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Abstract: Laminate structures composed of stiff plates and thin soft interlayers are widely used1

in aerospace, automotive and civil engineering encouraging the development of reliable non-2

destructive strategies for their condition assessment. In the paper, elastodynamic behaviour of3

such laminate structures is investigated with emphasis on its application in ultrasonic based NDT4

and SHM for the identification of interlayer mechanical and interfacial contact properties. A5

particular attention is given to the practically important frequency range, in which the wavelength6

considerably exceeds the thickness of the film. Three layer model with spring-type boundary7

conditions employed for imperfect contact simulation is used for numerical investigation. Novel8

effective boundary conditions are derived via asymptotic expansion technique and used for9

analysis of the peculiar properties of elastic guided waves in considered laminates. It is revealed10

that the thin and soft film influences the behaviour of the laminate mainly via the effective11

stiffnesses being a combination of the elastic moduli of the film, its thickness and interface12

stiffnesses. To evaluate each of these parameters separately (or to figure out that the available13

experimental data are insufficient), a step-wise procedure employing the effective boundary14

conditions is proposed and tested versus the laser Doppler vibrometry data for Lamb waves in15

Aluminium/Polymer film/Alumunium structure. The possibility of using film-related thickness16

resonance frequencies to estimate the film properties and contact quality is also demonstrated.17

Additionally, the rich family of edge waves is also investigated, and the splitting of fundamental18

edge waves into pairs is revealed.19

Keywords: laminate; soft material; thin interlayer; guided waves; edge waves; effective boundary20

conditions21

1. Introduction22

Laminate thin-walled structures composed of stiff plates and soft polymeric inter-23

layers are typical for many industrial applications. Among such examples are adhesively24

bonded metallic or fibre-reinforced composite components widely used in aerospace25

and automobile manufacturing providing an adequate compromise between weight26

reduction, strength properties and cost-efficient assembling [1,2] or laminated glass27

consisting of a plastic interlayer surrounded by two adjacent glass plates which have28

become a ubiquitous solution for automobile windshields and in architectural glazing29

due to its impact-energy absorbing properties [3].30

Since the integrity of the bonds in multi-layered assemblies directly affects the31

product quality, development and implementation of reliable non-destructive strategies32

for their condition assessment are essential [4,5]. Together with conventional ultrasonic33

testing [6], the approaches employing elastic guided waves (EGWs) as a physical ba-34

sis are emerging to characterize adhesive joint properties [7–10]. For visualization of35

localized macroscopic damage in bonded structures with EGWs, non-contact imaging36
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techniques are being developed based on object surface scanning with a laser source37

[11], laser interferometer [12] and their combinations [13]. Since guided wave dispersion38

properties strongly depend on structural material parameters, EGWs are valuable for39

global assessment of adhesive bonding integrity [8,14] and might be also used for the40

estimation of adhesive mechanical properties [15,16]. The latter is particularly important41

for in- and post-manufacturing quality control of bonded structures because the strength42

properties of adhesives strongly depend on curing conditions [17,18].43

In the EGWs diagnostics of laminate assemblies with soft interlayers, relevant44

mathematical and computational models describing their elastodynamic behaviour are45

essential for adequate interpretation of the experimental data. A natural and basic way46

is to model such waveguides as multilayered objects assuming continuity conditions47

for displacement and stress components at the interlaminar interfaces [15] (for bonded48

structures, they are known as tri-layer models). To handle possible imperfectness49

in interface coupling, such models are further modified by including an additional50

viscoelastic interfacial layer [19] or assuming the spring-type boundary conditions51

(SBCs) between the laminae [8,20].52

When the thickness of internal soft layers is sufficiently small compared to the53

wavelength, their dynamics might be neglected and replaced by certain effective bound-54

ary conditions (EBCs) coupling two external laminae and tuned to address interlayer55

mechanical properties and the contact quality. As EBCs, uniformly distributed SBCs56

working in traction/compression and shear are widely used [21,22] (i.e., if adhesively57

bonded structures are considered this relates to both cohesive and adhesive properties of58

bonded joints). Alternatively, more sophisticated and precise models are proposed based59

on asymptotic expansion techniques using a small parameter related to the thickness of60

the interlayer [23–25]. However, to our best knowledge, up to now these models did not61

take into account contact quality and their accuracy was not higher than the first order62

of the small parameter.63

Compared to Lamb waves (LWs) in a monolithic single lamina, the presence of a soft64

polymeric insert and layering of the waveguide sufficiently complicates corresponding65

EGW phenomena. Theoretical considerations reveal that Lamb-type EGWs propagating66

in such laminates are composed of modes that could be associated with corresponding67

LWs of sublayers and coupling modes related to the global structure [19]. Moreover,68

certain of the former are disparted in the laminate structure into mode pairs, which69

dispersion curves in broad frequency ranges traverse along corresponding trajectories70

of these LWs [20,26]. Finally, specific mode repulsion phenomena, not occurring in a71

monolithic layer, could be also pronounced [27]. It is observed that all these peculiarities72

of EGWs could depend both on mechanical properties of thin interlayers and contact73

quality between laminae [8,19]. Thus, a thorough investigation of corresponding EGW74

phenomena and understanding of their dependencies from the aforementioned input75

data is essential for the reliable application of EGWs for the evaluation of laminate76

structures.77

The aim of the current study is to comprehensively investigate and explain the78

influence of thin and soft interlayers on the behaviour of EGWs in laminate isotropic79

structures with particular emphasis on the application of the obtained results for the80

identification of mechanical properties of such sublayers and evaluation of interlaminar81

contact integrity. For this purpose, extensive numerical analysis of EGW characteristics82

in a three-layered geometrically symmetric laminate with a thin film is performed while83

elastic constants and thickness of the latter as well as contact quality are serving as input.84

Along with the well-established tri-layer model enriched with SBCs between the laminae85

to handle possible contact degradation, a novel asymptotic model for the considered86

layered structure is proposed and the corresponding EBCs are derived. Employing them,87

it becomes possible to explain rigorously the nature of mode pairs and to derive a clear88

semi-analytical representation for the thickness resonance frequencies of the laminate.89

Moreover, these EBCs allowed estimating frequency ranges and particular EGWs, where90
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and on which the influence of interlayer mechanical properties and its bonding quality91

with external lamina is the most pronounced. Using this information, a preliminary92

guideline for interlayer identification is proposed and tested over available experimental93

data making it of potential interest for ultrasonic based NDT/SHM. As a first step to94

further development of EGWs-based techniques, edge waves (EWs) in the laminate with95

thin soft interlayers are investigated and the complete picture of EGWs is presented.96

From the practical point of view, the EWs can be used to detect a weakening of the bond,97

localized near the edge. Moreover, together with LWs and SH-waves, they could provide98

additional information for identification of mechanical properties of the film and its99

contact conditions.100

2. Mathematical modelling101

2.1. Exact statement of boundary value problem102

Let us consider a laminate composed of two isotropic and homogeneous elastic103

layers D1 and D3 of thicknesses h1 and h3 and a thin film D2 of thickness h2 between104

them as shown in Figure 1. Materials of the layers are characterized by the mass density105

ρq, Young’s modulus Eq and Poisson ratio νq (q = 1, 2, 3).106

x
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x1
x2

x3
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Figure 1. Geometry of the problem.

The stress tensor components σ
(q)
lm (l, m = 1, 2, 3) and the displacement vector

u(q) = {u(q)
1 , u(q)

2 , u(q)
3 } in all the layers satisfy governing equations

∂σ
(q)
lm

∂xm
− ρq

∂2u(q)
l

∂t2 = 0. (1)

Let us assume that the materials of all the layers are isotropic and obey the Hooke’s law.
The stress tensor components can be expressed through the ones of the displacement
vector as follows:

σ
(q)
lm = λq∇ · u(q)δlm + µq

∂u(q)
l

∂xm
+

∂u(q)
m

∂xl

, (2)

where δlm is Kronecker’s delta, λq, µq are Lamé constants. Let us introduce parameter

β2
q =

c2
q,T

c2
q,L

=
µq

λq + 2µq
=

1 − 2νq

2(1 − νq)
,
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where

cq,L =

√
λq + 2µq

ρq
,

cq,T =

√
µq

ρq

are the velocities of the longitudinal and transverse waves, respectively.107

The SBCs connecting the displacement vector u(q) and the traction vector composed
of tangential and normal stresses τ(q) = {σ

(q)
13 , σ

(q)
23 , σ

(q)
33 } at the internal interfaces x3 =

zp =
p
∑

i=1
hi (p = 1, 2) are written following [28–31]:

τ(p+1) = τ(p) = κ(p)
(

u(p+1) − u(p)
)

, x3 = zp. (3)

At the outer surfaces of the waveguide, stress-free boundary conditions (BCs)

τ(1) = 0, x3 = 0; τ(3) = 0, x3 = H (4)

are assumed.108

The components of the stiffness matrices κ(p) have the form

κ(p)
lm = κ(p)

l δlm.

The dispersion relation describing plane GWs propagating in an infinite multi-layered
laminate can be obtained by reducing of the problem stated above to the plane one
(LWs) or anti-plane one (SH-waves) in the plane, say, (x1, x3). After the application of the
Fourier transform with respect to x1 coordinate and the Laplace transform with respect to
the time t [32], governing equations (1) are reduced to the system of ordinary differential
equations for each layer with respect to x3 and with the wavenumber k and the circular
frequency ω = 2π f as parameters. The solution of the system of differential equation is
then substituted into the transformed BCs (3) and (4). As a result, an eigenvalue problem
is formulated, which is reduced to the dispersion equation

D(k, ω) = 0

and solved numerically following [33]. Table 1 presents the material properties used109

further for numerics.110

Table 1. Material properties used for numerics.

