Ontology (GO) analysis
234 using AmiGO2 [175-178] (DOI: 10.5281/zenodo.4495804 Released 2021-02-01). To provide
235 a broad overview on the biological processes identified by this analysis, we have limited the
236 complexity of the outcome by combining functionally related individual GO term into
237 compound GO terms [179]. The GO terms covered by the compound GO terms are described
238 in detail in **Table S2**.

239 **Figure 3** depicts 13 compound GO terms associated with large and/or very enriched
240 gene groups. Together, they describe (one or more) biological functions of 290 human gene
241 orthologs (i.e. for 73% of the identified 398 human genes). Genes that are connected only to a
242 single of the 13 compound GO groups are shown (N = 152, 53%) on a dark background. Genes
243 related to more than one compound GO term are depicted on a light background (N = 138,
244 47%). The six compound GO groups contributing the most genes associated only to a single
245 compound GO group are included in a Venn diagram, highlighting that these processes are
246 molecularly connected. Seven further compound GO groups are depicted separately, to limit
247 complexity of the Venn diagram. These overlap very considerably with the genes already

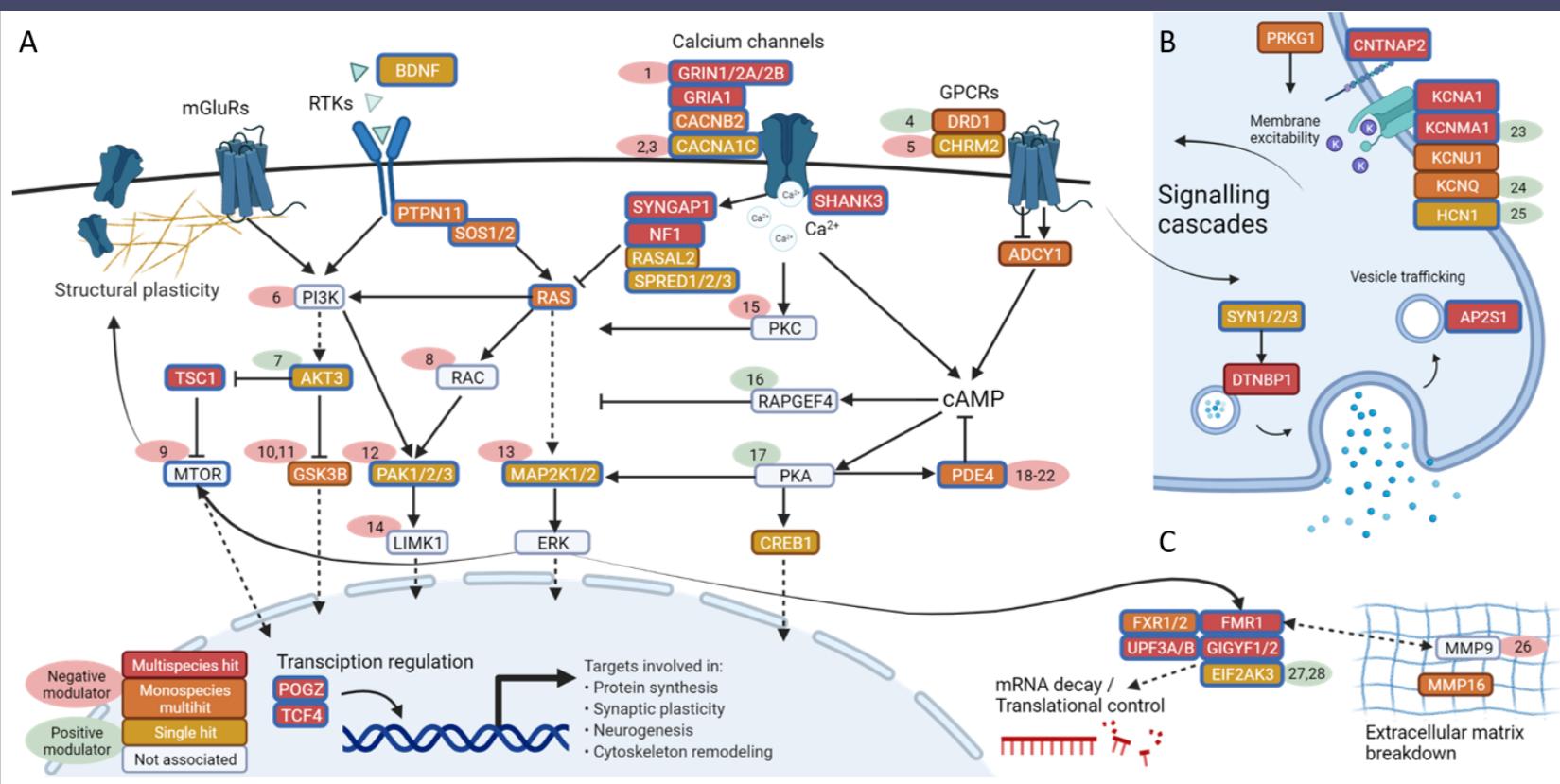
Figure 3: Venn diagram of compound GO terms describing biological processes linked to genes required for habituation. Compound GO terms represent functionally related GO terms (Table S2). The Venn diagram connects the 6 compound GO that contribute most genes only connected to a single compound GO term (dark background). Genes connected to multiple compound GO terms are shown on a light background.

249 present in at least one other compound GO group and thus add in rather few genes only
250 associated to a single compound GO group.

251 The Venn diagram highlights genes associated with the compound GO terms:
252 Regulation of transcription (N = 91 genes | of which 35 associated with a single compound GO
253 term), Cation transport (N = 65 | 35), Metabolic process (N = 35 | 27), MAPK cascade (N = 46
254 | 14), Synaptic transmission (N = 92 | 10) and Chromatin organization (N = 43 | 9). The genes
255 operating in the largest number of represented biological functions are *APP* (associated with 8
256 of 13 compound GO terms), *PTEN* (8 of 13), *CTNNB1* (7 of 13), *DLG1* (7 of 13), and *NRXN1*
257 (7 of 13).

258 It is not surprising that our gene list identifies biological processes related to synaptic
259 transmission, learning or memory, postsynaptic processes, and neurotransmission; these are
260 established biological processes linked to habituation learning. However, we also find
261 biological processes such as the regulation of transcription, chromatin organization, metabolic
262 processes, and Wnt signaling are well-represented. These processes are highly implicated in
263 neurodevelopmental disorders [179, 180] and are at least in part known to regulate other forms
264 of learning, but have not gotten much attention in relation to habituation learning. Additionally,
265 we find biological processes related to cell junction assembly and gliogenesis, pointing to a
266 contribution of neurodevelopmental components to habituation.

267 **4.3. Molecular pathways and processes controlling habituation, and their
268 drugability**


269 Whereas the GO analysis provided an overview on the biological functions prominently
270 involved in habituation, it does not capture all genes and, with the exception of MAPK and Wnt
271 signaling, points to very broad processes. Not only with an eye to clinical applications, we
272 found it worthwhile zooming in further to define additional molecular pathways in which genes
273 required for habituation operate. Because of the large number of genes and space constrains,
274 we in **Figure 4** focused on depicting those pathways and processes that aggregate a number of

275 genes with strong evidence from multiple species (in red). These include (1) central cellular
276 signal transduction cascades - PI3K-AKT-mTOR, Ras-MAPK, and cAMP-PKA (**Figure 4A**),
277 (2) mechanisms of neuronal plasticity and excitability, in addition to these signal transduction
278 cascades (**Figure 4B**), and (3) the control of protein translation (**Figure 4C**). Because these
279 interconnected processes align well with the major mechanistic themes in neurodevelopmental
280 disorders [181], they also are attractive targets for pharmacological intervention.

281 Because habituation learning as well as its genetic and molecular mechanisms appear to
282 be deeply conserved, and small animals offer the opportunity to conduct drug testing *in vivo* at
283 reasonable costs in bigger scale, such screens may uncover novel lead compounds. This has
284 been impressively demonstrated by a compound screen that assessed the effect of 1760
285 compounds on acoustic startle habituation in wild-type zebrafish larvae [182]. 19 compounds
286 were found to improve habituation learning. Most of these are targeting neurotransmitter
287 systems, and eight are targeting disease mechanisms highlighted here, including intracellular
288 signaling molecules (GSK3B, PKC, and PDE3), post-synaptic receptors (DRD and CHRM)
289 and channels (CACNA1C) (**Figure 4**).

290 **Figure 4D** provides a synopsis of compounds either with a demonstrated positive effect
291 on habituation (**Figure 4D**, left column) from the above or other studies, or a hypothetical
292 suitability, based on targeting the depicted habituation-relevant pathways and evidence on the
293 beneficial effect of these drugs for cognition (**Figure 4D**, right column). Many of these drugs
294 are repurposable; 11 of them are approved by the U.S. Food & Drug Administration (FDA).
295 Four additional drugs are currently being investigated in clinical trials. In the following
296 subsections, these central habituation pathways and their drugability will be discussed further.

297

Figure 4. Schematic overview of the molecular processes and mechanisms comprising 17 of the 18 multispecies hits that are required for habituation. Not represented is PC (Pyruvate Carboxylase). The processes include A. PI3K-AKT-mTOR, Ras-MAPK, and cAMP-PKA pathways B. Synaptic plasticity and excitability and C. Translational control. D. Onto these processes we projected drugs with experimental evidence for their potential (left column), or which can be hypothesized to improve habituation learning; Monogenic causes of neurodevelopmental disorders [179] are highlighted with blue outline; * = FDA/EMA-approved, ** = Off-label/clinical trials, *** = Only preclinical; ALS = Amyotrophic lateral sclerosis, COPD = Chronic obstructive pulmonary disease, TSC = Tuberous sclerosis complex, NF1 = Neurofibromatosis 1. Panels A.-C. were created using Biorender.com. Shown are gene not protein names, for simplicity.

298 4.3.1. PI3K-AKT-mTOR, Ras-MAPK, and cAMP-PKA pathways
299 PI3K-AKT-mTOR and Ras-MAPK signal transduction cascades are key players of cell
300 growth, proliferation, and cancer, but they also play a well-established, crucial role in neuronal
301 development and synaptic plasticity. The cascades cross-talk at multiple levels (**Figure 4A**).
302 Presynaptically, mTOR-dependent protein translation is important for growth and regeneration
303 of axonal terminals. Postsynaptically, activation of mTOR by N-methyl D-aspartate (NMDA)
304 and metabotropic glutamate (mGluR) receptors increases local protein synthesis in dendrites
305 contributing to structural plasticity (reviewed in [209]). Phosphorylation of synapsin by ERK
306 (Ras-MAPK) is required for presynaptic neurotransmitter release and hippocampus-dependent
307 learning in mouse [210] (**Figure 4A,B**).

308 Germline mutations in the key players and their regulators of all three cascades are
309 known to cause monogenic neurodevelopmental syndromes characterized by intellectual
310 disability (ID) and, frequently, also ASD [181, 211]. Moreover, the baseline activity of PI3K-
311 Akt-mTOR and Ras-MAPK is increased in idiopathic ASD cohorts and correlates with clinical
312 severity [212]. In *Drosophila* light-off jump habituation, Ras-MAPK signaling is sensitive to
313 opposing perturbation depending on the type of neuron. Increase of Ras-MAPK in inhibitory,
314 GABAergic neurons and decrease of Ras-MAPK in excitatory, cholinergic neurons impairs
315 habituation learning [141]. Partial loss of negative Ras-MAPK regulators SYNGAP1 and *NF1*
316 are associated with habituation deficits in *Drosophila* and zebrafish. Using parallel EEG
317 analysis approaches, SYNGAP1 mutations were shown to cause habituation deficits in mice
318 and patients [72]. *NF1* haploinsufficiency causes Neurofibromatosis type 1 (NF1), a genetic
319 disorder with high frequency of ID and ASD. Deficits in long-term habituation in the zebrafish
320 NF1 model were successfully rescued with drugs that inhibit MAPK (U0126), or PI3K
321 (Wortmannin and Buparlisib) activity. Deficits in short-term habituation were rescued by drugs
322 that enhance cAMP, including 8-Br-cAMP, Rolipram, and Roflumilast [138]. Furthermore,
323 post-hoc assessment of four combined trials evaluating the MEK inhibitor Selumetinib in

324 treating *NF1*-associated neurofibromas suggests no adverse and some beneficial effects on
325 cognitive readouts [199].

