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Abstract: Laminate structures composed of stiff plates and thin soft interlayers are widely used
in aerospace, automotive and civil engineering encouraging the development of reliable non-
destructive strategies for their condition assessment. In the paper, elastodynamic behaviour of
such laminate structures is investigated with emphasis on its application in ultrasonic based NDT
and SHM for the identification of interlayer mechanical and interfacial contact properties. A
particular attention is given to the practically important frequency range, in which the wavelength
considerably exceeds the thickness of the film. Three layer model with spring-type boundary
conditions employed for imperfect contact simulation is used for numerical investigation. Novel
effective boundary conditions are derived via asymptotic expansion technique and used for
analysis of the peculiar properties of elastic guided waves in considered laminates. It is revealed
that the thin and soft film influences the behaviour of the laminate mainly via the effective
stiffnesses being a combination of the elastic moduli of the film, its thickness and interface
stiffnesses. To evaluate each of these parameters separately (or to figure out that the available
experimental data are insufficient), a step-wise procedure employing the effective boundary
conditions is proposed and tested versus the laser Doppler vibrometry data for Lamb waves in
Aluminium/Polymer film/Alumunium structure. The possibility of using film-related thickness
resonance frequencies to estimate the film properties and contact quality is also demonstrated.
Additionally, the rich family of edge waves is also investigated, and the splitting of fundamental
edge waves into pairs is revealed.

Keywords: laminate; soft material; thin interlayer; guided waves; edge waves; effective boundary
conditions

1. Introduction

Laminate thin-walled structures composed of stiff plates and soft polymeric inter-
layers are typical for many industrial applications. Among such examples are adhesively
bonded metallic or fibre-reinforced composite components widely used in aerospace
and automobile manufacturing providing an adequate compromise between weight
reduction, strength properties and cost-efficient assembling [1,2] or laminated glass
consisting of a plastic interlayer surrounded by two adjacent glass plates which have
become a ubiquitous solution for automobile windshields and in architectural glazing
due to its impact-energy absorbing properties [3].

Since the integrity of the bonds in multi-layered assemblies directly affects the
product quality, development and implementation of reliable non-destructive strategies
for their condition assessment are essential [4,5]. Together with conventional ultrasonic
testing [6], the approaches employing elastic guided waves (EGWs) as a physical ba-
sis are emerging to characterize adhesive joint properties [7-10]. For visualization of
localized macroscopic damage in bonded structures with EGWSs, non-contact imaging
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techniques are being developed based on object surface scanning with a laser source
[11], laser interferometer [12] and their combinations [13]. Since guided wave dispersion
properties strongly depend on structural material parameters, EGWs are valuable for
global assessment of adhesive bonding integrity [8,14] and might be also used for the
estimation of adhesive mechanical properties [15,16]. The latter is particularly important
for in- and post-manufacturing quality control of bonded structures because the strength
properties of adhesives strongly depend on curing conditions [17,18].

In the EGWs diagnostics of laminate assemblies with soft interlayers, relevant
mathematical and computational models describing their elastodynamic behaviour are
essential for adequate interpretation of the experimental data. A natural and basic way
is to model such waveguides as multilayered objects assuming continuity conditions
for displacement and stress components at the interlaminar interfaces [15] (for bonded
structures, they are known as tri-layer models). To handle possible imperfectness
in interface coupling, such models are further modified by including an additional
viscoelastic interfacial layer [19] or assuming the spring-type boundary conditions
(SBCs) between the laminae [8,20].

When the thickness of internal soft layers is sufficiently small compared to the
wavelength, their dynamics might be neglected and replaced by certain effective bound-
ary conditions (EBCs) coupling two external laminae and tuned to address interlayer
mechanical properties and the contact quality. As EBCs, uniformly distributed SBCs
working in traction/compression and shear are widely used [21,22] (i.e., if adhesively
bonded structures are considered this relates to both cohesive and adhesive properties of
bonded joints). Alternatively, more sophisticated and precise models are proposed based
on asymptotic expansion techniques using a small parameter related to the thickness of
the interlayer [23-25]. However, to our best knowledge, up to now these models did not
take into account contact quality and their accuracy was not higher than the first order
of the small parameter.