Material Density Young modulus Poisson’s ratio
ρ, kg/m3 E, GPa ν

Aluminium 2700 70 0.33
Cyanoacrylate adhesive [34] 1248 1.7 0.4

Silicone rubber [35] 1150 3.1 0.48
Two-component epoxy adhesive [36] 1345 2.75 0.35

Two-sided epoxy tape [37] 930 0.5 0.4

2.2. Modeling of the film via EBCs111

Let us suppose that the EGWs, guided by the laminate described in Section 2.1,112

satisfy the condition L ≫ h2, where L is the characteristic wavelength. In this case, the113

problem stated in Section 2.1 can be reduced to a simplified one for a two-layered plate,114

composed of layers D1 and D3 with some effective boundary conditions (EBCs) on the115
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interface between them, representing approximately the influence of the thin film. Using116

of asymptotic methods is a natural way to construct such conditions. In [23,24], the EBCs117

were obtained by asymptotic expansion of the transfer matrix of the interlayer. In [25],118

an another approach is used, involving expansion of displacements and stresses both119

in the interlayer and in the surrounding medium. A review of a various approaches to120

modeling thin layers via EBSc can also be found in [25]. Here we present an alternative121

method for deriving EBCs, which employs the asymptotic integration of Eqs. (1), (2) for122

the film. This approach is based on the ideas of Kaplunov et al. [38], which were used in123

[39] to construct the EBCs for a half-space coated by a thin film.124

Let us shift the origin of coordinate x3 to the middle surface of the film by setting
y = x3 − (h1 + h0) with h0 = h2/2, then the internal interfaces x3 = zp correspond to
y = ±h0. For the boundary values of traction components and displacements of the
external layers, we introduce notations

σ̂
(±1)
l3 = σ

(2±1)
l3

∣∣∣
y=±h0

, û(±1)
l = u(2±1)

l

∣∣∣
y=±h0

.

With the new notations, BCs (3) can be written in the form

σ
(2)
l3

∣∣∣
y=±h0

= σ̂
(±1)
l3 , u(2)

l

∣∣∣
y=±h0

= û(±1)
l ∓ ξ

(±1)
l σ̂

(±1)
l3 , (5)

where ξ
(±1)
l =

[
κ(

3±1
2 )

l

]−1
are interface compliances. Let µ and ρ be the characteristic

values of the shear moduli and densities of the external layers. The behaviour of the
film can be described in terms of dimensionless parameters ε = h0/L, µ2/µ, ρ2/ρ. In
order to consider the general case of long-wave vibrations, we assume ε ≪ 1, µ2/µ ∼ 1,
ρ2/ρ ∼ 1 and introduce dimensionless variables

ηi =
xi
L

, ζ =
x3

h0
, τ =

tcT

L
, u(2)

l =
h0µ

µ2
wl , σ

(2)
lm = µplm. (6)

Here and further on i, j = 1, 2, i ̸= j, cT =
√

µ/ρ. Let us write down BCs (5) in
dimensionless variables (6) as the sum

pl3|ζ=1 + pl3|ζ=−1 =
2
µ

Sl3, wl |ζ=1 + wl |ζ=−1 =
2µ2

h0µ
Ũl (7)

and the difference

pl3|ζ=1 − pl3|ζ=−1 =
1
µ

(
σ̂
(1)
l3 − σ̂

(−1)
l3

)
,

wl |ζ=1 − wl |ζ=−1 =
µ2

h0µ

(
û(1)

l − û(−1)
l − Pl ,

) (8)

where

Sl3 =
1
2

(
σ̂
(1)
l3 + σ̂

(−1)
l3

)
, Ul =

1
2

(
û(1)

l + û(−1)
l

)
, Ũl = Ul − Ql ,

Ql =
1
2

(
ξ
(1)
l σ̂

(1)
l3 − ξ

(−1)
l σ̂

(−1)
l3

)
, Pl = ξ

(1)
l σ̂

(1)
l3 + ξ

(−1)
l σ̂

(−1)
l3 .

(9)
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After substituting (6) into (1) and (2), one can rewrite this system in the form

∂p33

∂ζ
= −ε

(
∂i pi3 + ∂j pj3

)
+ ε2∂2

τw3,

∂pi3
∂ζ

= −ε
(

1 − 2β2
2

)
∂i p33 − ε2

[
∂2

plwi +
(

3 − 4β2
2

)
∂i∂jwj

]
,

∂w3

∂ζ
= β2

2 p33 − ε
(

1 − 2β2
2

)(
∂iwi + ∂jwj

)
,

∂wi
∂ζ

= pi3 − ε∂iw3

(10)

and
pii =

(
1 − 2β2

2

)
p33 + 2ε

[
2
(

1 − β2
2

)
∂iwi +

(
1 − 2β2

2

)
∂jwj

]
,

pij = ε
(
∂jwi + ∂iwj

)
,

(11)

where ∂i =
∂

∂ηi
, ∂2

τ =
ρ2µ

ρµ2

∂2

∂τ2 , ∂2
pl = 4

(
1 − β2

2
)
∂2

i + ∂2
j − ∂2

τ . Operator ∂2
pl is related to125

the theory of plate extension (see below).126

Let us assume that the functions pl3, wl and their derivatives with respect to ηi and
τ have the order of unity as ε → 0. Under this assumption, system (10) can be integrated
by making use of asymptotic iterations [38]. In the zero order approximation, we omit in
(10) all the terms with ε and ε2. Then the system (10) gives

p0
33 = s33 + O(ε), p0

i3 = si3 + O(ε),

w0
3 = v3 + β2

2s33ζ + O(ε), w0
i = vi + si3ζ + O(ε),

(12)

where sl3, vl are arbitrary functions of ηi and τ. By substituting (12) in the sum of BC (7),
we find

sl3 =
1
µ

Sl3, vl =
µ2

h0µ
Ũl . (13)

Now we are in the position to obtain the first order approximation. By restoring the127

terms with ε and substituting into them already known zero order approximation, we128

come again to the system, which allows integration, and so on. It is convenient to write129

integrals of the odd functions of ζ as even functions, which turns to zero at ζ = ±1 (e.g.,130

the integral of ζ is
(
ζ2 − 1

)
/2). Then formulae (13) is valid for any approximation. After131

constructing approximation of pn
l3, vn

l of desirable order n, one can substitute them in the132

difference of BCs (8) and obtain the relations between the boundary values σ̂
(±1)
l3 , û(±1)

l ,133

i.e. the EBCs. Besides, we have the formulae for all the displacements and stresses in the134

film (for pii, pij, formulae (11) must be used). As soon as the problem for the domains D1,135

D3 connected via the EBCs is solved, one can reconstruct the distribution of the stresses136

and the displacement in the film with the asymptotic error O
(
εn+1).137

In the original variables, the EBCs of the second order have the form

σ̂
(1)
33 − σ̂

(−1)
33 = −j1h2

(
∂Si3
∂xi

+
∂Sj3

∂xj

)
+ j2h2ρ2

∂2Ũ3

∂t2 ,

σ̂
(1)
i3 − σ̂

(−1)
i3 = −j1h2

(
1 − 2β2

2

)∂S33

∂xi
− j2h2µ2

[
ΩplŨi +

(
3 − 4β2

2

) ∂2Ũj

∂xi∂xj

]
,

û(1)
3 − û(−1)

3 =
h2

λ2 + 2µ2
S33 + P3 − j1h2

(
1 − 2β2

2

)(∂Ũi
∂xi

+
∂Ũj

∂xj

)
− j2

h3
2β2

2
12µ2

Ω3S33,

û(1)
i − û(−1)

i =
h2

µ2
Si3 + Pi − j1h2

∂Ũ3

∂xi
+ j2

h3
2

12µ2

[
ΩiSi3 +

(
1 − β2

2

) ∂2Sj3

∂xi∂xj

]
,

(14)
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where

Ωpl = 4
(

1 − β2
2

) ∂2

∂x2
i
+

∂2

∂x2
j
− 1

c2
2,T

∂2

∂t2 , Ω3 =
1 − 2β2

2
β2

2
∆ +

β2
2

c2
2,T

∂2

∂t2 ,

Ωi =
(

2 − β2
2

) ∂2

∂x2
i
+

∂2

∂x2
j
− 1

c2
2,T

∂2

∂t2 , ∆ =
∂2

∂x2
i
+

∂2

∂x2
j

,
(15)

j1,2 = 0, 1 are switches of approximation. In the case
∂

∂x2
= 0, operator Ωpl can be

written in the form

Ωpl =
2

1 − ν2

(
∂2

∂x2
1
−
(
1 − ν2

2
)
ρ2

E2

∂2

∂t2

)
.

Such an operator describes propagation of an extensional wave in a thin plate with138

free faces (see, e.g., [38]). In the problem under consideration, this operator becomes139

dominating only in the case µ2 ≫ µ, which is not in the focus of the present investigation.140

If ξ
(±1)
l = 0, the zero-order terms of (14) coincide with those obtained in [23,25].141

The first order approximation (j2 = 0) is in agreement with that in [23] except the terms142

with j2 in the first two equations in (14), which referred to the first approximation in [23].143

Apparently, this discrepancy is caused by the procedure of the EBCs derivation used144

by Rokhlin and Wang [23], which employs a transfer matrix for the vectors containing145

stresses and particle velocities.146

If convenient, one can shift the vertical coordinate in domains D1 and D3 to calculate147

σ̂
(±1)
l3 , û(±1)

l on the same surface in the global coordinate system, but this operation is148

not necessary.149

In the zero order approximation (j1 = j2 = 0), the EBCs are spring-type BCs

σ̂
(1)
33 = σ̂

(−1)
33 , σ̂

(1)
i3 = σ̂

(−1)
i3 ,

û(1)
3 − û(−1)

3 = ξeff
3 σ̂

(1)
33 , û(1)

i − û(−1)
i = ξeff

i σ̂
(1)
i3

(16)

with effective compliances

ξeff
3 =

h2

λ2 + 2µ2
+ ξ

(1)
3 + ξ

(−1)
3 , ξeff

i =
h2

µ2
+ ξ

(1)
i + ξ

(−1)
i , (17)

corresponding to effective stiffnesses κeff
1 = (ξeff

1 )−1, κeff
3 = (ξeff

3 )−1. Formulae (17)
show that in the case of an imperfect contact the effective compliances are the sums of
those of the film itself