326 cAMP acts as a second messenger in numerous signal transduction pathways. In
327 neurons, an increase of cAMP levels is triggered by binding of neurotransmitters to G-protein
328 coupled receptors, and by increased calcium influx. cAMP-activated PKA phosphorylates
329 SNARE regulatory proteins and synapsins, which leads to enhanced synaptic vesicle release
330 [213, 214] (**Figure 4B**). Transcriptional regulation by cAMP-PKA signaling is mediated by the
331 cAMP response element-binding protein (CREB). These orchestrated transcriptional programs
332 are required for structural plasticity and memory consolidation [215]. cAMP in local
333 GABAergic interneurons of the *Drosophila* antennal lobe is required for both short- and long-
334 term olfactory habituation. While long-term habituation requires activation of CREB, short-
335 term habituation is CREB-independent [44]. Targeting cAMP-PKA may thus have the potential
336 to correct both short- and long-term habituation deficits. Promoting cAMP-PKA activity by
337 pharmacological inhibition of phosphodiesterases (PDEs - negative regulators of cAMP), has
338 shown promising results in correcting cognitive impairment in animal models of
339 neurodevelopmental and neurodegenerative disorders, as well as in patients [216]). PDE3 and
340 PDE4 inhibitors have been shown to improve habituation in wild-type and NF1-deficient
341 zebrafish models, respectively. Two clinical trials with the PDE4 inhibitor Roflumilast in older
342 individuals and patients with schizophrenia showed improvement in verbal memory but not
343 other aspects [188, 189]. In addition, PDE5 (Sildenafil) and PDE9 (PF-04447943) inhibitors
344 are drugs of interest that may improve habituation learning. Sildenafil is approved for treatment
345 of erectile dysfunction and hypertension, but studies in mice suggested that it also has beneficial
346 effects on learning and memory [203]. PF-04447943 demonstrated to improve performance in
347 a rodent attention task [202]. The drug did not show an effect in clinical trials for Alzheimer
348 Disease, but has not been evaluated for other disorders.

349 4.3.2. Synaptic plasticity and excitability

350 Synaptic plasticity is considered a major neuronal mechanism of habituation. It is
351 therefore not surprising that products of many genes with evidence for habituation deficit from
352 multiple species act in synaptic plasticity, in addition (and using) the signaling pathways
353 highlighted above. They control presynaptic neurotransmitter release (dysbindin encoded by
354 *DNTBPI* [217]), synaptic vesicle recycling (*AP2S1* [218]) (**Figure 4B**) and postsynaptic
355 receptor function (NMDA Receptor subunits encoded by *GRIN1*, *GRIN2A* and *GRIN2B*; α -
356 amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encoded by *GRIA1*;
357 Dopamine receptor D1 encoded by *DRD1*; Acetylcholine muscarinic receptor encoded by
358 *CHRM2*) (**Figure 4A**). Interestingly, NMDA receptor antagonist Memantine was reported to
359 successfully restore impaired habituation in patients with fragile X-associated tremor/ataxia
360 syndrome, as measured with EEG in an auditory oddball paradigm [219]. Memantine was also
361 tested in three phase 2 clinical trials in ASD cohorts. In the first lead-in open-label trial, 517
362 (59.6%) individuals responded with improved Social Responsive Scale (SRS). While the
363 following double-blind withdrawal trial found no difference in loss of treatment response
364 between continued Memantine treatment and placebo, an open-label extension trial revealed
365 further SRS improvement with extended Memantine treatment, which may be of clinical
366 importance [220]. A recent small double-blind trial with focus on neurocognitive measures
367 found beneficial effect of Memantine on verbal recognition memory and verbal intelligence
368 quotient (VIQ). The authors further hypothesize that Memantine's effect more likely originates
369 from cognitive enhancement than reduction of behavioral problems [221].

370 Disruption of several genes encoding the voltage-gated calcium ion (Ca^{2+}) channels
371 (zebrafish *cacna1c* (human *CACNA1C*) and *cacnb2a/b* (*CACNB2*), *Drosophila Ca-alpha1T*
372 (*CACNA1G/H/I*), *C. Elegans unc-2* (*CACNA1A/B/E*) and *unc-36* (*CACNA2D1-4*)) result in
373 impaired habituation learning. These channels play a key-role in neuronal signal propagation,
374 including through signal transduction cascades depicted in **Figure 4A**. Mutations in these genes

375 cause ID and ASD syndromes, and aberrant function has been associated with various
376 psychiatric disorders (reviewed in [222]). Two Ca^{2+} channel inhibitors, Verapamil and
377 Nimodipine, are FDA-approved for hypertension and cognitive protection after subarachnoid
378 hemorrhage, respectively. Interestingly, both drugs showed also positive effect on habituation
379 learning in wild-type zebrafish in the already mentioned compound screen [182], suggesting a
380 substantial role of Ca^{2+} channels in habituation learning.

381 It is worth to highlight the emerging importance of intrinsic excitability (IE) that in
382 synergy with synaptic plasticity shapes synaptic strength, synchronic neuronal activity and
383 engram formation. A role for IE in habituation is substantiated by numerous voltage-, calcium-
384 , or hyperpolarization-gated potassium (K^+) channels in the gene catalog, incl. *KCNA1*,
385 *KCNMA1*, *KCNQ*, *HCN1*, *KCNU1* as well as by further proteins that affect excitability by
386 modulation of K^+ channels (*CNTNAP2* [223]) or neurotransmitter release (*PRKG1* [224]).
387 Disruption of *KCNMA1* results in habituation learning deficits in *Drosophila*, mouse, and rat
388 and is associated with autistic traits in humans [225]. This gene encodes a subunit of big
389 calcium-gated K^+ channels (BK-channels) that locate close to the glutamatergic pre-synapse
390 and are essential for synaptic depression, one of the underlying mechanisms of habituation.
391 Local administration of BK-channel activator Flindokalner in the region where auditory
392 afferent synapses project on sensorimotor neurons enhanced habituation of the acoustic startle
393 response in rats[190]. BK-channels are widely expressed and the drugs currently available exert
394 too many side effects to be safely administered in humans. Ezogabine and Lamotrigine,
395 however, are K^+ channel targeting drugs that are FDA-approved for epilepsy, Lamotrigine also
396 for bipolar disorder. Interestingly, Lamotrigine was found to improve associative learning
397 deficits in a mouse model of NF1, as its target *HCN1* channel interacts with neurofibromin
398 [206] and a clinical trial to assess cognitive improvement in patients with Neurofibromatosis 1
399 is ongoing (NCT02256124).

400 4.3.3. Translational control

401 Fragile X syndrome (FXS), the most frequent ID and ASD syndrome, is caused by
402 transcriptional silencing of the *FMR1* gene. It has been extensively studied and habituation
403 deficits have been reported in animal models of multiple species and in FXS patients [66]. The
404 encoded fragile X mental retardation protein (FMRP) is a synaptic activity-dependent repressor
405 of translation with a critical role in synaptic plasticity [226]. Preclinical studies in animal
406 models improved the understanding of FXS biology and provided promising drug targets.
407 However, numerous FXS clinical trials failed to meet the primary endpoints that were usually
408 based on questionnaires and caretaker reports [227]. However, here we would like to highlight
409 a small, double-blind, placebo-controlled crossover treatment trial that incorporated
410 electrocortical activity measures as a sensitive, objective method for monitoring treatment
411 responses. This trial showed that three months of treatment with Minocycline restored abnormal
412 habituation of event-related potentials (ERPs) in an auditory oddball task in a group of children
413 with FXS [69]. As an antibiotic, Minocycline is thought to exert those beneficial effects through
414 repression of neuroinflammation. However, its habituation-improving action has been linked to
415 inhibition of matrixmetalloprotease-9 (MMP-9), a target of FMRP-mediated translational
416 inhibition that is upregulated in the auditory cortex of *Fmr1* KO mice [228]. MMPs are
417 proteases that are involved in activity-dependent organization of the extracellular matrix [229].
418 In line with this, mechanosensory habituation to taps was impaired in two zebrafish models
419 with loss-of-function mutations in *mmp16a* and *mmp16b*, orthologues of human *MMP-16*
420 [135]. Adjunctive treatment with Minocycline to the antipsychotic Risperidone in 46 children
421 with ASD showed positive effects on irritability and hyperactivity scores, but not for
422 lethargy/social withdrawal, stereotypic behavior, and inappropriate speech scores [230], once
423 more highlighting the need for cognitive or cognition-relevant outcome measures.

424 Beyond translational control, also aspects of mRNA processing are crucial to
425 habituation, as identified by two further ‘multispecies hit’ genes. *UPF3A/B* (orthologues to

426 *Drosophila Upf3* and *C. Elegans smg-4*) is involved in nonsense-mediated mRNA decay and
427 human variants have been associated with neurodevelopmental disorders including ASD [231].
428 GIGYF1/2 (orthologues to zebrafish gigyf2, *Drosophila CG11148*, and *C. Elegans C18H9.3*)
429 regulates decay of transcripts mostly associated with secretory, membrane-bound, and actin-
430 related processes [232], but also of *DUSP6*, a negative regulator of *ERK* (Ras-MAPK signaling)
431 [233]. Variants in *GIGYF1/2* have been associated with both neurodegenerative and
432 neurodevelopmental disorders in animal models and human cohorts [234, 235].

433 **5. Clinical relevance, applications and assessment of habituation
434 learning**

435 Having extracted genes and molecular pathways involved in habituation, and
436 highlighted targets for intervention, we in this section summarize the spectrum of disorders and
437 clinical phenotypes that have been associated with habituation deficits. We point to disease
438 symptoms that may be a direct consequence of habituation deficits and highlight further
439 evidence linking habituation to cognitive functions. We also provide an overview of various
440 methods to assess habituation in human research, with a focus on those that have been applied
441 in monogenic neurodevelopmental disorders.

442 **5.1. Habituation deficits in disease**

443 Habituation deficits have been reported in multiple cognitive disorders, including
444 neurodevelopmental, -psychiatric and -degenerative disorders [8]. Our inventory of genes and
445 molecular pathways implicated in habituation, mostly through animal work, illustrates that the
446 overlap with disease genes causally implicated in monogenic neurodevelopmental syndromes
447 is large (see **Figure 4A-C** and SysID database [179] at www.sysid.dbmr.unibe.ch), instantly
448 supporting a correlation between habituation and higher cognitive functioning. It should be
449 noted though that we and others have intentionally investigated disease genes and hence the
450 high degree of overlap is not unbiased. Yet, mutations in disease gene orthologs have also been

451 identified to cause habituation deficits in unbiased approaches (e.g., *PDE4E*, *CAMTA1*,
452 *CNTNAP2*, *CASK*, *PC*, *OGT*). Unfortunately, human habituation data to complement the
453 animal studies are lacking for the vast majority of these monogenic neurodevelopmental
454 syndromes. Assessing habituation in these individuals is challenging, because these syndromes
455 are rare (posing a logistic challenge) and often come with moderate to severe cognitive
456 impairment, interfering with the ability of individuals to partake in standard habituation
457 paradigms. Low-burden, passive protocols and special expertise are required, examples of
458 which are discussed below in section 5.3. Using such procedures, habituation deficits have been
459 reported in patients with co-occurring ID and ASD [236], most importantly in Fragile X
460 syndrome, the most common monogenic cause of ID and ASD [62-65, 67, 237-239]. The
461 requirement of the human Fragile X protein FMRP for habituation is matched by extensive
462 preclinical evidence from mouse [96, 240], *Drosophila* [141, 241], and zebrafish [137],
463 providing first support for conserved mechanisms and the translational value of multiple
464 habituation measures across species. Whereas Fragile X syndrome for two decades remained
465 the only syndrome in which habituation was investigated, recently others have followed ([72]
466 and several ongoing). Clearly, expanding assessment of habituation in monogenic
467 neurodevelopmental syndromes could greatly contribute to consolidate and further unravel the
468 genetic landscape of habituation. At the same time, these disorders could tremendously profit
469 from habituation as an objective outcome measure, e.g. in clinical trials.

470 Compared to monogenic neurodevelopmental syndromes, habituation is much better
471 explored in ASD. In ASD cohorts, impairments in habituation have been found throughout
472 development (e.g.[55, 242-244]. Reduced habituation has been observed as early as 3 or 6
473 months of age in infants at familial risk for ASD [245, 246]. In children diagnosed with ASD
474 of age 7 to 13 years, habituation deficits have been shown to correlate with several clinical
475 scores associated with competence along diverse phenotypic dimensions, such as a social
476 communication score and parents' questionnaire scoring the severity of sensory difficulties

477 [244]. Reduced habituation is also widely observed in adults diagnosed with ASD (e.g. [247,
478 248]). Habituation deficits are thought to contribute to some of the core symptoms of ASD,
479 such as learning difficulties, social deficits and sensory hypersensitivities, caused by defective
480 filtering and resulting information overload [249]. A functional study into hypersensitivity has
481 shown that ASD individuals with high sensory overresponsitivity showed reduced ability to
482 maintain habituation in the amygdala and relevant sensory cortices and to maintain inhibition
483 of irrelevant sensory cortices [55], providing empirical support for the “intense world” theory
484 of ASD, and fitting with the network plasticity model of habituation [43].

485 Habituation abnormalities have also been observed in several other neurodevelopmental
486 disorders, including Attention-deficit/hyperactivity disorder (ADHD), schizophrenia,
487 Obsessive Compulsive Disorder (OCD), and Tourette Syndrome (TS). In ADHD, impaired
488 habituation has been reported in both children [250] and adults [251]. However, other studies
489 reported enhanced habituation associated with the disorder [252-254].

490 A larger body of studies has reported habituation deficits in Schizophrenia (e.g. [255-
491 257]) reported reduced hippocampal habituation in schizophrenic patients to correlate with
492 memory performance for word pairs, and suggested that reduced habituation may contribute to
493 the memory deficits commonly observed in schizophrenia. In OCD, habituation has recently
494 emerged as a potential mechanism underlying sensory symptoms of OCD [258-260]. Benito,
495 Machan [258] used independent observers to continuously rate fear changes during exposure-
496 based Cognitive Behavioral Therapy (CBT), and determined habituation by summing decreased
497 fear that could not be explained by an observable exposure event (i.e. that could not be
498 explained by a change in the exposure stimulus, safety signals, distractors, rituals, etc., but
499 rather occurred “on its own”, thereby signaling therapeutic learning). They found that patients
500 with OCD and greater habituation showed larger reductions in symptom severity, greater global
501 improvement, and increased odds of treatment response.