Compared to Lamb waves (LWs) in a monolithic single lamina, the presence of a soft
polymeric insert and layering of the waveguide sufficiently complicates corresponding
EGW phenomena. Theoretical considerations reveal that Lamb-type EGWs propagating
in such laminates are composed of modes that could be associated with corresponding
LWs of sublayers and coupling modes related to the global structure [19]. Moreover,
certain of the former are disparted in the laminate structure into mode pairs, which
dispersion curves in broad frequency ranges traverse along corresponding trajectories
of these LWs [20,26]. Finally, specific mode repulsion phenomena, not occurring in a
monolithic layer, could be also pronounced [27]. It is observed that all these peculiarities
of EGWs could depend both on mechanical properties of thin interlayers and contact
quality between laminae [8,19]. Thus, a thorough investigation of corresponding EGW
phenomena and understanding of their dependencies from the aforementioned input
data is essential for the reliable application of EGWs for the evaluation of laminate
structures.

The aim of the current study is to comprehensively investigate and explain the
influence of thin and soft interlayers on the behaviour of EGWs in laminate isotropic
structures with particular emphasis on the application of the obtained results for the
identification of mechanical properties of such sublayers and evaluation of interlaminar
contact integrity. For this purpose, extensive numerical analysis of EGW characteristics
in a three-layered geometrically symmetric laminate with a thin film is performed while
elastic constants and thickness of the latter as well as contact quality are serving as input.
Along with the well-established tri-layer model enriched with SBCs between the laminae
to handle possible contact degradation, a novel asymptotic model for the considered
layered structure is proposed and the corresponding EBCs are derived. Employing them,
it becomes possible to explain rigorously the nature of mode pairs and to derive a clear
semi-analytical representation for the thickness resonance frequencies of the laminate.
Moreover, these EBCs allowed estimating frequency ranges and particular EGWs, where
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and on which the influence of interlayer mechanical properties and its bonding quality
with external lamina is the most pronounced. Using this information, a preliminary
guideline for interlayer identification is proposed and tested over available experimental
data making it of potential interest for ultrasonic based NDT/SHM. As a first step to
further development of EGWs-based techniques, edge waves (EWs) in the laminate with
thin soft interlayers are investigated and the complete picture of EGWs is presented.
From the practical point of view, the EWSs can be used to detect a weakening of the bond,
localized near the edge. Moreover, together with LWs and SH-waves, they could provide
additional information for identification of mechanical properties of the film and its
contact conditions.

2. Mathematical modelling
2.1. Exact statement of boundary value problem

Let us consider a laminate composed of two isotropic and homogeneous elastic
layers D; and D3 of thicknesses /11 and k3 and a thin film D, of thickness h; between
them as shown in Figure 1. Materials of the layers are characterized by the mass density
g, Young’s modulus E; and Poisson ratio v, (7 = 1,2, 3).

B w 2

h X

Figure 1. Geometry of the problem.

()

The stress tensor components O (I,m = 1,2,3) and the displacement vector

ul?) = {ugq), ugq), ugq)} in all the layers satisfy governing equations
ao_(q) aZu(q)

Im I _
TR TR M

Let us assume that the materials of all the layers are isotropic and obey the Hooke’s law.
The stress tensor components can be expressed through the ones of the displacement
vector as follows:

aul(q) aul(q‘j)
X x|

where ¢y,,, is Kronecker’s delta, A, y1; are Lamé constants. Let us introduce parameter

2
q C;L Ag+2ug  2(1—vy)
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where

S Aq + 2yq
q,L - 7
V' Pg

Hq
©q

are the velocities of the longitudinal and transverse waves, respectively.

The SBCs connecting the displacement vector (%) and the traction vector composed
(@) @)

of tangential and normal stresses T(9) = {(Tl(g),O’ZB , 035 } at the internal interfaces x3 =

Cq,T =

p
zp = ‘21 hi (p = 1,2) are written following [28-31]:
1=

(Pt — () — () (u(pH) _ u(P)), X3 = 2. 6)
At the outer surfaces of the waveguide, stress-free boundary conditions (BCs)
W =0, x3=0; t® =0 x3=H @)

are assumed.
The components of the stiffness matrices »(?) have the form
%l(:;) = %l(p)élm.

The dispersion relation describing plane GWs propagating in an infinite multi-layered
laminate can be obtained by reducing of the problem stated above to the plane one
(LWs) or anti-plane one (SH-waves) in the plane, say, (x1, x3). After the application of the
Fourier transform with respect to x; coordinate and the Laplace transform with respect to
the time f [32], governing equations (1) are reduced to the system of ordinary differential
equations for each layer with respect to x3 and with the wavenumber k and the circular
frequency w = 271f as parameters. The solution of the system of differential equation is
then substituted into the transformed BCs (3) and (4). As a result, an eigenvalue problem
is formulated, which is reduced to the dispersion equation

D(k,w) =0

and solved numerically following [33]. Table 1 presents the material properties used
further for numerics.