ξeff
3,0 =

h2

λ2 + 2µ2
=

h2β2
2

µ2
, ξeff

i,0 =
h2

µ2
(18)

and those of the interfaces between the film and the external layers.150

In the case of a symmetric laminate (h1 = h3 = h, E1 = E3, ν1 = ν3, ρ1 = ρ3,151

ξ
(−1)
l = ξ

(1)
l = ξl = κ−1

l ), it is convenient to shift the coordinate y locally in D3 as152

z = y − h2/2, and in D1 as z = y + h2/2. Then in the global coordinate system (x1, x2, z)153

the surfaces of the waveguide are defined by z = ±h and the interface by z = 0. The154

boundary values σ̂
(±1)
l3 , û(±1)

l mean the limits as z → ±0 (we have a discontinuity here155

because of the film).156
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The problem can be separated into two independent ones: for the symmetric
vibrations defined as

u(1)
i

∣∣∣
z=−d

= u(3)
i

∣∣∣
z=d

, u(1)
3

∣∣∣
z=−d

= −u(3)
3

∣∣∣
z=d

,

σ
(1)
ll

∣∣∣
z=−d

= σ
(3)
ll

∣∣∣
z=d

, σ
(1)
ij

∣∣∣
z=−d

= σ
(3)
ij

∣∣∣
z=d

, σ
(1)
i3

∣∣∣
z=−d

= −σ
(3)
i3

∣∣∣
z=d

,
(19)

(d ∈ [0, h]), and for the antisymmetric vibrations characterized by

u(1)
i

∣∣∣
z=−d

= −u(3)
i

∣∣∣
z=d

, u(1)
3

∣∣∣
z=−d

= u(3)
3

∣∣∣
z=d

,

σ
(1)
ll

∣∣∣
z=−d

= −σ
(3)
ll

∣∣∣
z=d

, σ
(1)
ij

∣∣∣
z=−d

= −σ
(3)
ij

∣∣∣
z=d

, σ
(1)
i3

∣∣∣
z=−d

= σ
(3)
i3

∣∣∣
z=d

.
(20)

It is sufficient to consider only one of two external layers, e.g., the upper one (the domain157

index is omitted below).158

The symmetry proprieties imply

S33 = σ̂33, Ũi = ûi − ξiσ̂i3, P3 = 2ξ3σ̂33, Si3 = Ũ3 = Pi = 0

for the symmetric problem and

Si3 = σ̂i3, Ũ3 = û3 − ξ3σ̂33, Pi = 2ξiσ̂i3, S33 = Ũi = P3 = 0

for the antisymmetric one. According to these relations, two conditions in (14) are159

satisfied identically, and the other two give the EBCs for each case:160

for the symmetric vibrations:

σ̂i3 = −j1h0

(
1 − 2β2

2

)∂σ̂33

∂xi
− j2h0µ2

[
ΩplŨi +

(
3 − 4β2

2

) ∂2Ũj

∂xi∂xj

]
,

û3 =
1
2

ξeff
3 σ̂33 − j1h0

(
1 − 2β2

2

)(∂Ũi
∂xi

+
∂Ũj

∂xj

)
− j2

h3
0β2

2
3µ2

Ω3σ̂33;

(21)

for the antisymmetric vibrations:

σ̂33 = −j1h0

(
∂σ̂i3
∂xi

+
∂σ̂j3

∂xj

)
+ j2h0ρ2

∂2Ũ3

∂t2 ,

ûi =
1
2

ξeff
i σ̂i3 − j1h0

∂Ũ3

∂xi
+ j2

h3
0

3µ2

[
Ωiσ̂i3 +

(
1 − β2

2

) ∂2σ̂j3

∂xi∂xj

]
.

(22)

Here σ̂l3, ûl are boundary values on the lower surface of the upper layer.161

The material parameters of soft films considered in this work (see Table 1) are162

related to the parameters of the external layers (aluminium) as ρ2/ρ1 ∼ 1, µ2/µ1 ≪ 1.163

An analysis of EBCs (21) and (22) taking into account the additional small parameter164

µ2/µ1 shows that the the underlined terms in (15), (21) and (22) are small. By omitting165

them we obtain the simplified EBCs used in Section 5.166

2.3. Thickness resonance frequencies167

Except the rare cases of backwards waves, the cut-off frequencies of LWs coincide168

with thickness resonance frequencies, which are eigenvalues of the problem analogous169

to that for LWs, but with wavenumber k = 0 (see [38] for more details). In the laminate170

under consideration, these frequencies can be separated into two groups: thickness171

stretch resonance frequencies, for which the corresponding eigenforms satisfy conditions172

u(q)
1 = 0, σ

(q)
13 = 0, and thickness shear resonance frequencies with u(q)

3 = 0, σ
(q)
33 = 0.173
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For the antisymmetric vibrations, the thickness stretch resonance frequencies are
defined as f a

n,st = ωa
n,st/2π, where ωa

n,st (n = 1, 2, . . .) are ω-roots of equation

sin
ωh
c1,L

(
cos

ωh2

2c2,L
−

√
µ2ρ2

κ3β2
ω sin

ωh2

2c2,L

)
+

β1
√

µ2ρ2

β2
√

µ1ρ1
sin

ωh2

2c2,L
cos

ωh
c1,L

= 0. (23)

In the case of a soft interlayer, we have µ2/µ1 ≪ 1, so the roots of Eq. (23) allow
additional separation in two groups, approximately defined by equations

sin
ωh
c1,L

= 0 (24)

or

cos
ωh2

2c2,L
−

√
µ2ρ2

κ3β2
ω sin

ωh2

2c2,L
= 0. (25)

The roots of Eqs. (24) and (25) are thickness stretch resonance frequencies of the external
layers and the film with SBCs on its surfaces, respectively. In the case of a thin film, the
thickness resonances are extremely high-frequency ones. But in the case µ2/µ1 ≪ 1,
which is considered here, these resonances can arise at the relatively low frequencies. If
κ3 → ∞, the lowest thickness stretch resonance frequency of the film is defined by the

lowest root of equation cos
ωh2

2c2,L
= 0. If κ3 → 0, this frequency can be approximately

described by two-term asymptotic approximation:

f a
fl,st ≈



1
2π

√√√√√√
2κ3

ρ2h2

(
1 +

κ3h2β2
2

6µ2

) if κ3 → 0,

c2,L

2h2
if κ3 → ∞.

(26)

For the 50 µm-thick two-sided epoxy tape from Table 1, f a
fl,st = 10.7 MHz at κ3 = ∞174

and f a
fl,st < 3 MHz if κ3 < 9 GPa/mm. The number n of the frequency (26) in the175

series f a
n,st depends on the relation between parameters of the external layers and the176

film, including the interface stiffnesses. In the case when the frequency (26) coincides177

with some of the root of Eq. (24), so-called “repulsion effect” arises, so we do not have178

multiply root in such a situation.179

The antisymmetric thickness shear resonance frequencies are defined as f a
n,sh =

ωa
n,sh/2π, where ωa

n,sh are ω-roots of equation

sin
ωh
c1,T

(
sin

ωh2

2c2,T
+

√
µ2ρ2

κ1
ω cos

ωh2

2c2,T

)
−

√
µ2ρ2√
µ1ρ1

cos
ωh2

2c2,T
cos

ωh
c1,T

= 0, (27)

which can be separated analogously to Eq. (23) if µ2/µ1 ≪ 1 , except the case of the180

lowest thickness shear resonance frequency f a
1,sh. The latter cannot be observed in the181

film considered separately, and is characteristic only for three-layered waveguides. In182

a strongly inhomogeneous waveguide, the part of the dispersion curve starting from183

this frequency comes to be in the long-wave range in respect to the external layers (i.e.,184

L ≫ h, where L is the characteristic wavelength). This case is thoroughly studied in185

[40], where the two-mode asymptotic polynomial expansions of the Rayleigh-Lamb186

dispersion relation approximating both the fundamental antisymmetric wave and the187

first high order wave can be found. In the laminate considered in the present paper, this188

effect can be obtained if µ2 or κ1 is sufficiently small. The antisymmetric thickness shear189

resonance frequencies of the film are high and not of interest for the present investigation.190
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The thickness stretch resonance frequencies for the symmetric vibrations are defined
as f s

n,st = ωs
n,st/2π, where ωs

n,st are ω-roots of equation

sin
ωh
c1,L

(
sin

ωh2

2c2,L
+

√
µ2ρ2

κ3β2
ω cos

ωh2

2c2,L

)
−

β1
√

µ2ρ2

β2
√

µ1ρ1
cos

ωh2

2c2,L
cos

ωh
c1,L

= 0. (28)

The properties of the roots of Eq. (28) are analogous to the ones of Eq. (27). In particular,191

the lowest thickness stretch resonance frequency f s
1,st is also of the type, that is charac-192

teristic only for three-layered waveguides and comes to be in low-frequency range in193

respect to the external layers, if µ2/β2 or κ3 is sufficiently small. The thickness stretch194

resonance frequencies of the film are very high in this case.195

The symmetric shear resonance frequencies are of more interest for the present
investigation. They are defined as f s

n,sh = ωs
n,sh/2π, where ωs

n,sh are ω-roots of equation

sin
ωh
c1,T

(
cos

ωh2

2c2,T
−

√
µ2ρ2

κ1
ω sin

ωh2

2c2,T

)
+

√
µ2ρ2√
µ1ρ1

sin
ωh2

2c2,T
cos

ωh
c1,T

= 0. (29)

As µ2/µ1 ≪ 1, the roots of Eq. (29) can be separated into two groups, approximately
defined by equations

sin
ωh
c1,T

= 0 (30)

or

cos
ωh2

2c2,T
−

√
µ2ρ2

κ1
ω sin

ωh2

2c2,T
= 0. (31)

As for Eqs. (24) and (25), we have here the thickness shear resonance frequencies of the
external layers (Eq. (30)) and those of the film with SBCs on its surfaces (Eq. (31)), acting,
in contrast with (25), in the tangential direction. If κ1 → ∞, the lowest thickness shear

resonance frequency of the film is defined by the lowest root of equation cos
ωh2

2c2,T
= 0.