502 Also in patients diagnosed with TS, impaired habituation has been described [261, 262]
503 and was hypothesized to contribute to sensory feelings that give rise to the urge frequently
504 preceding a tic [263].

505 Another disorder for which numerous electrophysiological studies have described
506 hyperresponsivity to repeated sensory stimuli and impaired habituation is migraine [9].
507 Habituation is usually assessed in the periods between migraine attacks (i.e. the interictal phase)
508 in episodic migraine patients. In these periods, reduced to complete loss of habituation is
509 reported [264-266]. Children with migraine with the most defective habituation have been
510 shown to have the worst behavioral symptomatology (as assessed by the Child Behaviour
511 Checklist, CBCL) [265].

512 Abnormal habituation has also been observed in the neurodegenerative movement
513 disorders Huntington's and Parkinson's diseases (HD, PD). In contrast to the habituation deficit
514 phenotype that is most often observed in the previously discussed disorders, studies in HD
515 mostly report enhanced habituation [267-270]). The most commonly used paradigm in HD
516 patients is habituation of the blink reflex in response to taps on the forehead (sometimes referred
517 to as habituation of the Glabella Tap Reflex) or in response to electrical stimulation. The
518 enhanced habituation phenotype in HD has been suggested to underlie the associated motor
519 abnormalities (i.e. chorea), as supported by the positive correlation between habituation and the
520 severity and distribution of the facial chorea [271]. Although there is some support for the idea
521 that enhanced habituation in HD reflects over-inhibition of dopaminergic receptors in the
522 striatum [268], it may be necessary to exclude that enhanced habituation cannot be attributed
523 to muscle fatigue. We found no clinical follow-up studies on habituation ability in HD patients
524 from the past two decades. The most recent studies of habituation in HD, in mouse models,
525 have provided seemingly conflicting results. Two studies reported habituation deficits, in
526 habituation to novel environment and open field habituation respectively [133, 134], whereas
527 another reported enhanced open field habituation in an HD mouse model [272]. Also in this

528 mouse study, muscle fatigue has not been excluded to cause the reduction in exploratory
529 activity. In PD patients, habituation deficits are well-established and have been used as a
530 diagnostic tool for decades, with habituation of the Glabella Tap Reflex as the most common
531 paradigm for assessment [273-275]. The habituation impairments in PD patients have been
532 shown to positively correlate with the years since PD diagnosis [10] and severity of motor
533 symptoms [276-278].

534 These findings of abnormal habituation patterns in HD and PD are contrasted by the
535 absence of habituation deficits in another common neurodegenerative disease; in patients
536 diagnosed with Alzheimer's Disease (AD), there have been numerous reports showing
537 preserved habituation despite severe associative learning and memory deficits [279-282]. The
538 clear absence of habituation deficits in AD demonstrates that habituation deficits are not merely
539 a side effect of any type of neurological dysfunction.

540 5.2. Habituation and Cognition

541 In addition to the relevance of habituation for a variety of neuronal disorders, there is a
542 large body of evidence showing the importance of habituation abilities for neurotypically
543 developing individuals. As already indicated in the introduction, habituation has been proposed
544 to be a building block for higher forms of cognition [12, 283-285]. It is the earliest form of
545 learning to develop, with habituation responses to an auditory stimulus occurring in fetuses as
546 young as gestational age of 22 weeks [286], and many studies reported habituation in older
547 fetuses [287-292]. Since the earliest measurement of a habituation response to an auditory
548 stimulus coincides with the onset of fetal auditory abilities [293], other forms of habituation
549 might already be present before this gestational age [294]. Gonzalez-Gonzalez, Suarez [292]
550 showed that fetal habituation rate correlates to neonatal habituation rate at 1-2 days after birth.
551 Moreover, several longitudinal studies have shown that the rate of infant habituation is one of
552 the best predictors of an individual's later IQ [1-7, 295]. Together, these findings suggest that
553 habituation performance is a strongly genetically determined nervous system property, and that

554 an individual's habituation ability relative to the habituation ability of others is maintained over
555 time.

556 In young healthy adults, a recent study on acoustic startle habituation assessed the
557 relation between habituation and resiliency to adverse and potentially traumatic events. Walker
558 et al. found that fast habituating individuals showed lower depression/anxiety and higher
559 resilience [296]. The authors concluded that their habituation paradigm can be used to overcome
560 the self-reporting bias in commonly-used psychometric approaches and provide a method for
561 objective assessment and monitoring of psychological resilience. These studies further
562 highlight the relevance of habituation in cognitive performance and quality of life, two
563 parameters that further increase the relevance of habituation as a clinical outcome measure for
564 various diseases.

565 In addition to the large amount of clinical and scientific literature supporting habituation
566 as a disease- and cognition-relevant property, there are also reports that did not find significant
567 anomalies in habituation in individuals diagnosed with the aforementioned disorders (e.g. in
568 OCD [297-299], ADHD [300-303], schizophrenia [304], and HD [305, 306]), or found no
569 correlation between habituation and measures of IQ [244]. We noticed that most of these studies
570 used an experimental design that was not optimized to assess habituation, but e.g. derived
571 measures of habituation from other protocols, e.g. assessing pre-pulse inhibition (PPI).

572 5.3. Habituation tests in neuroscience and the clinic

573 A multitude of different paradigms, varying in stimulus and type of readout, are used to
574 assess habituation in human (clinical) research. Usually, the stimuli are repeated a certain
575 amount of times with a constant inter-stimulus interval and consist of one sensory modality.
576 These stimuli range from simple visual, olfactory, or auditory (startle) stimuli, such as light
577 flashes, stationary objects or simple tones, to more complex stimuli like (emotional) faces and
578 speech. There are studies showing large correlations between habituation ability to different
579 sensory modalities within individuals. Miller et al. for example, measuring habituation of

580 electrodermal responses (EDRs) in individuals with FXS for five modalities of sensory
581 stimulation in an electrodermal activity (EDA) habituation paradigm, found that the pattern of
582 EDRs to stimulation in one sensory modality predicted the pattern of EDRs in the other four
583 [63]. A recent study by Côté et al. employed a multisensory stimulus to assess habituation of
584 EEG patterns during an audio-visual task in four ID syndromes (i.e. FXS, tuberous sclerosis
585 complex (TSC), Down syndrome (DS), or ID due to SYNGAP1 mutations) [236]. They
586 reported intact habituation in individuals with FXS and DS, which they propose might be due
587 to an increased sensitivity towards the multi-sensory stimulus compared to stimuli of a single
588 sensory modality. More work is required to get a comprehensive picture of the impact of the
589 type of stimuli, and this may even depend on the investigated disorder.

590 Besides the wide variety of utilized stimuli, human (clinical) habituation studies
591 employ(ed) paradigms with a multitude of different readouts to assess habituation. Commonly
592 used behavioral and physiological habituation paradigms in human and animal studies are listed
593 in **Table 1**, section 3.3. In addition, some studies have assessed habituation by patient self-
594 report or family-report through questionnaires [259, 307, 308]. These self-reported measures of
595 habituation were shown to partially correlate to physiological habituation measurements in an
596 EDA habituation paradigm in individuals with OCD [259].

597 Taken together, to tap the full potential of habituation as a translational readout to better
598 understand cognition in health and disease, fundamental questions such as the impact of the
599 utilized paradigm (i.e. stimuli and readout) onto phenotypes remain to be investigated further.
600

601 6. Conclusions

602 In this review, we have identified 258 evolutionary conserved genes that have been
603 demonstrated in the primary literature to underlie habituation in one or several species. Our
604 species-specific gene catalog shows that most of the genes have been identified in animal
605 models, particularly in invertebrates amenable to testing behavioural phenotypes on a larger

606 scale. The so far small number of genes unambiguously linked to habituation deficits in humans
607 reflects that in contrast to cognitive neuroscientists, clinical researchers investigating cohorts
608 with specific monogenic neurodevelopmental syndromes have developed interest in habituation
609 rather recently. Even though assessment of habituation in these cohorts requires dedicated
610 protocols, expertise and logistic efforts to collect data from these rare disease cohorts, such
611 efforts are extremely worthwhile as they open unique opportunities into translational
612 neuroscience and clinical care. Our survey demonstrates that many of the identified genes and
613 pathways show overlap between different species and various types of habituation. They also
614 strongly overlap with genes implicated in other forms of learning, memory, ASD and related
615 neurodevelopmental syndromes. Based on this functional conservation and relevance to disease
616 mechanisms, we propose that habituation can serve as a superior functional readout to overcome
617 a number of challenges that the field of neurodevelopmental disorders is facing:

618 On the preclinical side, research in animal models can identify mechanisms and thereby
619 treatment targets that underlie habituation deficits. Candidate repurposeable drugs, some of
620 which highlighted in this review, can be experimentally tested for their potential to alleviate
621 deficits in habituation as a predictive proxy for cognition; some animal models and habituation
622 paradigms even are suitable for unbiased drug screening. Furtheron, testing novel candidate
623 genes and variants of unknown significance identified in the clinic for habituation deficits in
624 animal models can help to establish causality and contribute to diagnostics.

625 On the clinical side, habituation as a highly cognition-relevant readout may provide an
626 outcome measure that is meaningful to daily life quality of patients and can be
627 objectively/quantitatively measured, of high value to assess treatment efficacy in clinical trials.

628 Lastly, habituation measures, collected either preclinically (for cohorts with genetic
629 data and identified likely gene disrupting mutations) or in the clinic, may proof a useful
630 stratification tool to improve design and success of clinical trials. High heterogeneity of

631 underlying defects, e.g. in autism cohorts, can mask treatment effects if only beneficial for
632 subsets of patients.

633 We conclude that habituation has already been studied intensively in animal disease
634 models, and that its application in the clinic is currently gearing up. Together, preclinical and
635 clinical habituation may be able to provide the much needed, well-aligned translational
636 pipeline that can overcome current bottlenecks in research, diagnostics, preclinical drug
637 discovery, clinical assessment of disease state and treatment efficacy, and even provide novel
638 means for stratification.

639 7. References

- 640 1. Bornstein, M.H., et al., *Stability in cognition across early childhood. A developmental*
641 *cascade*. *Psychol Sci*, 2006. **17**(2): p. 151-8.
- 642 2. Domsch, H., A. Lohaus, and H. Thomas, *Prediction of childhood cognitive abilities*
643 *from a set of early indicators of information processing capabilities*. *Infant Behavior*
644 *and Development*, 2009. **32**(1): p. 91-102.
- 645 3. Kavsek, M. and M.H. Bornstein, *Visual habituation and dishabituation in preterm*
646 *infants: a review and meta-analysis*. *Res Dev Disabil*, 2010. **31**(5): p. 951-75.
- 647 4. Tamis-LeMonda, C.S. and M.H. Bornstein, *Habituation and maternal encouragement*
648 *of attention in infancy as predictors of toddler language, play, and representational*
649 *competence*. *Child Dev*, 1989. **60**(3): p. 738-51.
- 650 5. Colombo, J., et al., *The Developmental Course of Habituation in Infancy and*
651 *Preschool Outcome*. *Infancy*, 2004. **5**(1): p. 1-38.
- 652 6. Kavšek, M., *Predicting later IQ from infant visual habituation and dishabituation: A*
653 *meta-analysis*. *Journal of Applied Developmental Psychology*, 2004. **25**(3): p. 369-
654 393.
- 655 7. Brito, N.H., et al., *Beyond the Bayley: Neurocognitive Assessments of Development*
656 *During Infancy and Toddlerhood*. *Dev Neuropsychol*, 2019. **44**(2): p. 220-247.
- 657 8. McDiarmid, T.A., A.C. Bernardos, and C.H. Rankin, *Habituation is altered in*
658 *neuropsychiatric disorders-A comprehensive review with recommendations for*
659 *experimental design and analysis*. *Neurosci Biobehav Rev*, 2017. **80**: p. 286-305.
- 660 9. de Tommaso, M., et al., *Altered processing of sensory stimuli in patients with*
661 *migraine*. *Nature Reviews Neurology*, 2014. **10**(3): p. 144-155.
- 662 10. Cavanagh, J.F., et al., *Diminished EEG habituation to novel events effectively*
663 *classifies Parkinson's patients*. *Clin Neurophysiol*, 2018. **129**(2): p. 409-418.
- 664 11. Thompson, R.F. and W.A. Spencer, *Habituation: a model phenomenon for the study*
665 *of neuronal substrates of behavior*. *Psychol Rev*, 1966. **73**(1): p. 16-43.
- 666 12. Rankin, C.H., et al., *Habituation revisited: an updated and revised description of the*
667 *behavioral characteristics of habituation*. *Neurobiol Learn Mem*, 2009. **92**(2): p. 135-
668 8.
- 669 13. Sokolov, E.N., *Neuronal Models and the Orienting Reflex*, in *The central nervous*
670 *system and behavior: Transactions of the third conference, Josiah Macy, Jr.*
671 *Foundation*. 1960: New York. p. 187.

672 14. Sokolov, E.N., *Higher nervous functions; the orienting reflex*. Annu Rev Physiol, 673 1963. **25**: p. 545-80.