As κ1 → 0, two-term asymptotic approximation can be derived, so we have

f s
fl,sh ≈


1

2π

√√√√√ 2κ1

ρ2h2

(
1 +

κ1h2

6µ2

) if κ1 → 0,

c2,T

2h2
if κ1 → ∞.

(32)

For the 50 µm-thick two-sided epoxy tape with the material properties given in Table 1,196

f s
fl,sh < 3 MHz if κ1 < 15 GPa/mm.197

In the narrow frequency ranges of the thickness resonance frequencies of the film198

the vibrations of the interlayer are of the long-wave, high-frequency type [38]. In this199

case, the assumptions made by integration of the system (10) are not valid, so the200

EBCs constructed above are not applicable in these regions. In [38], the procedure of201

asymptotic analysis specified for the long-wave, high-frequency vibrations, is developed,202

which could be also applied in the case under consideration. In the present work, we203

restrict ourselves to long-wave, low-frequency EBCs, constructed above.204

3. Properties of Lamb waves in laminates with soft interlayer205

3.1. Main properties of dispersion curves and vibration forms206

In this paper, slowness curves (SCs) s = k(ω)/ω are investigated since SCs for207

various GWs could be easier distinguished compared to wavenumbers k or phase208

velocities ω/k(ω). Some SCs for LWs in the three-layered waveguide with soft interlayer209

might be somehow similar to the SCs for pure upper or lower waveguides analogous210

to [19,26]. To investigate this effect more detailed, it is natural to compare guiding211

properties of the symmetric laminate with a soft thin mid-layer and a homogeneous212
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Figure 2. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 µm
film / 2 mm aluminium) and 2 mm thickness aluminium plate.

waveguide, which is the first layer of the laminate. Figure 2 demonstrates SCs of 4.05 mm213

thickness plate (2 mm aluminium / 50 µm film / 2 mm aluminium) and 2 mm thickness214

aluminium plate. Hereinafter, SCs of symmetric and antisymmetric elastic waves are215

shown using lines of different colours. To distinguish SCs for the two considered216

waveguides, capital letters are used for the laminate (A0, S0, . . .), while lower-case letters217

denote GWs propagating in the layer (a0, s0, . . .). It is observed that the SCs of different218

GWs propagating in the laminate and in the layer almost coincide in wide frequency219

ranges. For example, these are a0 and A0 modes if f > 0.8 MHz; s0 for the layer and A1220

for the laminate if f > 0.7 MHz; a1, s1 for the layer and S2, A2 and for the laminate for221

all the frequencies higher than their cut-off frequencies. The largest discrepancy between222

SCs for two considered waveguides occurs for first GWs.223

An insight into the nature of such a coincidence can be given via the consideration224

of the wave-fields corresponding to these GWs. The displacement distribution of LWs225

propagating in 4.05 mm thickness plate (2 mm aluminium / 50 µm film / 2 mm alu-226

minium) and in 2 mm thickness aluminium plate are depicted in Figures 3–5, where the227

variation of horizontal u1(x3, f ) and vertical u3(x3, f ) components of the displacement228

vector of the first Lamb waves (LWs) are shown as contour plots.229

The employment of EBCs (21) and (22) provides better understanding of peculiar
properties of LWs revealed in numerical investigation. Let us write down the boundary
conditions for the upper layer with the zero-order approximation of EBCs (j1 = j2 = 0):
for the symmetric vibrations:

σ13|z=h = σ33|z=h = 0,

σ13|z=0 = 0, σ33|z=0 =
2µ2

h2β2
2

u3|z=0;
(33)
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Figure 3. Displacement distribution uk(x3, f ) of LWs A0 and S0 propagating in 4.05 mm thickness
plate (2 mm aluminium / 50 µm film / 2 mm aluminium) and LW a0 propagating in 2 mm
thickness aluminium plate.

Figure 4. Displacement distribution uk(x3, f ) of LWs A1 and S1 propagating in 4.05 mm thickness
plate (2 mm aluminium / 50 µm film / 2 mm aluminium) and LW s0 propagating in 2 mm
thickness aluminium plate.

for the antisymmetric vibrations:

σ33|z=h = σ13|z=h = 0,

σ33|z=0 = 0, σ13|z=0 =
2µ2

h2
u1|z=0.

(34)

After solving the problem for the upper layer, one can construct the wave-field in the230

lower one by continuation of the solution according to (19) or (20). From BCs (33) and231
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Figure 5. Displacement distribution uk(x3, f ) of LWs A2 and S2 propagating in 4.05 mm thickness
plate (2 mm aluminium / 50 µm film / 2 mm aluminium) and LW a1 propagating in 2 mm
thickness aluminium plate.

(34), one can easily see that the problem is reduced to the statement for a single layer232

with stress-free BCs on the top surface and elastically constrained the bottom one. Notice233

also, that the elastic constraint acts only in the normal direction to the surface in the234

symmetric case (33). On the contrary, in the antisymmetric case (34) we have the elastic235

constraint only in the tangential direction. To analyze the influence of this constraint,236

one must take into account the properties of LWs in a single layer.237

On the basis of the asymptotic analysis carried out in [38], the relations for the first
LWs can be obtained. Thus,
for mode s0:

σ13 = E1ϵ4σ̄13, σ33 = E1ϵ3σ̄33, u3 =
h
2

ϵū3, u1 =
h
2

ū1, σ̄13 ∼ σ̄33 ∼ ū3 ∼ ū1; (35)

for mode a0:

σ33 = E1ϵ4σ̄33, σ13 = E1ϵ3σ̄13, u1 =
h
2

ϵū1, u3 =
h
2

ū3, σ̄33 ∼ σ̄13 ∼ ū1 ∼ ū3; (36)

for modes s1, a1, . . .:

σ13 = E1σ̄13, σ33 = E1σ̄33, u3 =
h
2

ū1, u1 =
h
2

ū3, σ̄13 ∼ σ̄33 ∼ ū3 ∼ ū1. (37)

Here ϵ = πh/L, where L is the characteristic wavelength. For the mode s0, this wave-

length can be roughly estimated as L ∼ cpl/ f , where c1,pl =
√

E1/(1 − ν2
1)ρ1 and f is

the frequency. For the other modes of a single layer, L ∼ c1,T/ f . All the modes of a
single layer satisfy three BCs out of four BCs in (33) and (34). Let us investigate the last
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BC, considering the antisymmetric mode of the laminate as a couple of antisymmetric
modes a0. Introducing (36) in (34), we have

ϵ2 σ̄13|z=0 =
hµ2

h2E1
ū1|z=0 →



ū1|z=0 = 0, ϵ → 0;

σ̄13|z=0 = K ū1|z=0, ϵ ∼
(

hµ2

h2E1

)1/2
;

σ̄13|z=0 = O
(

hµ2

h2E1

)
ū1|z=0, ϵ ∼ 1.

(38)

In the numerical example under consideration, the shear interlayer parameter is

hµ2

h2E1
= 0.1 ≪ 1. (39)

Expressing ϵ through f (ϵ = πh f /c1,T), one can estimate the transition frequency,238

corresponding to ϵ ∼
(

hµ2

h2E1

)1/2
: ftrans = 0.16 MHz. One can see from (38) that the239

laminate behaves itself approximately as an antisymmetric couple of antisymmetric240

modes a0 at f ≫ ftrans, as a single layer of the thickness 2h = 4 mm at f ≪ ftrans, and241

in the vicinity of ftrans as an antisymmetric couple of modes in a layer of the thickness242

h = 2 mm with a strong elastic constraint at the bottom surface. In the last two cases, the243

BCs for the upper layer are essentially asymmetric, so the waveform must be different244

from that of a0. All these proprieties can be seen by mode A0 in Figure 3.245

The other antisymmetric modes are not fundamental, so the using of (35) with
ϵ → 0 has no sense for them. Let us consider the antisymmetric mode of the laminate as
a couple of symmetric modes s0. Introducing (35) in (34), we have

ϵ4 σ̄13|z=0 =
hµ2

h2E1
ū1|z=0 →


σ̄13|z=0 = K ū1|z=0, ϵ ∼

(
hµ2

h2E1

)1/4
;

σ̄13|z=0 = O
(

hµ2

h2E1

)
ū1|z=0, ϵ ∼ 1.

(40)

In this case ϵ = πh f /c1,pl and ftrans = 0.48 MHz. The behaviour defined by (40) can be246

observed by mode A1 in Figures 2, 4.247

Now let us consider the symmetric mode of the laminate as a couple of symmetric
modes s0. Introducing (35) in (33), we have

ϵ2 σ̄33|z=0 =
hµ2

h2E1β2
2

ū3|z=0 →



ū3|z=0 = 0, ϵ → 0;

σ̄33|z=0 = K ū3|z=0, ϵ ∼
(

hµ2

h2E1β2
2

)1/2

;

σ̄33|z=0 = O

(
hµ2

h2E1β2
2

)
ū3|z=0, ϵ ∼ 1,

(41)

and ftrans = 0.67 MHz. Here the stretch interlayer parameter

hµ2

h2E1β2
2
= 0.6 (42)

is not so small as the shear one given by (39). Consequently, the influence of the elastic
constraint on symmetric modes of the laminate is stronger than that on the antisymmetric
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ones. For the symmetric mode of the laminate considered as a couple of antisymmetric
modes a0 we introduce (36) in (34) and obtain

ϵ4 σ̄33|z=0 =
hµ2

h2E1β2
2

ū3|z=0 →


σ̄33|z=0 = K ū3|z=0, ϵ ∼

(
hµ2

h2E1β2
2

)1/4

;

σ̄33|z=0 = O

(
hµ2

h2E1β2
2

)
ū3|z=0, ϵ ∼ 1

(43)

with ϵ = πh f /c1,T and ftrans = 0.44 MHz. Here the behaviour of the laminate is248

complicated by the repulsion effect, because of which the mode S0 begins as a one249

defined by (41) and transforms to one defined by (43) at f > 0.5 MHz, and visa versa250

for S1. As f ≪ ftrans, the mode S0 behaves as mode s0 for a single layer of the thickness251

2h = 4 mm. The slowness of s0 in the long-wave range do not depend on the thickness,252

so the transition from the first line of (41) to the third means that the coincidence between253

the SC of s0 and that of the laminate becomes worse at f ≫ ftrans = 0.67 MHz. With254

taking into account the repulsion effect, one can see the behaviour defined by (41) and255

(43) by modes S0 and S1 in Figures 2, 3, 4.256

Figure 6. Classification of GWs propagating in homogeneous elastic waveguide and symmetric three-layered waveguide
with thin soft mid-layer.
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Introducing (37) in (33) and (34), we obtain the third lines in (41) and (38), respec-257

tively. Thus, all the next modes can be approximately considered as couples of modes of258

the single 2mm-thickness aluminium layer (see an example of this behaviour in Figure259

5). The classification of possible variants is presented in Figure 6. Notice, that the accu-260

racy of this scheme depends on the values of parameters (39) and (42). The asymptotic261

behaviour (37) is not applicable in the vicinities of the thickness resonance frequencies262

(see [38]). These vicinities are rather narrow, so they are not considered in the present263

work.264

3.2. Influence of the mechanical properties of interlayer265

Figure 7. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 µm interlayer / 2 mm
aluminium) for four materials: two-sided epoxy tape (dashed thick lines), two-component epoxy adhesive (dash-dotted
lines), cyanoacrylate adhesive (dashed thin lines), silicone rubber (thick solid lines).

Let us investigate the influence of the mechanical properties of the soft thin in-266

terlayer on the characteristics of LWs propagating such as the considered symmetric267

laminate. Figure 7 exhibits SCs for LWs propagating in 4.05 mm thickness plate (2 mm268

aluminium / 50 µm interlayer / 2 mm aluminium) with perfect contact BCs at the269

interfaces, where properties of four various materials listed in Table 1 are employed to270

simulate thin soft interlayer: two-sided epoxy tape (dashed thick lines), two-component271

epoxy adhesive (dash-dotted lines), cyanoacrylate adhesive (dashed thin lines), silicone272

rubber (thick solid lines). The Young’s moduli of adhesives vary in a relatively narrow273
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range, whereas Poisson ratios belong to a wide range including most of the adhesives274

(0.35 ≤ ν ≤ 0.48).275

One can see that most of the SCs are dissimilar for the considered materials, al-276

though there are frequency ranges, where SCs for all the materials coincide (1–1.3 MHz277

for A1, 1.5–3 MHz for A2). All these peculiarities can be explained based on the analy-278

sis, presented above. For example, the close values of the tangential effective stiffness279

(κeff
1 = 20.4 GPa/mm for two-component epoxy adhesive, κeff

1 = 20.9 GPa/mm for280

silicone rubber) explains the fact, that all the antisymmetric modes for these two ma-281

terials coincide. The SCs of symmetric modes for two-component epoxy adhesive282

(κeff
3 = 88.3 GPa/mm) and cyanoacrylate adhesive (κeff

3 = 72.9 GPa/mm) lay close283

together in all the frequency range up to 3 MHz. For the silicone rubber, the value of the284

tangential effective stiffness become extremely large (κeff
3 = 544.6 GPa/mm) because285

of the small value of β2 for such a Poisson’s ratio, and the latter explains the peculiar286

behaviour of symmetric modes. Thus, it can be concluded that the dissimilar material287

properties of the thin soft interlayer lead to distinguishable dissimilar SCs.288

The comparison of SCs for the laminate and the aluminium sublayer shows that289

the growing of the Young modulus E2 influences the symmetric couples of sublayer290

modes more than the antisymmetric ones. This fact could be explained on the basis of291

the scheme in Figure 6, since it is obviously easier to bend a thin film than to stretch it in292

the transverse direction.293

3.3. Influence of the thickness of interlayer294

Figure 8a demonstrates SCs for four different values of h2 LWs and illustrate the295

influence of the soft interlayer thickness on the SCs. A discrepancy distinguished by296

eye can be observed even for two similar thicknesses h2 = 40 µm (dash-dotted lines)297

and h2 = 50 µm (dashed lines). One can also see, that the SCs move close to those of an298

aluminium sublayer, when the thickness of the film grows, except the narrow frequency299

ranges near the cut-offs of the film. This effect is in agreement with formulae (18) and300

the analysis performed in Sections 2.3, 3.1.301

In Figure 8b, the SCs for LWs calculated using EBCs (21) and (22) are compared302

with those computed using the exact three layer model. Up to 1.25 MHz, on can see no303

difference between SCs obtained with the use of the SBCs (zero order EBCs, j1 = j2 = 0)304

and by the exact three-layer model, except the region around the “turn”of mode S0. For305

the second order EBCs (j1 = j2 = 1), one can see a good agreement everywhere except306

the frequency range around 2.2 MHz, where the EBCs do not describe an additional307

mode. This is an example of the effect mentioned in the end of Section 2.3 and related308

to the thickness resonance frequencies of the film. Indeed, for the two-sided epoxy309

tape with the parameters listed in the Table 1 and κ1 = ∞, the formula (32) gives310

f s
fl,sh = 2.2 MHz for the 100 µm-film. For the 50 µm-film, we have f s

fl,sh = 4.4 MHz. In311

this case, the agreement between the three layer model and one with second order EBCs312

(21), (22) is very good up to 3 MHz.313

3.4. Influence of the adhesive bonding or imperfect contact314

The condition of the perfect contact is an idealization, which, from the practical315

point of view, can be considered only as an approximation. The estimation of the316

applicability of such an approximation is not a trivial problem. The possible way to317

solve it may be found with the use of mathematical modeling, in which the possible318

contact degradation is taken into account via the SBCs (3). In Figure 9, the SCs for319

various combinations of κ1 and κ3 are presented. Comparing this figure with Figures320

7, 8a, one can see that it is hard to distinguish between the effects of the thickness, the321

material properties or the interface stiffnesses variation, unless the thickness resonance322

frequency of the film comes to be in the considered frequency domain, as in Figure 8a323

for the 100 µm-thick film. This is explained by Figure 8b, which show that the principal324

behaviour of SCs can be described by the model with zero order EBCs, in which the325
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Figure 8. SCs of LWs propagating in the laminate (2 mm aluminium / h2 thickness film / 2 mm aluminium) at h2 =

10, 40, 50, 100 µm (a) and in 4.1 mm thickness plate (h2 = 100 µm) calculated using asymptotics (14) with one term (thin
dashed lines), with two terms (solid lines) and exact solution (thick dashed lines) (b).

parameters of the film are presented only through combinations (17). Still, the extraction326

of all the film-related parameters including the interface stiffnesses from dispersion327

properties of LWs is possible, when the experimental data meet certain requirements,328

which are investigated in Sec. 3.5.329

In the case of weakened interfaces with large values of ξl = κ−1
l , the numerical330

calculation of dispersion curves the 50 µm-film reveals the effect of sharp increase of331

slowness analogous to that shown in Figure 8. It can be seen from Figure 9a, that this332

effect is most likely to be observed by symmetric modes, when the interface is weakened333

in the tangential direction.334

Two examples of SCs for symmetric modes in the case of continuous vertical335

displacements, i.e. κ3 = ∞, are presented in Figure 9b for κ1 = 2.5 GPa/mm and336

κ1 = 4.2 GPa/mm. The investigation of vibration forms shows that in the vicinity of337

the frequency (32) they are characterized by “trapping”of the energy by the film, so the338

external layers nearly cease to move at all. Since the measurements of the wave-field339

are usually made on the outer surfaces of the laminate, this effect can manifest itself340

only as gaps in the experimentally acquired dispersion curves of symmetric modes.341

For example, for κ1 = 2.5 GPa/mm one must see the gap by the modes S0 and S1 in342

frequency range G1, and by the modes S0 and S5 in frequency range G2 (see Figures 9b,343

10, 11). Here we consider only modes, which are observed in the experiment (see Sec.344

5). Of course, analogous gaps could be observed for the other symmetric modes, if one345

could see the modes themselves.346

3.5. Analysis of the influence of the film parameters on the basis of EBCs347

If the goal is to consider plane LW propagating in x1-direction, the EBCs (21) and (
22) can be written in simpler form by setting ∂/∂x2 = 0 u2 = 0, σ12 = σ32 = 0. Besides,
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Figure 9. SCs of symmetric LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 µm film / 2 mm aluminium)
with the imperfect contact for four different combinations of normal and tangential stiffnesses κi (a) and symmetric LWs for
two different values of the interface tangential stiffness if κ3 = ∞ (b).