674 15. Hall, G. and G. Rodriguez, *When the stimulus is predicted and what the stimulus* 675 *predicts: Alternative accounts of habituation*. J Exp Psychol Anim Learn Cogn, 2020. 676 **46**(3): p. 327-340.

677 16. Wagner, A.R., *Habituation and memory*, in *Mechanisms of learning and motivation: A* 678 *memorial volume for Jerry Konorski*, A. Dickinson, Boakes, R. A., Editor. 1979, 679 Lawrence Earlbaum Assoc: Hillsdale, New York. p. 53-82.

680 17. Groves, P.M. and R.F. Thompson, *Habituation: a dual-process theory*. Psychol Rev, 681 1970. **77**(5): p. 419-50.

682 18. Bonzanni, M., et al., *On the Generalization of Habituation: How Discrete Biological* 683 *Systems Respond to Repetitive Stimuli: A Novel Model of Habituation That Is* 684 *Independent of Any Biological System*. Bioessays, 2019. **41**(7): p. e1900028.

685 19. Thompson, R.F., *Habituation: a history*. Neurobiol Learn Mem, 2009. **92**(2): p. 127- 686 34.

687 20. Wilkins, D.E., M. Hallett, and M.M. Wess, *Audiogenic startle reflex of man and its* 688 *relationship to startle syndromes. A review*. Brain, 1986. **109** (Pt 3)(3): p. 561-73.

689 21. Davis, M., *The Mammalian Startle Response*, in *Neural Mechanisms of Startle* 690 *Behavior*, R.C. Eaton, Editor. 1984, Springer US: Boston, MA. p. 287-351.

691 22. Prosser, C.L. and W.S. Hunter, *The Extinction of Startle Responses and Spinal* 692 *Reflexes in the White Rat*. American Journal of Physiology-Legacy Content, 1936. 693 **117**(4): p. 609-618.

694 23. Ison, J.R., D.W. McAdam, and G.R. Hammond, *Latency and amplitude changes in the* 695 *acoustic startle reflex of the rat produced by variation in auditory prestimulation*. 696 *Physiology & Behavior*, 1973. **10**(6): p. 1035-1039.

697 24. Oakes, L.M., *Using Habituation of Looking Time to Assess Mental Processes in* 698 *Infancy*. Journal of cognition and development : official journal of the Cognitive 699 Development Society, 2010. **11**(3): p. 255-268.

700 25. Evans, J.G.M. and G.R. Hammond, *Habituation and recovery of orienting in rats as a* 701 *function of stimulus significance*. Animal Learning & Behavior, 1983. **11**(4): p. 424- 702 430.

703 26. Samuels, S.J. and R.H. Anderson, *Visual recognition memory, paired-associate* 704 *learning, and reading achievement*. J Educ Psychol, 1973. **65**(2): p. 160-7.

705 27. Chard, M., J.L. Roulin, and M. Bouvard, *Visual habituation paradigm with adults with* 706 *profound intellectual and multiple disabilities: a new way for cognitive assessment?* J 707 *Appl Res Intellect Disabil*, 2014. **27**(5): p. 481-8.

708 28. Raskin, M., *Decreased skin conductance response habituation in chronically anxious* 709 *patients*. Biological Psychology, 1975. **2**(4): p. 309-319.

710 29. Lader, M.H., *Palmar skin conductance measures in anxiety and phobic states*. Journal 711 *of Psychosomatic Research*, 1967. **11**(3): p. 271-281.

712 30. Silver, A.I., *Effects of prior CS presentations on classical conditioning of the skin* 713 *conductance response*. Psychophysiology, 1973. **10**(6): p. 583-8.

714 31. Patterson, T., *Skin conductance responding/nonresponding and pupiliometrics in* 715 *chronic schizophrenia. A confirmation of Gruzelier and Venables*. J Nerv Ment Dis, 716 1976. **163**(3): p. 200-9.

717 32. Yamamoto, K., et al., *Habituation failure of skin conductance response after* 718 *intraventricular administration of 6-hydroxydopamine in cats*. Experientia, 1984. 719 **40**(4): p. 344-345.

720 33. Mundy-Castle, A.C. and B.L. McKiever, *The psychophysiological significance of the* 721 *galvanic skin response*. J Exp Psychol, 1953. **46**(1): p. 15-24.

722 34. Woods, D.L. and R. Elmasian, *The habituation of event-related potentials to speech* 723 *sounds and tones*. Electroencephalogr Clin Neurophysiol, 1986. **65**(6): p. 447-59.

724 35. Davis, H., et al., *The slow response of the human cortex to auditory stimuli: Recovery*
725 *process*. *Electroencephalography and Clinical Neurophysiology*, 1966. **21**(2): p. 105-
726 113.

727 36. Hudac, C.M., et al., *Early enhanced processing and delayed habituation to deviance*
728 *sounds in autism spectrum disorder*. *Brain Cogn*, 2018. **123**: p. 110-119.

729 37. Hall, R.D., *Habituation of evoked potentials in the rat under conditions of behavioral*
730 *control*. *Electroencephalogr Clin Neurophysiol*, 1968. **24**(2): p. 155-65.

731 38. Breiter, H.C., et al., *Response and Habituation of the Human Amygdala during Visual*
732 *Processing of Facial Expression*. *Neuron*, 1996. **17**(5): p. 875-887.

733 39. Plichta, M.M., et al., *Amygdala habituation: A reliable fMRI phenotype*. *NeuroImage*,
734 2014. **103**: p. 383-390.

735 40. Stenroos, P., et al., *Awake Rat Brain Functional Magnetic Resonance Imaging Using*
736 *Standard Radio Frequency Coils and a 3D Printed Restraint Kit*. *Frontiers in*
737 *Neuroscience*, 2018. **12**(548).

738 41. Tamásy, V., et al., *Open-field behavior, habituation and passive avoidance learning: Effect of ACTH and hydrocortisone on Normal and adrenalectomized rats*. *Physiology*
739 & *Behavior*, 1973. **10**(6): p. 995-1000.

741 42. Bolivar, V.J., *Intrasession and intersession habituation in mice: from inbred strain*
742 *variability to linkage analysis*. *Neurobiology of learning and memory*, 2009. **92**(2): p.
743 206-214.

744 43. Ramaswami, M., *Network plasticity in adaptive filtering and behavioral habituation*.
745 *Neuron*, 2014. **82**(6): p. 1216-29.

746 44. Das, S., et al., *Plasticity of local GABAergic interneurons drives olfactory habituation*.
747 *Proc Natl Acad Sci U S A*, 2011. **108**(36): p. E646-54.

748 45. Sadanandappa, M.K., et al., *Synapsin function in GABA-ergic interneurons is required*
749 *for short-term olfactory habituation*. *J Neurosci*, 2013. **33**(42): p. 16576-85.

750 46. Sudhakaran, I.P., et al., *Plasticity of recurrent inhibition in the Drosophila antennal*
751 *lobe*. *J Neurosci*, 2012. **32**(21): p. 7225-31.

752 47. Christoffersen, G.R., *Habituation: events in the history of its characterization and*
753 *linkage to synaptic depression. A new proposed kinetic criterion for its identification*.
754 *Prog Neurobiol*, 1997. **53**(1): p. 45-66.

755 48. Gover, T.D. and T.W. Abrams, *Insights into a molecular switch that gates sensory*
756 *neuron synapses during habituation in Aplysia*. *Neurobiol Learn Mem*, 2009. **92**(2): p.
757 155-65.

758 49. Kupfermann, I., et al., *Neuronal correlates of habituation and dishabituation of the*
759 *gill-withdrawal reflex in Aplysia*. *Science*, 1970. **167**(3926): p. 1743-5.

760 50. Fischer, T.M. and T.J. Carew, *Activity-dependent potentiation of recurrent inhibition: a*
761 *mechanism for dynamic gain control in the siphon withdrawal reflex of Aplysia*. *J*
762 *Neurosci*, 1993. **13**(3): p. 1302-14.

763 51. Fischer, T.M., et al., *Metaplasticity at identified inhibitory synapses in Aplysia*.
764 *Nature*, 1997. **389**(6653): p. 860-5.

765 52. Koulakov, A.A. and D. Rinberg, *Sparse incomplete representations: a potential role*
766 *of olfactory granule cells*. *Neuron*, 2011. **72**(1): p. 124-36.

767 53. Storace, D.A. and L.B. Cohen, *The Mammalian Olfactory Bulb Contributes to the*
768 *Adaptation of Odor Responses: A Second Perceptual Computation Carried Out by the*
769 *Bulb*. *eNeuro*, 2021. **8**(5).

770 54. Shen, Y., S. Dasgupta, and S. Navlakha, *Habituation as a neural algorithm for online*
771 *odor discrimination*. *Proc Natl Acad Sci U S A*, 2020. **117**(22): p. 12402-12410.

772 55. Green, S.A., et al., *Distinct Patterns of Neural Habituation and Generalization in*
773 *Children and Adolescents With Autism With Low and High Sensory Overresponsivity*.
774 *Am J Psychiatry*, 2019. **176**(12): p. 1010-1020.

775 56. Millin, R., et al., *Reduced auditory cortical adaptation in autism spectrum disorder*.
776 *Elife*, 2018. 7.

777 57. Cui, Y., et al., *Neurofibromin regulation of ERK signaling modulates GABA release*
778 *and learning*. *Cell*, 2008. 135(3): p. 549-60.

779 58. Knappe, S., B. Gerber, and H. Tanimoto, *Synapsin is selectively required for*
780 *anesthesia-sensitive memory*. *Learn Mem*, 2010. 17(2): p. 76-9.

781 59. Chi, P., P. Greengard, and T.A. Ryan, *Synaptic vesicle mobilization is regulated by*
782 *distinct synapsin I phosphorylation pathways at different frequencies*. *Neuron*, 2003.
783 38(1): p. 69-78.

784 60. Hu, Y., et al., *An integrative approach to ortholog prediction for disease-focused and*
785 *other functional studies*. *BMC Bioinformatics*, 2011. 12: p. 357.

786 61. Perez-Rodriguez, M.M., et al., *Brain-derived neurotrophic factor Val66Met genotype*
787 *modulates amygdala habituation*. *Psychiatry Res Neuroimaging*, 2017. 263: p. 85-92.

788 62. Van der Molen, M.J., et al., *Auditory change detection in fragile X syndrome males: a*
789 *brain potential study*. *Clin Neurophysiol*, 2012. 123(7): p. 1309-18.

790 63. Miller, L.J., et al., *Electrodermal responses to sensory stimuli in individuals with*
791 *fragile X syndrome: a preliminary report*. *Am J Med Genet*, 1999. 83(4): p. 268-79.

792 64. Rigoulot, S., et al., *Altered visual repetition suppression in Fragile X Syndrome: New*
793 *evidence from ERPs and oscillatory activity*. *Int J Dev Neurosci*, 2017. 59: p. 52-59.

794 65. Castrén, M., et al., *Augmentation of auditory N1 in children with fragile X syndrome*.
795 *Brain Topogr*, 2003. 15(3): p. 165-71.

796 66. Ethridge, L.E., et al., *Reduced habituation of auditory evoked potentials indicate*
797 *cortical hyper-excitability in Fragile X Syndrome*. *Transl Psychiatry*, 2016. 6: p. e787.

798 67. Yang, J.C., et al., *ERP abnormalities elicited by word repetition in fragile X-*
799 *associated tremor/ataxia syndrome (FXTAS) and amnestic MCI*. *Neuropsychologia*,
800 2014. 63: p. 34-42.

801 68. Yang, J.C., et al., *Memantine Improves Attentional Processes in Fragile X-Associated*
802 *Tremor/Ataxia Syndrome: Electrophysiological Evidence from a Randomized*
803 *Controlled Trial*. *Sci Rep*, 2016. 6: p. 21719.

804 69. Schneider, A., et al., *Electrocortical changes associated with minocycline treatment in*
805 *fragile X syndrome*. *J Psychopharmacol*, 2013. 27(10): p. 956-63.

806 70. Knoth, I.S., et al., *Auditory repetition suppression alterations in relation to cognitive*
807 *functioning in fragile X syndrome: a combined EEG and machine learning approach*.
808 *J Neurodev Disord*, 2018. 10(1): p. 4.

809 71. Di Lorenzo, C., et al., *The upstream Variable Number Tandem Repeat polymorphism*
810 *of the monoamine oxidase type A gene influences trigeminal pain-related evoked*
811 *responses*. *Eur J Neurosci*, 2014. 39(3): p. 501-7.

812 72. Carreno-Munoz, M.I., et al., *Sensory processing dysregulations as reliable*
813 *translational biomarkers in SYNGAP1 haploinsufficiency*. *Brain*, 2021.

814 73. Scott, K.E., et al., *Altered Auditory Processing, Filtering, and Reactivity in the*
815 *Cntnap2 Knock-Out Rat Model for Neurodevelopmental Disorders*. *J Neurosci*, 2018.
816 38(40): p. 8588-8604.

817 74. Vomund, S., et al., *Behavioral Resilience and Sensitivity to Locally Restricted*
818 *Cortical Migration Deficits Induced by In Utero Knockdown of Disabled-1 in the*
819 *Adult Rat*. *Cereb Cortex*, 2017. 27(3): p. 2052-2063.