Figure 10. Displacement distribution uk(x3, f ) of SLWs propagating in 4.05 mm thickness plate
(2 mm aluminium / 50 µm film / 2 mm aluminium) with imperfect contact (κ1 = 2.5 GPa/mm,
κ3 = ∞).

in the case of a soft film one can use the simplified EBCs, obtained in the end of Sec. 3.5.
Let us write them down in the form

σ̂13 = −j1h0
ν2

1 − ν2

∂σ̂33

∂x1
+ jredh0ρ2

[
∂2û1

∂t2 − jsim
1
2

(
ξeff

1 − ξeff
1,0

)∂2σ̂13

∂t2

]
,

û3 =
1
2

ξeff
3 σ̂33 − j1h0

ν2

1 − ν2

[
∂û3

∂x1
− jsim

1
2

(
ξeff

1 − ξeff
1,0

)∂σ̂13

∂x1

]
− jsim

h0(1 − 2ν2)
2

48(1 − ν2)2

(
ξeff

1,0

)2
ρ2

∂2σ̂33

∂t2 (44)
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Figure 11. Displacement distribution uk(x3, f ) of SLWs propagating in 4.05 mm thickness plate
(2 mm aluminium / 50 µm film / 2 mm aluminium) with imperfect contact (κ1 = 4.2 GPa/mm,
κ3 = ∞).

for symmetric LWs and

σ̂33 = −j1h0
∂σ̂13

∂x1
+ jredh0ρ2

[
∂2û
∂t2 3

− jsim
1
2

(
ξeff

3 − 1 − 2ν2

2(1 − ν2)
ξeff

1,0

)
∂2σ̂33

∂t2

]
,

û1 =
1
2

ξeff
1 σ̂13 − j1h0

[
∂û3

∂x1
− jsim

1
2

(
ξeff

3 − 1 − 2ν2

2(1 − ν2)
ξeff

1,0

)
∂σ̂33

∂x1

]
− jsim

h0

12

(
ξeff

1,0

)2
ρ2

∂2σ̂13

∂t2 (45)

for antisymmetric ones. In (44) and (45), the film-connection is characterized by five
material parameters: ξeff

1 , ξeff
3 , ν2, ρ2, ξeff

1,0. By setting jsim = 0, we come to reduced EBCs:

SLW:


σ̂13 = −j1h0

ν2

1 − ν2

∂σ̂33

∂x1
+ jredh0ρ2

∂2û1

∂t2 ,

û3 =
1
2

ξeff
3 σ̂33 − j1h0

ν2

1 − ν2

∂û3

∂x1
,

ALW:


σ̂33 = −j1h0

∂σ̂13

∂x1
+ jredh0ρ2

∂2û3

∂t2 ,

û1 =
1
2

ξeff
1 σ̂13 − j1h0

∂û1

∂x1
.

(46)

The advantage of (46) consist in the fact, that they contain only four material parameters:
ξeff

1 , ξeff
3 , ν2, ρ2. Let us also write down the first order EBCs

SLW:


σ̂13 = −j1h0

ν2

1 − ν2

∂σ̂33

∂x1
,

û3 =
1
2

ξeff
3 σ̂33 − j1h0

ν2

1 − ν2

∂û3

∂x1
,

ALW:


σ̂33 = −j1h0

∂σ̂13

∂x1
,

û1 =
1
2

ξeff
1 σ̂13 − j1h0

∂û1

∂x1

(47)

with three parameters and the zero order EBCs

SLW: σ̂13 = 0, û3 =
1
2

ξeff
3 σ̂33, ALW: σ̂33 = 0, û1 =

1
2

ξeff
1 σ̂13 (48)

containing only two ones. As one can see from (44–47), the parameters ν2, ρ2 arise348

only in the higher-order asymptotic approximations. It means that their estimation349
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from the experimental data can be strongly affected by the noise and the other type of350

experimental errors. Thus, it is advisable to define the regions, where the influence of351

each of the parameters is the most pronounced. This can be done on the basis of the352

EBCs as follows.353

Let us assume that we have two aluminuim plates of the thickness 2mm, glued354

together by a film, and the experimentally acquired SCs of LWs. The material properties355

of the aluminuim can be determined by conducting an analogous experiment for a single356

plate, so we assume them to be known and coinciding with those given in Table 1. The357

thickness of the film is also assumed to be known and equal to 50 µm, but its material358

parameters must be extracted from the experimental data. Let us also suppose, that359

we are not sure whether the contact between the film and the aluminium is perfect or360

not. Therefore, we have to determine 5 parameters: E2, ν2, ρ2, ξ1, ξ3. This problem is361

equivalent to the evaluation of parameters ξeff
1 , ξeff

3 , ν2, ρ2, ξeff
1,0 entering in EBCs (44), (362

45).363

At the first step, we calculate SCs with material parameters of a film, which is364

expected to be similar to the one used in the experiment (e.g., the two-side epoxy tape365

from the Table 1), using both the exact three layer model and the zero-order EBCs (48).366

By comparing the results, we can find region Z \ A in the slowness-frequency domain,367

where the SCs are well described, when using zero-order EBCs (see Figures 12a and368

13a). Analysis of the properties of Lamb waves presented in Sec. 3.1 allows to define369

modes within these regions, which are strongly influenced by the film. These modes are370

indicated by arrows in Figures 12a and 13a. If the experimental data for these parts of371

SCs are available, one can determine parameter ξeff
3 by matching the symmetric modes372

and ξeff
1 for the antisymmetric ones. Notice, that these two parameters can be determined373

independently.374

If the contact between layers is perfect, we can also find the Poisson’s ratio (PR) at
this stage:

νpr =
ξeff

1 − 2ξeff
3

2
(
ξeff

1 − ξeff
3
) . (49)

Let us call this a provisional Poisson’s ratio, since it is not valid in the case of an imperfect375

contact.376

At the next step, we calculate the SCs using the first order EBCs with already377

known ξeff
1 and ξeff

3 . The comparison shows that the influence of the new parameter ν2378

consist mainly in improving the SC of the wave S0 in the region A (see Figures 12a,b,e379

and 13a,b). If we have the data for this region, we can choose an appropriate value380

of ν2, which is called an experimental PR. A discrepancy between the provisional PR381

and the experimental PR indicates that the contact is imperfect. For example, we have382

νpr = 0.19 for κ1 = 20GPa, κ3 = 20GPa, νpr = −0.05 for κ1 = ∞, κ3 = 20GPa, and383

νpr = 0.43 for κ1 = 20GPa, κ3 = ∞ instead of ν2 = 0.4 for the two-side epoxy tape.384

Thus, the provisional PR is not suitable in the case of an imperfect contact. However, the385

experimental PR is valid in both cases.386

Now we are in the position to define the density by calculating the SCs using387

reduced EBCs (46), in which all the parameters except ρ2 are known. The influence of388

ρ2 is most pronounced in the regions B and C (see Figures 12b,c,d,f or B, c and D 13b,c).389

At the last step, we determine the parameter ξeff
1,0 by using the simplified EBCs (44), (45)390

and matching the SCs in the regions E and F (see Figure 13c,d). If the accuracy of the391

simplified EBCs is not sufficient (as in the region F in Figure 13d), one can use tri-layer392

model and match the Young modulus E2, since all the other parameters of that model393

can be expressed through it and already known quantities. On the each step beginning394

from the second one, an iteration procedure for the refinement of parameters is possible395

(e.g., after the determination of ρ2 we can refine ν2 to meet the small changes between396

the first order and reduced EBCs in the region A (see Figure 12e), then, if necessary,397

refine ρ2 to meet changes in B, C, and so on).398
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Figure 12. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 µm film / 2 mm aluminium)
for different approximations of EBCs.
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Figure 13. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 µm film / 2 mm aluminium)
with an imperfect contact at the interfaces (κ1 = κ3 = 20 GPa/mm) for different approximations of EBCs.
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Thus, all the material parameters related to the film can be determined. In the case399

of a perfect contact ξeff
1,0 = ξeff

1 , i.e., all the material parameters are already known before400

the last step. In this case, the simplified EBC can be used to check the found parameters401

(see Figure 12d,e,f).402

The consideration above shows that experimental data of high accuracy are needed403

to determine all the parameters of the film. If such data are not available, it is more404

reasonable to define the effective stiffnesses κeff
1 = (ξeff

1 )−1, κeff
3 = (ξeff

3 )−1 only. They405

allow to describe the SCs with a practically good accuracy and are sufficient to detect406

the damage of the interfaces between the film and the aluminium. In the case, when all407

the parameters are required, the step-wise algorithm presented above can be used to408

check, whether the amount and accuracy of the experimental data are sufficient to fulfil409

the task or not.410

4. Properties of other guided waves in laminates with soft interlayer411

Besides the Lamb waves, the laminate under consideration can guide horizontally412

polarized shear waves (SH-waves). The anti-plane problem describing them can be413

obtained for the general statement in Section 2.1 by setting u1 = u3 = 0,
∂

∂x2
= 0. The414

corresponding EBCs follow from (14) or (21), (22) after the same setting. Let us write415

down anti-plane EBCs for a symmetric laminate:416

for the symmetric vibrations:

σ̂23 = −j2h0µ2Ωsh(û2 − ξ2σ̂23), (50)

for the antisymmetric vibrations:

û2 =
1
2

ξeff
2 σ̂23 + j2

h3
0

3µ2
Ωshσ̂23, (51)

where Ωsh =
∂2

∂x2
1
− 1

c2
2,T

∂2

∂t2 , ξeff
2 is defined by (17). As one can see from (50), the417

symmetric SH-wave coincides with some SH-wave of the single layer with asymptotic418

error of the second order. With the same error, the antisymmetric SH-wave is SH-mode419

of the same layer with elastic constraint on the bottom surface, defined by the effective420

stiffness κeff
2 = (ξeff

2 )−1 (see (51)). If this stiffness is sufficiently small, we have a long-421

wave, low-frequency mode with non-zero cut-off frequency. This case is thoroughly422

studied in [41].423

The properties of SH-waves in the laminate are analogous to those of LWs analyzed424

in Sec. 3.1, but in this case the symmetric modes are not affected by the stretch interlayer425

parameter. In the long-wave range in respect to film (h2 ≪ L), all the SH-modes can426

be considered as a symmetric or antisymmetric couple of symmetric or antisymmetric427

SH-waves of the upper (or the lower) layer, with an exception of the mode ASH0. The428

latter represents an antisymmetric couple of symmetric modes ssh0 at high frequencies,429

but at low frequencies it behaves differently and has non-zero cut-off frequency.430

The form of EBCs (50), (51) shows, that in their range of applicability the dispersion431

curves of antisymmetric SH-waves depend mainly on the parameter ξeff
2 . The depen-432

dence on the shear modulus µ2 in particular is defined by the second-order asymptotic433

term, so it must be very weak. If the stiffness κ2 = ξ−1
2 is not too small, the dispersion434

curves of symmetric SH-waves depend weakly on µ2, ρ2 and h2. In the case µ2 ≪ µ1,435

the first term in Ωsh is small comparing to the second one, so the dispersion curves436

are not sensitive to µ2. These conclusions are in agreement with the results of paper437

[10], where a similar problem was considered and the non-sensitivity of the mode SH2438

(SSH1 in the notations of the present paper) to µ2 and κ2 was revealed by means of439

numerical FE-based investigation. Thus, in the range of applicability of EBCs (50), (51) it440
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is hardly possible to extract both µ2 and κ2 from the experimentally acquired dispersion441

properties of SH-waves.442

As for LWs, the EBCs (50), (51) fail in the vicinities of the thickness resonance443

frequencies of the film. On the basis of the three layer model, the latter are defined by444

Eqs. (27), (29), (31) with κ2 instead of κ1. The lowest of such frequencies is observed445

for symmetric modes. Only if this frequency comes to be in the frequency range under446

consideration, one can find both µ2 and κ2. Thus, even in the best case, SH-waves allow447

to determine only three parameters of the film: the shear modulus, the density and the448

interface stiffness in tangential direction. So it is of interest to study the possibilities of449

the other GWs.450

Let us consider a semi-infinite laminate, occupying the domain −∞ < x1 < ∞, x2 ⩽451

0, 0 ⩽ x3 ⩽ h (see Figure 1). In this case, the plate can support one more type of452

GWs — edge waves (EWs), propagating along the edge x2 = 0 in x1 direction and453

exponentially decaying as x2 → −∞. These waves were intensively studied theoretically454

(see the overview [42] and the references therein), in the recent time their existence and455

properties were confirmed in several experimental studies [43–46]). But the EWs in a456

laminate glued by a thin soft film were not yet investigated.457

In this work, we consider a symmetric laminate with perfect contact on the inter-
faces, and employ the second order EBCs (21), (22). The problem is reduced to one for
the upper layer with free top surface, EBCs (21) or (22) at the bottom surface, and BCs
on the edge x2 = 0

σ
(1)
l2 = ql(x1, z, t),

∫ h

0
σ
(1)
l2 dz +

∫ h0

0
σ
(2)
l2 dy =

∫ h

0
ql(x1, z, t)dz, (52)

where l = 1, 2, 3, ql(x1, z, t) are prescribed loads. In (52), σ
(2)
l2 are stresses in the film,458

which can be calculated with the asymptotic error O
(
ε3) as stated in Sec. 2.2 after459

deriving the EBCs. We assume that the film is unloaded, and require the satisfying460

of edge BC for the film in the integral form only, which is justified for the case of the461

long-wave vibrations (L ≫ h2).462

This statement of the problem is analogous to that one considered in [43], so one463

can apply the same method, which is based on the use of the Laplace and the Fourier464

integral transforms and expansion through wave modes of the infinite layer. As in [43],465

both LWs and SH-waves must be taken into account. The unknown constants of the466

expansion are determined by satisfying BC (52) as described in [43].467

EWs correspond to poles ωm(k) (k is the wavenumber) in the complex plane ω,468

which are found numerically. The calculated slownesses of EWs are shown in Figures469

14 and 15 together with the slownesses of LWs and SH-waves. The notations EAn, ESn,470

introduced for a homogeneous plate, are applicable to a symmetric laminate as well. The471

SCs for an aluminium plate of the thickness 2 mm are also shown here for comparison.472

The attenuation of EWs defined as Im ωm(k) is shown in Figures 16. This effect is473

caused by the radiation of the energy transferred into the interior of the plate due to474

the coupling of EWs with propagating LWs and SH-waves. It is characteristic for edge475

modes with attenuation that their dispersion curves split into branches because of the476

intersection with the cuts in the complex plane, associated with propagating Lamb and477

SH-modes.478

The behaviour of the SCs for SH-waves is demonstrated in Figure 14 and their479

comparison with the SH-waves in the 2mm-thick aluminium homogeneous layer is480

shown in Figure 15. It confirms the results of the theoretical analysis given above. Except481

ASH0, all the SH-waves of the laminate are only slightly influenced by the film. The482

behaviour of EWs is more complicated. As one can see from the Figures 14, 15, in the483

laminate with a soft thin interlayer one can observe a richer family of EWs than in a484

monolithic layer. In general, it reproduces the main properties of LWs investigated485

n Sec. 3.1. There are the pairs of SCs in Figures 14, 15 corresponding to SCs of EWs486

in a 2mm-thick aluminium layer, although the EWs associated with ea0.5, es0.5 and487
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Figure 14. Slownesses of all GWs propagating in 4.05 mm thickness symmetric laminate with a soft thin interlayer (2 mm
aluminium / 50 µm film / 2 mm aluminium).

symmetric waves associated with ea1 were not found. Apparently, the influence of the488

film has moved the corresponding poles to the hidden sheets of the Riemann surface. It489

is interesting to notice that the high order EWs EA0.5, ES0.5, ES1 in their main features490

are close to fundamental waves: their SCs are in general lay close together, and their491

cut-off frequencies and attenuation is small. To our best knowledge, such type of EWs,492

which could be called quasi-fundamental EWs, was not studied before. The other higher493

order EWs revealed in this paper are better observed in a thick plate, as it was shown in494

[44].495

The most interesting from the practical point of view are fundamental waves496

EA0, ES0 and theirs pairs EA0.5, ES0.5, ES1, which are most likely to be observed in497

the experiments. The analogy with LWs allows to suggest that they can provide the498

information about ξeff
1 , ξeff

3 and, in the case of highly accurate experimental data, about499

ν2 and ρ2. However, the possibility of the evaluation of µ2 and ξ2 taken separately is500

rather questionable, unless the available frequency range contains regions, where the501

long-wave EBCs are not valid because of some resonance phenomena in the film. In502

the latter case, EWs have an advantage in comparison with LWs and SH-waves. As it503

is shown in [43], EWs are well observed by measurements on the edge, where one can504

acquire the wave-field in the neighbourhood of the film, and so obtain more information505

about dynamic behaviour of the latter, than from data acquired on the faces of the506
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Figure 15. Slownesses of EWs and SH-waves propagating in 4.05 mm thickness symmetric laminate with a soft thin
interlayer (2 mm aluminium / 50 µm film / 2 mm aluminium) and 2 mm aluminium plate.

laminate. The investigation of EWs on the basis of the three layer model would make507

this paper too voluminous, so it will be the topic of our future work.508

5. Comparison: theory vs. experiment509

5.1. Experimental setup510

To verify the predicted properties experimentally, a three-layered specimen was511

fabricated of two 2 mm-thickness aluminium plates joined by a film (acquired from512

selbstklebefolien.com) of 50 µm thickness as shown in Figures 1 and 17. The resulting513

laminates were further cured for 24 hours at room temperature under uniform pressure514

of 2000 Pa.515

GWs in the specimen are excited by a thin adhesively attached circular piezoelectric516

actuator of 5 mm radius and 0.5 mm thickness manufactured from PZT PIC 151 (PI517

Ceramics). Out-of-plane velocities of propagating wave packages are measured on the518

surface of all the specimens by Polytec PSV-500-V laser Doppler vibrometer, which head519

is placed about 1100 mm above the sample minimizing the oblique angle laser beam520

measurement errors [47]. The scheme of the experimental setup is shown in Figure 17.521

5.2. Analysis of the experimental data522

Experimental slownesses for the laminate composed of two 2 mm aluminium plates523

of dimensions 600 × 150 × 2 mm3 (|x1| < 300,−150 < x2 < 0, 0 < x3 < 4.05) and 50 µm524
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Figure 16. Attenuation of EWs propagating in 4.05 mm thickness symmetric laminate with a soft thin interlayer (2 mm
aluminium / 50 µm film / 2 mm aluminium) and 2 mm aluminium plate.

Transducer

LDV

Specimen

Scan points

0.05 mm

Alumium plate

Soft interlayer

Figure 17. Sketch of the experimental setup.

film made of two-sided epoxy tape between them are shown in Figure 18 by circles.525

These slownesses have been computed applying the matrix pencil method (MPM) [48]526

to out-of-plane velocities measured along the interval 20 ≤ x1 ≤ 180 mm, x2 = −75 mm,527

x3 = 4.05 mm with 0.3 mm step. As it can be seen from Figure 18, the MPM-data are in a528

good agreement with theoretically calculated slownesses for the three-layered laminate.529

In particular, one can see the pairs of dispersion curves laying closely together (A0 and530

S0, A1 and a part of S1, A4 and S4), which were predicted and explained in the theoretical531

part of this investigation.532
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Figure 18. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 µm film / 2 mm aluminium)
determined via the MPM (circles) and estimated theoretically (solid lines).

Table 2. Material properties found experimentally.