820 75. Adrover, M.F., et al., *Hippocampal infection with HSV-1-derived vectors expressing*
821 *an NMDAR1 antisense modifies behavior*. *Genes Brain Behav*, 2003. 2(2): p. 103-13.

822 76. Papadakis, M., et al., *Tsc1 (hamartin) confers neuroprotection against ischemia by*
823 *inducing autophagy*. *Nat Med*, 2013. 19(3): p. 351-7.

824 77. Kondravova, A.A., et al., *Circadian clock proteins control adaptation to novel*
825 *environment and memory formation*. *Aging (Albany NY)*, 2010. 2(5): p. 285-97.

826 78. Schaefer, T.L., et al., *Targeted mutations in the Na,K-ATPase alpha 2 isoform confer*
827 *ouabain resistance and result in abnormal behavior in mice*. *Synapse*, 2011. **65**(6): p.
828 520-31.

829 79. Kirshenbaum, G.S., et al., *Characterization of cognitive deficits in mice with an*
830 *alternating hemiplegia-linked mutation*. *Behav Neurosci*, 2015. **129**(6): p. 822-31.

831 80. Naruhashi, K., et al., *Abnormalities of sensory and memory functions in mice lacking*
832 *Bsg gene*. *Biochem Biophys Res Commun*, 1997. **236**(3): p. 733-7.

833 81. Lo, S.C., et al., *Caspase-3 deficiency results in disrupted synaptic homeostasis and*
834 *impaired attention control*. *J Neurosci*, 2015. **35**(5): p. 2118-32.

835 82. Ebel, P., et al., *Inactivation of ceramide synthase 6 in mice results in an altered*
836 *sphingolipid metabolism and behavioral abnormalities*. *J Biol Chem*, 2013. **288**(29):
837 p. 21433-21447.

838 83. Bainbridge, N.K., et al., *Learning and memory impairments in a congenic C57BL/6*
839 *strain of mice that lacks the M2 muscarinic acetylcholine receptor subtype*. *Behav*
840 *Brain Res*, 2008. **190**(1): p. 50-8.

841 84. Drenan, R.M., et al., *In vivo activation of midbrain dopamine neurons via sensitized,*
842 *high-affinity alpha 6 nicotinic acetylcholine receptors*. *Neuron*, 2008. **60**(1): p. 123-
843 36.

844 85. Barbarese, E., et al., *Conditional knockout of tumor overexpressed gene in mouse*
845 *neurons affects RNA granule assembly, granule translation, LTP and short term*
846 *habituation*. *PLoS One*, 2013. **8**(8): p. e69989.

847 86. Bolivar, V.J., J. Scott Ganus, and A. Messer, *The development of behavioral*
848 *abnormalities in the motor neuron degeneration (mnd) mouse*. *Brain Res*, 2002.
849 **937**(1-2): p. 74-82.

850 87. Yang, J., et al., *DGKiota regulates presynaptic release during mGluR-dependent LTD*.
851 *EMBO J*, 2011. **30**(1): p. 165-80.

852 88. Walsh, J., et al., *Disruption of exploratory and habituation behavior in mice with*
853 *mutation of DISC1: an ethologically based analysis*. *J Neurosci Res*, 2012. **90**(7): p.
854 1445-53.

855 89. Halberstadt, A.L. and M.A. Geyer, *Habituation and sensitization of acoustic startle:*
856 *opposite influences of dopamine D1 and D2-family receptors*. *Neurobiol Learn Mem*,
857 2009. **92**(2): p. 243-8.

858 90. McNamara, F.N., et al., *Congenic D1A dopamine receptor mutants: ethologically*
859 *based resolution of behavioural topography indicates genetic background as a*
860 *determinant of knockout phenotype*. *Neuropsychopharmacology*, 2003. **28**(1): p. 86-
861 99.

862 91. Bhardwaj, S.K., et al., *Behavioral characterization of dysbindin-1 deficient sandy*
863 *mice*. *Behav Brain Res*, 2009. **197**(2): p. 435-41.

864 92. Cox, M.M., et al., *Neurobehavioral abnormalities in the dysbindin-1 mutant, sandy,*
865 *on a C57BL/6J genetic background*. *Genes Brain Behav*, 2009. **8**(4): p. 390-7.

866 93. Gallitano-Mendel, A., et al., *The immediate early gene early growth response gene 3*
867 *mediates adaptation to stress and novelty*. *Neuroscience*, 2007. **148**(3): p. 633-43.

868 94. Ganesh, S., et al., *Targeted disruption of the Epm2a gene causes formation of Lafora*
869 *inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired*
870 *behavioral response in mice*. *Hum Mol Genet*, 2002. **11**(11): p. 1251-62.

871 95. Choleris, E., et al., *Involvement of estrogen receptor alpha, beta and oxytocin in social*
872 *discrimination: A detailed behavioral analysis with knockout female mice*. *Genes*
873 *Brain Behav*, 2006. **5**(7): p. 528-39.

874 96. Restivo, L., et al., *Enriched environment promotes behavioral and morphological*
875 *recovery in a mouse model for the fragile X syndrome*. *Proc Natl Acad Sci U S A*,
876 2005. **102**(32): p. 11557-62.

877 97. Lovelace, J.W., et al., *Matrix metalloproteinase-9 deletion rescues auditory evoked*
878 *potential habituation deficit in a mouse model of Fragile X Syndrome*. *Neurobiol Dis*,
879 2016. **89**: p. 126-35.

880 98. Frisch, C., et al., *Stimulus complexity dependent memory impairment and changes in*
881 *motor performance after deletion of the neuronal gap junction protein connexin36 in*
882 *mice*. *Behav Brain Res*, 2005. **157**(1): p. 177-85.

883 99. Meirsman, A.C., et al., *GPR88 in D1R-Type and D2R-Type Medium Spiny Neurons*
884 *Differentially Regulates Affective and Motor Behavior*. *eNeuro*, 2019. **6**(4).

885 100. Bygrave, A.M., et al., *Hippocampal-prefrontal coherence mediates working memory*
886 *and selective attention at distinct frequency bands and provides a causal link between*
887 *schizophrenia and its risk gene GRIA1*. *Transl Psychiatry*, 2019. **9**(1): p. 142.

888 101. Moy, S.S., et al., *Preweaning sensorimotor deficits and adolescent hypersociability in*
889 *Grin1 knockdown mice*. *Dev Neurosci*, 2012. **34**(2-3): p. 159-73.

890 102. Halberstadt, A.L., et al., *Interactive effects of mGlu5 and 5-HT2A receptors on*
891 *locomotor activity in mice*. *Psychopharmacology (Berl)*, 2011. **215**(1): p. 81-92.

892 103. Sakurai, T., et al., *Haploinsufficiency of Gtf2i, a gene deleted in Williams Syndrome,*
893 *leads to increases in social interactions*. *Autism Res*, 2011. **4**(1): p. 28-39.

894 104. Kreilaus, F., et al., *First behavioural assessment of a novel Immp2l knockdown mouse*
895 *model with relevance for Gilles de la Tourette syndrome and Autism spectrum*
896 *disorder*. *Behav Brain Res*, 2019. **374**: p. 112057.

897 105. Typlt, M., et al., *Habituation of reflexive and motivated behavior in mice with*
898 *deficient BK channel function*. *Front Integr Neurosci*, 2013. **7**: p. 79.

899 106. Comim, C.M., et al., *Central nervous system involvement in the animal model of*
900 *myodystrophy*. *Mol Neurobiol*, 2013. **48**(1): p. 71-7.

901 107. Catania, E.H., A. Pimenta, and P. Levitt, *Genetic deletion of Lsamp causes*
902 *exaggerated behavioral activation in novel environments*. *Behav Brain Res*, 2008.
903 **188**(2): p. 380-90.

904 108. Bariselli, S., et al., *Role of VTA dopamine neurons and neuroligin 3 in sociability*
905 *traits related to nonfamiliar conspecific interaction*. *Nat Commun*, 2018. **9**(1): p.
906 3173.

907 109. Jager, J., et al., *Behavioral changes and dopaminergic dysregulation in mice lacking*
908 *the nuclear receptor Rev-erbalpha*. *Mol Endocrinol*, 2014. **28**(4): p. 490-8.

909 110. Taylor, S.B., et al., *Disruption of the neuregulin 1 gene in the rat alters HPA axis*
910 *activity and behavioral responses to environmental stimuli*. *Physiol Behav*, 2011.
911 **104**(2): p. 205-14.

912 111. Kass, M.D., A.H. Moberly, and J.P. McGann, *Spatiotemporal alterations in primary*
913 *odorant representations in olfactory marker protein knockout mice*. *PLoS One*, 2013.
914 **8**(4): p. e61431.

915 112. Jukic, M.M., et al., *Abnormal development of monoaminergic neurons is implicated in*
916 *mood fluctuations and bipolar disorder*. *Neuropsychopharmacology*, 2015. **40**(4): p.
917 839-48.

918 113. Calabresi, P., et al., *Tissue plasminogen activator controls multiple forms of synaptic*
919 *plasticity and memory*. *Eur J Neurosci*, 2000. **12**(3): p. 1002-12.

920 114. Ammassari-Teule, M., et al., *Learning about the context in genetically-defined mice*.
921 *Behav Brain Res*, 2001. **125**(1-2): p. 195-204.

922 115. Wang, J., et al., *Adult conditional knockout of PGC-1alpha in GABAergic neurons*
923 *causes exaggerated startle reactivity, impaired short-term habituation and*
924 *hyperactivity*. *Brain Res Bull*, 2020. **157**: p. 128-139.

925 116. Zhu, X.R., et al., *Non-motor behavioural impairments in parkin-deficient mice*. *Eur J*
926 *Neurosci*, 2007. **26**(7): p. 1902-11.

927 117. Rial, D., et al., *Behavioral phenotyping of Parkin-deficient mice: looking for early*
928 *preclinical features of Parkinson's disease*. *PLoS One*, 2014. **9**(12): p. e114216.

929 118. Takahashi, N., et al., *Loss of function studies in mice and genetic association link*
930 *receptor protein tyrosine phosphatase alpha to schizophrenia*. Biol Psychiatry, 2011.
931 **70**(7): p. 626-35.

932 119. Erkens, M., et al., *Protein tyrosine phosphatase receptor type R deficient mice exhibit*
933 *increased exploration in a new environment and impaired novel object recognition*
934 *memory*. Behav Brain Res, 2014. **265**: p. 111-20.

935 120. Cushman, J., et al., *Neurobehavioral changes resulting from recombinase activation*
936 *gene 1 deletion*. Clin Diagn Lab Immunol, 2003. **10**(1): p. 13-8.

937 121. Bell, K., et al., *Harm avoidance, anxiety, and response to novelty in the adolescent S-*
938 *100beta transgenic mouse: role of serotonin and relevance to Down syndrome*.
939 Neuropsychopharmacology, 2003. **28**(10): p. 1810-6.

940 122. Gerlai, R. and J. Roder, *Abnormal exploratory behavior in transgenic mice carrying*
941 *multiple copies of the human gene for S100 beta*. J Psychiatry Neurosci, 1995. **20**(2):
942 p. 105-12.

943 123. Bariselli, S., et al., *SHANK3 Downregulation in the Ventral Tegmental Area*
944 *Accelerates the Extinction of Contextual Associations Induced by Juvenile Non-*
945 *familiar Conspecific Interaction*. Front Mol Neurosci, 2018. **11**: p. 360.

946 124. Fox, M.A., et al., *An evaluation of the serotonin system and perseverative, compulsive,*
947 *stereotypical, and hyperactive behaviors in dopamine transporter (DAT) knockout*
948 *mice*. Psychopharmacology (Berl), 2013. **227**(4): p. 685-95.

949 125. Parkitna, J.R., et al., *Loss of the serum response factor in the dopamine system leads*
950 *to hyperactivity*. FASEB J, 2010. **24**(7): p. 2427-35.

951 126. Yukawa, K., et al., *Down-regulation of dopamine transporter and abnormal behavior*
952 *in STAT6-deficient mice*. Int J Mol Med, 2005. **15**(5): p. 819-25.

953 127. Fukamauchi, F., et al., *Paradoxical behavioral response to apomorphine in tenascin-*
954 *gene knockout mouse*. Eur J Pharmacol, 1997. **338**(1): p. 7-10.

955 128. Maddaloni, G., et al., *Serotonin depletion causes valproate-responsive manic-like*
956 *condition and increased hippocampal neuroplasticity that are reversed by stress*. Sci
957 Rep, 2018. **8**(1): p. 11847.

958 129. Choi, Y.S., et al., *Insertional mutation in the intron 1 of Unc5h3 gene induces ataxic,*
959 *lean and hyperactive phenotype in mice*. Exp Anim, 2003. **52**(4): p. 273-83.

960 130. Kofman, O., et al., *Habituation, discrimination and anxiety in transgenic mice*
961 *overexpressing acetylcholinesterase splice variants*. Brain Res, 2007. **1185**: p. 170-8.

962 131. Lam, H.A., et al., *Elevated tonic extracellular dopamine concentration and altered*
963 *dopamine modulation of synaptic activity precede dopamine loss in the striatum of*
964 *mice overexpressing human alpha-synuclein*. J Neurosci Res, 2011. **89**(7): p. 1091-
965 102.

966 132. Magen, I., et al., *Intranasal NAP (davunetide) decreases tau hyperphosphorylation*
967 *and moderately improves behavioral deficits in mice overexpressing alpha-synuclein*.
968 Pharmacol Res Perspect, 2014. **2**(5): p. e00065.