Material Eff. stiffness Density Young modulus Poisson’s ratio
GPa/mm ρ, kg/m3 E, GPa ν

κeff
1 κeff

3

Aluminium – – 2715 72 0.345

Two-sided
epoxy tape 1.1 26 900 0.26–0.35

[
0.505 − 0.16 E

GPa

]
–0.5

The material parameters, used for theoretical SCs in Figure 18, were determined as533

follows. Preliminary, we refined the parameters of the aluminum layers in an analogous534

experiment for a single 2mm-thick plate before gluing. The material properties of535

aluminium plate are shown in the Table 2. Notice, that the experimental data for the536

laminate itself can be also used to refine the parameters of the aluminium. It was shown537

in Section 3.1 that the SCs of modes A1 in the range 1.1–1.3 MHz, A2 and A4 in the538

range 1.5–2.7 MHz are nearly coincident with those of a single 2mm-thick aluminium539

layer, and these stretches are well observed in MPM-data. However, these parts of540

experimental data are useless, when the goal is to determine the parameters of the film.541

Let us consider the data, which cannot be described by SCs of an aluminium plate, and542

proceed according to the procedure given in Section 3.5.543

At the first step, we find the values of the effective stiffnesses
(

ξeff
1

)−1
= κeff

1 = 1–544

1.2 GPa/mm,
(

ξeff
3

)−1
= κeff

3 = 24.5–27.5 GPa/mm by fitting the experimental data in545

the region Z \ A with the SCs, calculated on the basis of the model with zero-order EBC.546
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The provisional Poisson’s ratio (49) changes in the limits νpr =0.474–0.481 and seems to547

be too high for this material. Since νpr increases when ξeff
1 grows, we can suggest that the548

film-aluminium interface has some compliance in the tangential direction. At the second549

step, we can only say that ν2 = 0.3–0.5, since the divergence of the MPM-data is too large550

to find the Poisson’s ratio more definitely. But the influence of ν2 is negligible in the551

region B, so we can define the density as ρ2 = 800–1000 kg/m3. For the last step, there552

are no data in the regions D and E, so it is impossible to determine the last parameter553

ξeff
1,0. It means, that the experimental data are insufficient to define the Young modulus of554

the film and the stiffnesses of the interfaces. However, with the use of some additional555

considerations we can deduce the limits of the estimated values of E2 and ν2.556

Taking into account the symmetry, we express from (17)

ξ1 =
1
2

ξeff
1 − h2(1 + ν2)

E2
, ξ3 =

1
2

ξeff
3 −

h2(1 + ν2)β2
2

E2
. (53)

From the condition ξ1 ⩾ 0, ξ3 ⩾ 0 follows that the pair (E2, ν2) must lay in the domain
P1 ∩ P3 with P1 : E2 ⩾ 2h2(1 + ν2)κeff

1 , P3 : E2 ⩾ 2h2(1 + ν2)β2
2κeff

3 . Besides, from (53)
follows κ1 = ξ−1

1 > 2κeff
1 , κ3 = ξ−1

3 > 2κeff
3 . Applying these inequalities together with

formulas (26) and (32), we obtain estimations

f a
fl,st > f a

fl,0 f s
fl,sh > f s

fl,0, (54)

where f a
fl,0 is the root of Eq. (23) at κ3 = 2κeff

3 , µ2/β2
2 → ∞, which is the nearest to the

approximate value (26) as κ3 → 0. Analogously, f s
fl,0 is the root of Eq. (29) at κ1 = 2κeff

1 ,
µ2 → ∞, which is the nearest to the approximate value (32) as κ1 → 0. For the following
considerations, let us assume the mean values for κeff

1 , κeff
3 , ρ2, given in Table 2, as

the experimentally determined parameters of the two-side epoxy type. Then we have
f a
fl,st > 7.5 MHz, which is far outside the frequency limit of the experimental data. But

for the symmetric shear resonance frequency, the estimation (54) gives f fl
t > 1.6 MHz.

Theoretically, we could observe the effect of this resonance as gaps in SCs of symmetric
modes, if f s

fl,sh < 3 MHz. In our experimental data, we see the gaps by all modes around
1 MHz, 2 MHz and 3 MHz. Apparently, they are related to the spectrum of the pulse
load with the duration 1 µs. But the situation, when the frequency f fl

t comes to be in one
of the load-gaps around 2 MHz and 3 MHz, cannot be excluded. Starting from the fact,
that we can see mode S0 up to 1.75 MHz and mode S4 in the range 2.08–2.7 MHz, and
taking into account the width of the gaps shown in Figure 9, we obtain estimations for
the possible values of f s

fl,sh:

fmin,1 < f s
fl,sh < fmax,1, f s

fl,sh > fmin,2 (55)

with fmin,1 = 1.88 MHz, fmax,1 = 2.03 MHz, fmin,2 = 2.8 MHz. The numerical solving
of Eq. (29) with κ1 = ξ−1

1 defined by (53), allows to determine the domains Q1, Q2 of
the possible values of (E2, ν2), for which the inequalities (55) are satisfied. Thus, the pair
(E2, ν2) can lay in the domains P1 ∩ P3 ∩ Q1 or P1 ∩ P3 ∩ Q2. For the κeff

1 given in the
Table 2, we found P1 ∩ P3 ∩ Q2 = ∅. By approximating the boundaries of P1 ∩ P3 ∩ Q1,
we come to the limits for possible values of E2 and ν2, given in Table 2 (in the formula
for the lower limit of ν2, E means the value of the Young modulus in GPa). According to
formulas (53), the values of κeff

1 , κeff
3 , E2, ν2 define the interface stiffnesses:

κexp
1 =

1

1
2
(
κeff

1
)−1 −

h2(1 + ν
exp
2 )

Eexp
2

, κexp
3 =

1

1
2
(
κeff

3
)−1 −

h2(1 + ν
exp
2 )(1 − 2ν

exp
2 )

2Eexp
2 (1 − ν

exp
2 )

,
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where Eexp
2 , ν

exp
2 are some values from the ranges given in Table 2, κeff

1 , κeff
3 are exper-557

imental values, also given in this table. The range of possible values of Eexp
2 and ν

exp
2558

corresponds to ranges κexp
1 ∈ [4, 6] GPa/mm and κexp

3 ∈ [52, ∞) GPa/mm.559

6. Discussion560

With extensive analytical and numerical analysis, it is illustrated that mechanical561

properties of the thin soft interlayer and the interface contact quality have a sufficient562

influence on the EGWs properties in a three-layered laminate structures. Such impact can563

be efficiently described both quantitatively and qualitatively by the derived EBCs, where564

analytical expressions are now available for the expansion terms. Employing EBCs it565

becomes possible to provide physically clear explanation to the observed behaviour566

of high-order EGWs in considered laminate structures (i.e., emergence of mode pairs,567

closed-form representations for cut-off frequencies, etc.). Moreover, specific frequency568

regions and EGWs being most sensitive to interlayer mechanical properties and its569

bonding quality with external lamina are revealed. Therefore, a consequential procedure570

for soft interlayer identification based on the EBCs can be implemented using exper-571

imentally evaluated EGW dispersion curves obtained from the measurements on the572

specimen surface.573

It is revealed that for a broad frequency range the interlayer influence on the574

elastodynamic behaviour of the laminate structure could be reliably described by just the575

effective stiffnesses κeff
1 and κeff

3 being a combination of the elastic moduli of the film, its576

thickness and interface stiffnesses. They could be reliably identified from experimental577

data and might be already used in certain NDT/SHM applications for contact integrity578

evaluation. For example, if the values of κeff
1 and κeff

3 are estimated in advance for a579

reference pristine structure, their deviation from baseline values indicates the changes580

either in contact condition or interlayer degradation. However, for some other practical581

applications the mechanical properties of the film itself may be essential, as well as582

the interface stiffnesses. In this case, one must take into account that the separate583

determination of these parameters involves higher order terms of EBCs, which have584

small influence on EGW behaviour. Therefore, special attention should be paid, whether585

the amount and accuracy of the available experimental data is sufficient to determine586

all the required parameters. For instance, with the experimental dispersion curves for587

LWs mentioned above, it is possible to provide unique output only if the thickness of588

the film is known in advance and the perfect contact is assured. If (as in the example589

considered) the last condition cannot be met for sure, the unique quantification of the590

elastic moduli and the interface stiffnesses turned out to be practically impossible. This591

result has its explanation in a well known fact that dynamic effects in a thin film have592

correspondingly high frequencies, which are hard to achieve in the current experiment.593

At lower frequencies the behaviour of the film is rather quasi-static, thus, not all of its594

parameters are equally involved in the dynamics of the laminate. Still, the theoretical595

analysis shows that from the complete and precise experimental data all the film-related596

parameters could be determined.597

The peculiar property of the thin and soft film is that the lowest of its thickness598

resonance frequencies can be found in the low-frequency range, available for the experi-599

mental investigation. In this case, some additional information about the film-related600

parameters can be obtained, even if these frequencies could be observed only as gaps in601

the experimentally acquired dispersion curves. In the present paper, ranges of mutual602

variation of film and contact parameters are estimated via the consideration of possible603

values of film-related thickness resonance frequencies. As a general recommendation,604

it can be noticed that the broadening of the considered frequency range to include the605

resonance phenomena in the film is the best way to achieve unique determination of its606

parameters. In this regard, the EWs seem to be perspective candidate, since they allow607

observation on the edge in the vicinity of the film.608
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Although numerical examples and experimental validation are considered in this609

paper for a symmetric waveguide only, the employed computational model and derived610

asymptotic relations are valid for a laminate structure with dissimilar isotropic external611

layers of arbitrary thickness. Therefore, a general case of a non-symmetric three-layered612

laminate with soft thin film can be also efficiently investigated employing the analytical613

relations of the derived EBCs.614

For further research endeavors, it is essential to address viscoelastic behaviour of615

the interlayer typical for polymer-based materials in a three-layered model (Section 2.1)616

and EBCs and to investigate its influence on fundamental and high-order EGWs [49].617

Another topic of emerging interest is the extension of the proposed methodology to metal-618

composite and composite-composite bonded structures [50] considering anisotropic619

mechanical properties of sublayers. The current study mainly concentrated on the620

investigation of LWs propagation. Although SH-waves and EWs, generally speaking,621

behave similarly, they might provide additional data for identification procedures (see an622

example of SH-waves employment in [10]) including those based on the derived EBCs.623

Therefore, further experimental and theoretical investigations related to the laminates624

with thin interlayers should also exploit the potential of EGWs of other kinds.625
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647

NDT non-destructive evaluation
SHM stuctural health monitoring
SCs slowness curves
EGWs elastic guided waves
GWs guided waves
LWs Lamb waves
ALW antisymmetric Lamb wave
SLW symmetric Lamb wave
EWs edge waves
BCs boundary conditions
EBCs effective boundary conditions
SBCs spring-type boundary conditions
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