969 133. Bolivar, V.J., K. Manley, and A. Messer, *Early exploratory behavior abnormalities in*
970 *R6/1 Huntington's disease transgenic mice*. Brain Res, 2004. **1005**(1-2): p. 29-35.

971 134. Van Raamsdonk, J.M., et al., *Cognitive dysfunction precedes neuropathology and*
972 *motor abnormalities in the YAC128 mouse model of Huntington's disease*. J Neurosci, 2005. **25**(16): p. 4169-80.

973 135. Thyme, S.B., et al., *Phenotypic Landscape of Schizophrenia-Associated Genes Defines*
974 *Candidates and Their Shared Functions*. Cell, 2019. **177**(2): p. 478-491 e20.

975 136. Wolman, M.A., et al., *A genome-wide screen identifies PAPP-AA-mediated IGFR*
976 *signaling as a novel regulator of habituation learning*. Neuron, 2015. **85**(6): p. 1200-
977 11.

978 137. Marquez-Legorreta, E., et al., *Brain-wide visual habituation networks in wild type and*
979 *fmrl zebrafish*. bioRxiv, 2019: p. 722074.

980

981 138. Wolman, M.A., et al., *Modulation of cAMP and ras signaling pathways improves*
982 *distinct behavioral deficits in a zebrafish model of neurofibromatosis type 1*. *Cell Rep*,
983 2014. **8**(5): p. 1265-70.

984 139. Randlett, O., et al., *Distributed Plasticity Drives Visual Habituation Learning in*
985 *Larval Zebrafish*. *Curr Biol*, 2019. **29**(8): p. 1337-1345 e4.

986 140. Ziv, L., et al., *An affective disorder in zebrafish with mutation of the glucocorticoid*
987 *receptor*. *Mol Psychiatry*, 2013. **18**(6): p. 681-91.

988 141. Fenckova, M., et al., *Habituation Learning Is a Widely Affected Mechanism in*
989 *Drosophila Models of Intellectual Disability and Autism Spectrum Disorders*. *Biol*
990 *Psychiatry*, 2019. **86**(4): p. 294-305.

991 142. Asztalos, Z., N. Arora, and T. Tully, *Olfactory jump reflex habituation in Drosophila*
992 *and effects of classical conditioning mutations*. *J Neurogenet*, 2007. **21**(1-2): p. 1-18.

993 143. Duerr, J.S. and W.G. Quinn, *Three Drosophila mutations that block associative*
994 *learning also affect habituation and sensitization*. *Proc Natl Acad Sci U S A*, 1982.
995 **79**(11): p. 3646-50.

996 144. Engel, J.E. and C.F. Wu, *Altered habituation of an identified escape circuit in*
997 *Drosophila memory mutants*. *J Neurosci*, 1996. **16**(10): p. 3486-99.

998 145. McCann, C., et al., *The Ataxin-2 protein is required for microRNA function and*
999 *synapse-specific long-term olfactory habituation*. *Proc Natl Acad Sci U S A*, 2011.
1000 **108**(36): p. E655-62.

1001 146. Bakthavachalu, B., et al., *RNP-Granule Assembly via Ataxin-2 Disordered Domains Is*
1002 *Required for Long-Term Memory and Neurodegeneration*. *Neuron*, 2018. **98**(4): p.
1003 754-766 e4.

1004 147. Esmaeli-Nieh, S., et al., *BOD1 Is Required for Cognitive Function in Humans and*
1005 *Drosophila*. *PLoS Genet*, 2016. **12**(5): p. e1006022.

1006 148. Mullin, A.P., et al., *Gene dosage in the dysbindin schizophrenia susceptibility network*
1007 *differentially affect synaptic function and plasticity*. *J Neurosci*, 2015. **35**(1): p. 325-
1008 38.

1009 149. Eddison, M., et al., *A genetic screen for olfactory habituation mutations in*
1010 *Drosophila: analysis of novel foraging alleles and an underlying neural circuit*. *PLoS*
1011 *One*, 2012. **7**(12): p. e51684.

1012 150. Lu, C.S., et al., *Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-*
1013 *dependent autophosphorylation*. *Neuron*, 2003. **40**(6): p. 1185-97.

1014 151. van Bon, B.W., et al., *CEP89 is required for mitochondrial metabolism and neuronal*
1015 *function in man and fly*. *Hum Mol Genet*, 2013. **22**(15): p. 3138-51.

1016 152. Stessman, H.A., et al., *Targeted sequencing identifies 91 neurodevelopmental-*
1017 *disorder risk genes with autism and developmental-disability biases*. *Nat Genet*, 2017.
1018 **49**(4): p. 515-526.

1019 153. Kramer, J.M., et al., *Epigenetic regulation of learning and memory by Drosophila*
1020 *EHMT/G9a*. *PLoS Biol*, 2011. **9**(1): p. e1000569.

1021 154. Castells-Nobau, A., et al., *Conserved regulation of neurodevelopmental processes and*
1022 *behavior by FoxP in Drosophila*. *PLoS One*, 2019. **14**(2): p. e0211652.

1023 155. Sudhakaran, I.P., et al., *FMRP and Ataxin-2 function together in long-term olfactory*
1024 *habituation and neuronal translational control*. *Proc Natl Acad Sci U S A*, 2014.
1025 **111**(1): p. E99-E108.

1026 156. Willemse, M.H., et al., *GATAD2B loss-of-function mutations cause a recognisable*
1027 *syndrome with intellectual disability and are associated with learning deficits and*
1028 *synaptic undergrowth in Drosophila*. *J Med Genet*, 2013. **50**(8): p. 507-14.

1029 157. Wolf, F.W., et al., *GSK-3/Shaggy regulates olfactory habituation in Drosophila*. *Proc*
1030 *Natl Acad Sci U S A*, 2007. **104**(11): p. 4653-7.

1031 158. Joiner, M.A., et al., *Effects of mutant Drosophila K⁺ channel subunits on habituation*
1032 *of the olfactory jump response*. *J Neurogenet*, 2007. **21**(1-2): p. 45-58.

1033 159. Engel, J.E. and C.F. Wu, *Genetic dissection of functional contributions of specific*
1034 *potassium channel subunits in habituation of an escape circuit in Drosophila*. J
1035 *Neurosci*, 1998. **18**(6): p. 2254-67.

1036 160. Singgih, E.L., et al., *Investigating cytosolic 5'-nucleotidase II family genes as*
1037 *candidates for neuropsychiatric disorders in Drosophila (114/150 chr)*. *Transl*
1038 *Psychiatry*, 2021. **11**(1): p. 55.

1039 161. Muha, V., et al., *O-GlcNAcase contributes to cognitive function in Drosophila*. *J Biol*
1040 *Chem*, 2020. **295**(26): p. 8636-8646.

1041 162. O'Dell, K.M., *The inactive mutation leads to abnormal experience-dependent*
1042 *courtship modification in male Drosophila melanogaster*. *Behav Genet*, 1994. **24**(4):
1043 p. 381-8.

1044 163. Stessman, H.A.F., et al., *Disruption of POGZ Is Associated with Intellectual Disability*
1045 *and Autism Spectrum Disorders*. *Am J Hum Genet*, 2016. **98**(3): p. 541-552.

1046 164. Engel, J.E., et al., *A cGMP-dependent protein kinase gene, foraging, modifies*
1047 *habituation-like response decrement of the giant fiber escape circuit in Drosophila*.
1048 *Learn Mem*, 2000. **7**(5): p. 341-52.

1049 165. Scheiner, R., M.B. Sokolowski, and J. Erber, *Activity of cGMP-dependent protein*
1050 *kinase (PKG) affects sucrose responsiveness and habituation in Drosophila*
1051 *melanogaster*. *Learn Mem*, 2004. **11**(3): p. 303-11.

1052 166. Lugtenberg, D., et al., *De novo loss-of-function mutations in WAC cause a*
1053 *recognizable intellectual disability syndrome and learning deficits in Drosophila*. *Eur*
1054 *J Hum Genet*, 2016. **24**(8): p. 1145-53.

1055 167. McDiarmid, T.A., et al., *Systematic phenomics analysis of autism-associated genes*
1056 *reveals parallel networks underlying reversible impairments in habituation*. *Proc Natl*
1057 *Acad Sci U S A*, 2020. **117**(1): p. 656-667.

1058 168. Ewald, C.Y., et al., *Pan-neuronal expression of APL-1, an APP-related protein,*
1059 *disrupts olfactory, gustatory, and touch plasticity in Caenorhabditis elegans*. *J*
1060 *Neurosci*, 2012. **32**(30): p. 10156-69.

1061 169. Ardiel, E.L., et al., *Insights into the roles of CMK-1 and OGT-1 in interstimulus*
1062 *interval-dependent habituation in Caenorhabditis elegans*. *Proc Biol Sci*, 2018.
1063 **285**(1891).

1064 170. Timbers, T.A. and C.H. Rankin, *Tap withdrawal circuit interneurons require CREB*
1065 *for long-term habituation in Caenorhabditis elegans*. *Behav Neurosci*, 2011. **125**(4):
1066 p. 560-6.

1067 171. Morrison, G.E. and D. van der Kooy, *A mutation in the AMPA-type glutamate*
1068 *receptor, glr-1, blocks olfactory associative and nonassociative learning in*
1069 *Caenorhabditis elegans*. *Behav Neurosci*, 2001. **115**(3): p. 640-9.

1070 172. Rose, J.K., et al., *GLR-1, a non-NMDA glutamate receptor homolog, is critical for*
1071 *long-term memory in Caenorhabditis elegans*. *J Neurosci*, 2003. **23**(29): p. 9595-9.

1072 173. Emtage, L., et al., *MAGI-1 modulates AMPA receptor synaptic localization and*
1073 *behavioral plasticity in response to prior experience*. *PLoS One*, 2009. **4**(2): p. e4613.

1074 174. Rose, J.K., K.R. Kaun, and C.H. Rankin, *A new group-training procedure for*
1075 *habituation demonstrates that presynaptic glutamate release contributes to long-term*
1076 *memory in Caenorhabditis elegans*. *Learn Mem*, 2002. **9**(3): p. 130-7.

1077 175. Ashburner, M., et al., *Gene ontology: tool for the unification of biology*. *The Gene*
1078 *Ontology Consortium*. *Nat Genet*, 2000. **25**(1): p. 25-9.

1079 176. Carbon, S., et al., *AmiGO: online access to ontology and annotation data*.
1080 *Bioinformatics*, 2009. **25**(2): p. 288-9.

1081 177. Gene Ontology, C., *The Gene Ontology resource: enriching a GOld mine*. *Nucleic*
1082 *Acids Res*, 2021. **49**(D1): p. D325-D334.

1083 178. Mi, H., et al., *PANTHER version 14: more genomes, a new PANTHER GO-slim and*
1084 *improvements in enrichment analysis tools*. Nucleic Acids Res, 2019. **47**(D1): p.
1085 D419-D426.

1086 179. Kochinke, K., et al., *Systematic Phenomics Analysis Deconvolutes Genes Mutated in*
1087 *Intellectual Disability into Biologically Coherent Modules*. Am J Hum Genet, 2016.
1088 **98**(1): p. 149-64.

1089 180. Krumm, N., et al., *A de novo convergence of autism genetics and molecular*
1090 *neuroscience*. Trends Neurosci, 2014. **37**(2): p. 95-105.

1091 181. Borrie, S.C., et al., *Cognitive Dysfunctions in Intellectual Disabilities: The*
1092 *Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways*. Annu Rev
1093 Genomics Hum Genet, 2017. **18**: p. 115-142.

1094 182. Wolman, M.A., et al., *Chemical modulation of memory formation in larval zebrafish*.
1095 Proc Natl Acad Sci U S A, 2011. **108**(37): p. 15468-73.

1096 183. Ding, Y., A. Qiao, and G.H. Fan, *Indirubin-3'-monoxime rescues spatial memory*
1097 *deficits and attenuates beta-amyloid-associated neuropathology in a mouse model of*
1098 *Alzheimer's disease*. Neurobiol Dis, 2010. **39**(2): p. 156-68.

1099 184. Yang, Y.M., et al., *A small molecule screen in stem-cell-derived motor neurons*
1100 *identifies a kinase inhibitor as a candidate therapeutic for ALS*. Cell Stem Cell, 2013.
1101 **12**(6): p. 713-26.

1102 185. Nguyen, L.D., T.T. Fischer, and B.E. Ehrlich, *Pharmacological rescue of cognitive*
1103 *function in a mouse model of chemobrain*. Mol Neurodegener, 2021. **16**(1): p. 41.

1104 186. Yamanaka, H., et al., *Effect of olprinone, a phosphodiesterase III inhibitor, on balance*
1105 *of cerebral oxygen supply and demand during cardiopulmonary bypass*. J Cardiovasc
1106 Pharmacol, 2011. **57**(5): p. 579-83.

1107 187. Fujita, M., et al., *cAMP signaling in brain is decreased in unmedicated depressed*
1108 *patients and increased by treatment with a selective serotonin reuptake inhibitor*. Mol
1109 Psychiatry, 2017. **22**(5): p. 754-759.

1110 188. Blokland, A., et al., *Acute treatment with the PDE4 inhibitor roflumilast improves*
1111 *verbal word memory in healthy old individuals: a double-blind placebo-controlled*
1112 *study*. Neurobiol Aging, 2019. **77**: p. 37-43.

1113 189. Gilleen, J., et al., *An experimental medicine study of the phosphodiesterase-4*
1114 *inhibitor, roflumilast, on working memory-related brain activity and episodic memory*
1115 *in schizophrenia patients*. Psychopharmacology (Berl), 2021. **238**(5): p. 1279-1289.

1116 190. Zaman, T., et al., *BK Channels Mediate Synaptic Plasticity Underlying Habituation in*
1117 *Rats*. J Neurosci, 2017. **37**(17): p. 4540-4551.

1118 191. Carreno-Munoz, M.I., et al., *Potential Involvement of Impaired BKCa Channel*
1119 *Function in Sensory Defensiveness and Some Behavioral Disturbances Induced by*
1120 *Unfamiliar Environment in a Mouse Model of Fragile X Syndrome*.
1121 Neuropsychopharmacology, 2018. **43**(3): p. 492-502.

1122 192. de Gooijer, M.C., et al., *Buparlisib is a brain penetrable pan-PI3K inhibitor*. Sci Rep,
1123 2018. **8**(1): p. 10784.

1124 193. Yi, J.H., et al., *Direct pharmacological Akt activation rescues Alzheimer's disease like*
1125 *memory impairments and aberrant synaptic plasticity*. Neuropharmacology, 2018.
1126 **128**: p. 282-292.

1127 194. Wu, W., et al., *Inhibition of Rac1-dependent forgetting alleviates memory deficits in*
1128 *animal models of Alzheimer's disease*. Protein Cell, 2019. **10**(10): p. 745-759.

1129 195. Russo, E., et al., *Everolimus improves memory and learning while worsening*
1130 *depressive- and anxiety-like behavior in an animal model of depression*. J Psychiatr
1131 Res, 2016. **78**: p. 1-10.

1132 196. Fanoudi, S., et al., *Everolimus, a mammalian target of rapamycin inhibitor,*
1133 *ameliorated streptozotocin-induced learning and memory deficits via neurochemical*
1134 *alterations in male rats*. EXCLI J, 2018. **17**: p. 999-1017.

1135 197. Das, A., et al., *Affecting long-term fear memory formation through optical control of*
1136 *Rac1 GTPase and PAK activity in lateral amygdala*. *Sci Rep*, 2017. **7**(1): p. 13930.

1137 198. Anderson, M.K., et al., *A Review of Selumetinib in the Treatment of*
1138 *Neurofibromatosis Type 1-Related Plexiform Neurofibromas*. *Ann Pharmacother*,
1139 2021: p. 10600280211046298.

1140 199. Walsh, K.S., et al., *Impact of MEK Inhibitor Therapy on Neurocognitive Functioning*
1141 *in NF1*. *Neurol Genet*, 2021. **7**(5): p. e616.

1142 200. Henderson, B.W., et al., *Pharmacologic inhibition of LIMK1 provides dendritic spine*
1143 *resilience against beta-amyloid*. *Sci Signal*, 2019. **12**(587).

1144 201. Grimes, M.T., et al., *Epac activation initiates associative odor preference memories in*
1145 *the rat pup*. *Learn Mem*, 2015. **22**(2): p. 74-82.

1146 202. Vardigan, J.D., et al., *The selective phosphodiesterase 9 (PDE9) inhibitor PF-*
1147 *04447943 attenuates a scopolamine-induced deficit in a novel rodent attention task*. *J*
1148 *Neurogenet*, 2011. **25**(4): p. 120-6.

1149 203. Palmeri, A., et al., *Inhibition of phosphodiesterase-5 rescues age-related impairment*
1150 *of synaptic plasticity and memory*. *Behav Brain Res*, 2013. **240**: p. 11-20.

1151 204. Li, C., et al., *Retigabine ameliorates acute stress-induced impairment of spatial*
1152 *memory retrieval through regulating USP2 signaling pathways in hippocampal CA1*
1153 *area*. *Neuropharmacology*, 2018. **135**: p. 151-162.

1154 205. Tan, A., et al., *Effects of the KCNQ channel opener ezogabine on functional*
1155 *connectivity of the ventral striatum and clinical symptoms in patients with major*
1156 *depressive disorder*. *Mol Psychiatry*, 2020. **25**(6): p. 1323-1333.

1157 206. Omrani, A., et al., *HCN channels are a novel therapeutic target for cognitive*
1158 *dysfunction in Neurofibromatosis type 1*. *Mol Psychiatry*, 2015. **20**(11): p. 1311-21.

1159 207. Bruch, J., et al., *PERK activation mitigates tau pathology in vitro and in vivo*. *EMBO*
1160 *Mol Med*, 2017. **9**(3): p. 371-384.

1161 208. Wang, Z.F., et al., *Salubrinal offers neuroprotection through suppressing endoplasmic*
1162 *reticulum stress, autophagy and apoptosis in a mouse traumatic brain injury model*.
1163 *Neurobiol Learn Mem*, 2019. **161**: p. 12-25.

1164 209. Switon, K., et al., *Molecular neurobiology of mTOR*. *Neuroscience*, 2017. **341**: p. 112-
1165 153.

1166 210. Kushner, S.A., et al., *Modulation of presynaptic plasticity and learning by the H-*
1167 *ras/extracellular signal-regulated kinase/synapsin I signaling pathway*. *J Neurosci*,
1168 2005. **25**(42): p. 9721-34.

1169 211. Simanshu, D.K., D.V. Nissley, and F. McCormick, *RAS Proteins and Their*
1170 *Regulators in Human Disease*. *Cell*, 2017. **170**(1): p. 17-33.

1171 212. Rosina, E., et al., *Disruption of mTOR and MAPK pathways correlates with severity in*
1172 *idiopathic autism*. *Transl Psychiatry*, 2019. **9**(1): p. 50.

1173 213. Menegon, A., et al., *Protein kinase A-mediated synapsin I phosphorylation is a central*
1174 *modulator of Ca²⁺-dependent synaptic activity*. *J Neurosci*, 2006. **26**(45): p. 11670-
1175 81.

1176 214. Chheda, M.G., et al., *Phosphorylation of Snapin by PKA modulates its interaction*
1177 *with the SNARE complex*. *Nat Cell Biol*, 2001. **3**(4): p. 331-8.

1178 215. Kandel, E.R., *The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-*
1179 *2, and CPEB*. *Mol Brain*, 2012. **5**: p. 14.

1180 216. Delhaye, S. and B. Bardoni, *Role of phosphodiesterases in the pathophysiology of*
1181 *neurodevelopmental disorders*. *Molecular Psychiatry*, 2021.

1182 217. Wentzel, C., et al., *Dysbindin links presynaptic proteasome function to homeostatic*
1183 *recruitment of low release probability vesicles*. *Nat Commun*, 2018. **9**(1): p. 267.

1184 218. Kim, S.H. and T.A. Ryan, *Synaptic vesicle recycling at CNS synapses without AP-2*. *J*
1185 *Neurosci*, 2009. **29**(12): p. 3865-74.

1186 219. Yang, J.-C., et al., *Memantine Improves Attentional Processes in Fragile X-Associated*
1187 *Tremor/Ataxia Syndrome: Electrophysiological Evidence from a Randomized*
1188 *Controlled Trial*. *Scientific Reports*, 2016. **6**(1): p. 21719.

1189 220. Hardan, A.Y., et al., *Efficacy and safety of memantine in children with autism*
1190 *spectrum disorder: Results from three phase 2 multicenter studies*. *Autism*, 2019.
1191 **23**(8): p. 2096-2111.

1192 221. Soorya, L.V., et al., *Neurocognitive Outcomes from Memantine: A Pilot, Double-*
1193 *Blind, Placebo-Controlled Trial in Children with Autism Spectrum Disorder*. *J Child*
1194 *Adolesc Psychopharmacol*, 2021. **31**(7): p. 475-484.

1195 222. Zamponi, G.W., *Targeting voltage-gated calcium channels in neurological and*
1196 *psychiatric diseases*. *Nat Rev Drug Discov*, 2016. **15**(1): p. 19-34.

1197 223. Scott, R., et al., *Loss of Cntnap2 Causes Axonal Excitability Deficits, Developmental*
1198 *Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior*. *Cereb*
1199 *Cortex*, 2019. **29**(2): p. 586-597.

1200 224. Luo, C., et al., *Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is*
1201 *a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity*. *PLoS*
1202 *Biology*, 2012. **10**(3): p. e1001283.

1203 225. Laumonnier, F., et al., *Association of a Functional Deficit of the BKCaChannel, a*
1204 *Synaptic Regulator of Neuronal Excitability, With Autism and Mental Retardation*.
1205 *American Journal of Psychiatry*, 2006. **163**(9): p. 1622-1629.

1206 226. Napoli, I., et al., *The Fragile X Syndrome Protein Represses Activity-Dependent*
1207 *Translation through CYFIP1, a New 4E-BP*. *Cell*, 2008. **134**(6): p. 1042-1054.

1208 227. Duy, P.Q. and D.B. Budimirovic, *Fragile X Syndrome: Lessons Learned from the*
1209 *Most Translated Neurodevelopmental Disorder in Clinical Trials*. *Transl Neurosci*,
1210 **8**: p. 7-8.

1211 228. Lovelace, J.W., et al., *Minocycline Treatment Reverses Sound Evoked EEG*
1212 *Abnormalities in a Mouse Model of Fragile X Syndrome*. *Frontiers in Neuroscience*,
1213 **2020**. **14**.

1214 229. Beroun, A., et al., *MMPs in learning and memory and neuropsychiatric disorders*.
1215 *Cellular and Molecular Life Sciences*, 2019. **76**(16): p. 3207-3228.

1216 230. Ghaleiha, A., et al., *Minocycline as Adjunctive Treatment to Risperidone in Children*
1217 *with Autistic Disorder: A Randomized, Double-Blind Placebo-Controlled Trial*. *J*
1218 *Child Adolesc Psychopharmacol*, 2016. **26**(9): p. 784-791.

1219 231. Alrahbeni, T., et al., *Full UPF3B function is critical for neuronal differentiation of*
1220 *neural stem cells*. *Mol Brain*, 2015. **8**: p. 33.

1221 232. Weber, R., et al., *4EHP and GIGYF1/2 Mediate Translation-Coupled Messenger RNA*
1222 *Decay*. *Cell Rep*, 2020. **33**(2): p. 108262.

1223 233. Jafarnejad, S.M., et al., *Translational control of ERK signaling through*
1224 *miRNA/4EHP-directed silencing*. *Elife*, 2018. **7**.

1225 234. Krumm, N., et al., *Excess of rare, inherited truncating mutations in autism*. *Nat Genet*,
1226 **2015**. **47**(6): p. 582-8.

1227 235. Giovannone, B., et al., *GIGYF2 gene disruption in mice results in neurodegeneration*
1228 *and altered insulin-like growth factor signaling*. *Hum Mol Genet*, 2009. **18**(23): p.
1229 **4629-39**.

1230 236. Côté, V., et al., *Distinct patterns of repetition suppression in Fragile X syndrome,*
1231 *down syndrome, tuberous sclerosis complex and mutations in SYNGAP1*. *Brain Res*,
1232 **2021**. **1751**: p. 147205.

1233 237. Schneider, A., et al., *Electrocortical changes associated with minocycline treatment in*
1234 *fragile X syndrome*. *Journal of Psychopharmacology*, 2013. **27**(10): p. 956-963.

1235 238. Ethridge, L.E., et al., *Auditory EEG Biomarkers in Fragile X Syndrome: Clinical*
1236 *Relevance*. *Front Integr Neurosci*, 2019. **13**: p. 60.

1237 239. Knoth, I.S., et al., *Auditory repetition suppression alterations in relation to cognitive*
1238 *functioning in fragile X syndrome: a combined EEG and machine learning approach.*
1239 *Journal of Neurodevelopmental Disorders*, 2018. **10**(1): p. 4.

1240 240. Lovelace, J.W., et al., *Matrix metalloproteinase-9 deletion rescues auditory evoked*
1241 *potential habituation deficit in a mouse model of Fragile X Syndrome*. *Neurobiology*
1242 *of Disease*, 2016. **89**: p. 126-135.

1243 241. Sudhakaran, I.P., et al., *FMRP and Ataxin-2 function together in long-term olfactory*
1244 *habituation and neuronal translational control*. *Proc Natl Acad Sci U S A*, 2014.
1245 **111**(1): p. E99-e108.

1246 242. Guiraud, J.A., et al., *Differential habituation to repeated sounds in infants at high risk*
1247 *for autism*. *NeuroReport*, 2011. **22**(16): p. 845-849.

1248 243. Vivanti, G., et al., *Attention to novelty versus repetition: Contrasting habituation*
1249 *profiles in Autism and Williams syndrome*. *Dev Cogn Neurosci*, 2018. **29**: p. 54-60.

1250 244. Jamal, W., et al., *Reduced Sensory Habituation in Autism and Its Correlation with*
1251 *Behavioral Measures*. *J Autism Dev Disord*, 2020.

1252 245. Edwards, L.A., et al., *Differences in Neural Correlates of Speech Perception in 3*
1253 *Month Olds at High and Low Risk for Autism Spectrum Disorder*. *J Autism Dev*
1254 *Disord*, 2017. **47**(10): p. 3125-3138.

1255 246. Jones, E.J., et al., *Reduced engagement with social stimuli in 6-month-old infants with*
1256 *later autism spectrum disorder: a longitudinal prospective study of infants at high*
1257 *familial risk*. *J Neurodev Disord*, 2016. **8**: p. 7.

1258 247. Tam, F.I., et al., *Altered behavioral and amygdala habituation in high-functioning*
1259 *adults with autism spectrum disorder: an fMRI study*. *Sci Rep*, 2017. **7**(1): p. 13611.

1260 248. Perry, W., et al., *Sensorimotor Gating Deficits in Adults with Autism*. *Biological*
1261 *Psychiatry*, 2007. **61**(4): p. 482-486.

1262 249. Sinha, P., et al., *Autism as a disorder of prediction*. *Proceedings of the National*
1263 *Academy of Sciences of the United States of America*, 2014. **111**(42): p. 15220-
1264 15225.

1265 250. Jansiewicz, E.M., et al., *Impaired Habituation in Children with Attention Deficit*
1266 *Hyperactivity Disorder*. *Cognitive and Behavioral Neurology*, 2004. **17**(1): p. 1-8.

1267 251. Massa, J. and I.H. O'Desky, *Impaired Visual Habituation in Adults With ADHD*.
1268 *Journal of Attention Disorders*, 2011. **16**(7): p. 553-561.

1269 252. Zahn, T.P. and M.J.P. Kruesi, *Autonomic activity in boys with disruptive behavior*
1270 *disorders*. *Psychophysiology*, 1993. **30**(6): p. 605-614.

1271 253. Shibagaki, M., T. Yamanaka, and T. Furuya, *Attention State in Electrodermal Activity*
1272 *during Auditory Stimulation of Children with Attention-Deficit Hyperactivity*
1273 *Disorder*. *Perceptual and Motor Skills*, 1993. **77**(1): p. 331-338.

1274 254. Iaboni, F., V.I. Douglas, and B. Ditto, *Psychophysiological response of ADHD*
1275 *children to reward and extinction*. *Psychophysiology*, 1997. **34**(1): p. 116-23.

1276 255. Geyer, M.A. and D.L. Braff, *Habituation of the Blink reflex in normals and*
1277 *schizophrenic patients*. *Psychophysiology*, 1982. **19**(1): p. 1-6.

1278 256. Williams, L.E., et al., *Reduced habituation in patients with schizophrenia*. *Schizophr*
1279 *Res*, 2013. **151**(1-3): p. 124-32.

1280 257. Holt, D.J., et al., *Sustained activation of the hippocampus in response to fearful faces*
1281 *in schizophrenia*. *Biological Psychiatry*, 2005. **57**(9): p. 1011-1019.

1282 258. Benito, K.G., et al., *Measuring fear change within exposures: Functionally-defined*
1283 *habituation predicts outcome in three randomized controlled trials for pediatric OCD*.
1284 *J Consult Clin Psychol*, 2018. **86**(7): p. 615-630.

1285 259. Podoly, T.Y. and A. Ben-Sasson, *Sensory Habituation as a Shared Mechanism for*
1286 *Sensory Over-Responsivity and Obsessive-Compulsive Symptoms*. *Frontiers in*
1287 *integrative neuroscience*, 2020. **14**: p. 17-17.

1288 260. Geller, D.A., et al., *Fear conditioning and extinction in pediatric obsessive-compulsive disorder*. Annals of clinical psychiatry : official journal of the American Academy of Clinical Psychiatrists, 2017. **29**(1): p. 17-26.

1289 261. Smith, S.J. and A.J. Lees, *Abnormalities of the blink reflex in Gilles de la Tourette syndrome*. Journal of Neurology, Neurosurgery &amp; Psychiatry, 1989. **52**(7): p. 895.

1290 262. Gironell, A., et al., *Abnormalities of the acoustic startle reflex and reaction time in Gilles de la Tourette syndrome*. Clinical Neurophysiology, 2000. **111**(8): p. 1366-1371.

1291 263. Hallett, M., *Tourette Syndrome: Update*. Brain & development, 2015. **37**(7): p. 651-655.

1292 264. Schoenen, J., et al., *Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks*. Eur J Neurol, 1995. **2**(2): p. 115-22.

1293 265. Valeriani, M., et al., *Correlation between abnormal brain excitability and emotional symptomatology in paediatric migraine*. Cephalgia, 2009. **29**(2): p. 204-13.

1294 266. Siniatchkin, M., et al., *Migraine in childhood – are periodically occurring migraine attacks related to dynamic changes of cortical information processing?* Neuroscience Letters, 2000. **279**(1): p. 1-4.

1295 267. Ferguson, I.T., J.A. Lenman, and B.B. Johnston, *Habituation of the orbicularis oculi reflex in dementia and dyskinetic states*. Journal of neurology, neurosurgery, and psychiatry, 1978. **41**(9): p. 824-828.

1296 268. Esteban, A. and S. Giménez-Roldà, *Blink reflex in Huntington's chorea and Parkinson's disease*. Acta Neurol Scand, 1975. **52**(2): p. 145-57.

1297 269. Caraceni, T., et al., *Study of the Excitability Cycle of the Blink Reflex in Huntington's Chorea*. European Neurology, 1976. **14**(6): p. 465-472.

1298 270. Berardelli, A., et al., *Pathophysiology of chorea and bradykinesia in Huntington's disease*. Mov Disord, 1999. **14**(3): p. 398-403.

1299 271. Agostino, R., et al., *Correlation between facial involuntary movements and abnormalities of blink and corneal reflexes in Huntington's chorea*. Movement Disorders, 1988. **3**(4): p. 281-289.

1300 272. van Dellen, A., et al., *Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington's disease*. BMC Neurosci, 2008. **9**: p. 34.

1301 273. Rushworth, G., *OBSERVATIONS ON BLINK REFLEXES*. Journal of Neurology, Neurosurgery &amp; Psychiatry, 1962. **25**(2): p. 93.

1302 274. Pearce, J., H. Aziz, and J.C. Gallagher, *Primitive reflex activity in primary and symptomatic Parkinsonism*. Journal of Neurology, Neurosurgery &amp; Psychiatry, 1968. **31**(5): p. 501.

1303 275. Rao, G., et al., *Does this patient have Parkinson disease?* Journal of the American Medical Association, 2003. **289**(3): p. 347-353.

1304 276. Matsumoto, H., et al., *A correlation study between blink reflex habituation and clinical state in patients with Parkinson's disease*. J Neurol Sci, 1992. **107**(2): p. 155-9.

1305 277. Messina, C., A.E. Di Rosa, and F. Tomasello, *Habituation of blink reflexes in Parkinsonian patients under levodopa and amantadine treatment*. Journal of the Neurological Sciences, 1972. **17**(2): p. 141-148.

1306 278. Penders, C.A. and P.J. Delwaide, *Blink reflex studies in patients with Parkinsonism before and during therapy*. Journal of Neurology, Neurosurgery &amp; Psychiatry, 1971. **34**(6): p. 674.

1307 279. Hejl, A.-M., et al., *Prepulse inhibition in patients with Alzheimer's disease*. Neurobiology of Aging, 2004. **25**(8): p. 1045-1050.

1339 280. Langley, L.K., et al., *Inhibition and habituation: preserved mechanisms of attentional*
1340 *selection in aging and Alzheimer's disease*. *Neuropsychology*, 1998. **12**(3): p. 353-66.

1341 281. Jensen-Dahm, C., et al., *Discrepancy between stimulus response and tolerance of pain*
1342 *in Alzheimer disease*. *Neurology*, 2015. **84**(15): p. 1575-81.

1343 282. Nasrouei, S., et al., *Fear acquisition and extinction deficits in amnestic mild cognitive*
1344 *impairment and early Alzheimer's disease*. *Neurobiol Aging*, 2020. **87**: p. 26-34.

1345 283. Colombo, J. and D.W. Mitchell, *Infant visual habituation*. *Neurobiology of learning*
1346 *and memory*, 2009. **92**(2): p. 225-234.

1347 284. Barron, H.C., et al., *Inhibitory engrams in perception and memory*. *Proceedings of the*
1348 *National Academy of Sciences*, 2017. **114**(26): p. 6666.

1349 285. Miller, D.J., et al., *Relationships between Early Habituation and Later Cognitive*
1350 *Performance in Infancy*. *Child Development*, 1977. **48**(2): p. 658-661.

1351 286. Leader, L.R., et al., *The assessment and significance of habituation to a repeated*
1352 *stimulus by the human fetus*. *Early Hum Dev*, 1982. **7**(3): p. 211-9.

1353 287. van Heteren, C.F., et al., *Fetal habituation to vibroacoustic stimulation in relation to*
1354 *fetal states and fetal heart rate parameters*. *Early human development*, 2001. **61**(2): p.
1355 135-145.

1356 288. Groome, L.J., et al., *Developmental Trends in Fetal Habituation to Vibroacoustic*
1357 *Stimulation*. *Am J Perinatol*, 1993. **10**(01): p. 46-49.

1358 289. Madison, L.S., J.K. Madison, and S.A. Adubato, *Infant behavior and development in*
1359 *relation to fetal movement and habituation*. *Child Dev*, 1986. **57**(6): p. 1475-82.

1360 290. Shalev, E., et al., *Fetal habituation to repeated sound stimulation*. *Isr J Med Sci*, 1989.
1361 **25**(2): p. 77-80.

1362 291. Joy, J., et al., *Fetal habituation in assisted conception*. *Early Hum Dev*, 2012. **88**(6):
1363 p. 431-6.

1364 292. Gonzalez-Gonzalez, N.L., et al., *Persistence of fetal memory into neonatal life*. *Acta*
1365 *Obstet Gynecol Scand*, 2006. **85**(10): p. 1160-4.

1366 293. Hepper, P.G. and B.S. Shahidullah, *Development of fetal hearing*. *Arch Dis Child*
1367 *Fetal Neonatal Ed*, 1994. **71**(2): p. F81-7.

1368 294. Hepper, P.G., *Fetal memory: does it exist? What does it do?* *Acta Paediatr Suppl*,
1369 1996. **416**: p. 16-20.

1370 295. McCall, R.B. and M.S. Carriger, *A meta-analysis of infant habituation and*
1371 *recognition memory performance as predictors of later IQ*. *Child Dev*, 1993. **64**(1): p.
1372 57-79.

1373 296. Walker, F.R., et al., *Habituation of the electrodermal response – A biological*
1374 *correlate of resilience?* *PLOS ONE*, 2019. **14**(1): p. e0210078.

1375 297. Hoenig, K., et al., *Impaired prepulse inhibition of acoustic startle in obsessive-*
1376 *compulsive disorder*. *Biol Psychiatry*, 2005. **57**(10): p. 1153-8.

1377 298. Swerdlow, N.R., et al., *A preliminary assessment of sensorimotor gating in patients*
1378 *with obsessive compulsive disorder*. *Biol Psychiatry*, 1993. **33**(4): p. 298-301.

1379 299. Ahmari, S.E., et al., *Impaired sensorimotor gating in unmedicated adults with*
1380 *obsessive-compulsive disorder*. *Neuropsychopharmacology*, 2012. **37**(5): p. 1216-23.

1381 300. Holstein, D.H., et al., *Sensory and sensorimotor gating in adult attention-*
1382 *deficit/hyperactivity disorder (ADHD)*. *Psychiatry Research*, 2013. **205**(1): p. 117-126.

1383 301. Conzelmann, A., et al., *Early attentional deficits in an attention-to-prepulse paradigm*
1384 *in ADHD adults*. *Journal of Abnormal Psychology*, 2010. **119**(3): p. 594-603.

1385 302. Feifel, D., A. Minassian, and W. Perry, *Prepulse inhibition of startle in adults with*
1386 *ADHD*. *Journal of Psychiatric Research*, 2009. **43**(4): p. 484-489.

1387 303. Ornitz, E.M., et al., *Affective Valence and Arousal in ADHD and Normal Boys During*
1388 *a Startle Habituation Experiment*. *Journal of the American Academy of Child &*
1389 *Adolescent Psychiatry*, 1997. **36**(12): p. 1698-1705.

1390 304. Braff, D.L., C. Grillon, and M.A. Geyer, *Gating and Habituation of the Startle Reflex*
1391 *in Schizophrenic Patients*. Archives of General Psychiatry, 1992. **49**(3): p. 206-215.

1392 305. Swerdlow, N.R., et al., *Impaired prepulse inhibition of acoustic and tactile startle*
1393 *response in patients with Huntington's disease*. J Neurol Neurosurg Psychiatry, 1995.
1394 **58**(2): p. 192-200.

1395 306. Iacono, W.G., D. Roshi, and D. Lacoste, *Electrodermal Activity in Patients with*
1396 *Huntington's Disease and Their Progeny*. Psychophysiology, 1987. **24**(5): p. 522-527.

1397 307. Dunn, W., *The Impact of Sensory Processing Abilities on the Daily Lives of Young*
1398 *Children and Their Families: A Conceptual Model*. Infants & Young Children, 1997.
1399 **9**(4).

1400 308. Tavassoli, T., R.A. Hoekstra, and S. Baron-Cohen, *The Sensory Perception Quotient*
1401 *(SPQ): development and validation of a new sensory questionnaire for adults with and*
1402 *without autism*. Molecular Autism, 2014. **5**(1): p. 29.

1403