Table 1. Material properties used for numerics.

Material Density  Young modulus Poisson’s ratio
o, kg/ m3 E, GPa v
Aluminium 2700 70 0.33
Cyanoacrylate adhesive [34] 1248 1.7 0.4
Silicone rubber [35] 1150 3.1 0.48
Two-component epoxy adhesive [36] 1345 2.75 0.35
Two-sided epoxy tape [37] 930 0.5 0.4

2.2. Modeling of the film via EBCs

Let us suppose that the EGWs, guided by the laminate described in Section 2.1,
satisfy the condition L >> hy, where L is the characteristic wavelength. In this case, the
problem stated in Section 2.1 can be reduced to a simplified one for a two-layered plate,
composed of layers D and D3 with some effective boundary conditions (EBCs) on the


https://doi.org/10.20944/preprints202201.0197.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2022 d0i:10.20944/preprints202201.0197.v1

interface between them, representing approximately the influence of the thin film. Using
of asymptotic methods is a natural way to construct such conditions. In [23,24], the EBCs
were obtained by asymptotic expansion of the transfer matrix of the interlayer. In [25],
an another approach is used, involving expansion of displacements and stresses both
in the interlayer and in the surrounding medium. A review of a various approaches to
modeling thin layers via EBSc can also be found in [25]. Here we present an alternative
method for deriving EBCs, which employs the asymptotic integration of Egs. (1), (2) for
the film. This approach is based on the ideas of Kaplunov et al. [38], which were used in
[39] to construct the EBCs for a half-space coated by a thin film.

Let us shift the origin of coordinate x3 to the middle surface of the film by setting
y = x3 — (h1 + ho) with hg = hy/2, then the internal interfaces x3 = z, correspond to
y = *£hg. For the boundary values of traction components and displacements of the
external layers, we introduce notations

(1) (2:+1)

(£1) (241)
O3~ =03 s U
y:iho

= u .
y==%ho

With the new notations, BCs (3) can be written in the form

(2) — (&) (2)’ — (FD) - A(F) (1)
N T I S0 ®)
(£1) (3£) o . -
where &,/ = | ° are interface compliances. Let 4 and p be the characteristic

values of the shear moduli and densities of the external layers. The behaviour of the
film can be described in terms of dimensionless parameters € = hy/L, ua/p, p2/p. In
order to consider the general case of long-wave vibrations, we assume ¢ < 1, po/u ~ 1,
p2/p ~ 1 and introduce dimensionless variables

_ X o, _x o _ter o) hop () _

i = flr g - I’T()/ T= Tr u = Ewl/ Oty = WPlim- (6)
Here and further on i,j = 1,2, i # j, cr = /p/p. Let us write down BCs (5) in
dimensionless variables (6) as the sum

2 23 ~
_q + _ . ==S8pn, wil,_+wl__,=—=U 7
pizle—1 + pisle——1 1 13 He=1 Hg=—1 hopt ! @)
and the difference
1/.1) (-1
Pl3|g:1 - P13|g:_1 = ﬁ(”l(g) - 01(3, )),
(8)
_ _ M2 () (-1
Wileog — wilgmq = Tiop (”l u Pl,)

where
~ (= 1/ (- ~
(01(31) ""71(3 1)), U = §<ul(1) +u,( 1)>, U =u—-Q.

1/.1)~01 “1)a(—1 1)~(1 “1)a(=1
Q=@ —a Ve Y), m=gla v Ve
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After substituting (6) into (1) and (2), one can rewrite this system in the form

d

7553 = —€(aipi3 + a]‘p]‘g,) + EZa%w?)r

Ipi

BCI = —e(l - 2ﬁ%)8m33 — ¢ [afylwi + (3 - 4/3%)81»8]-10]} ’ (10)
dw Jdw;

87; = Bapss — 8(1 - 2!3%) (9iw; + 9jw;), 785 = pi3 — €9;w03

d
an pii = (1-2683) pas + 26 [2(1 — B3 )2si + (1 - 263) 9y, a
pij = €(9jw; 4 0;w;),

0 0? .
where 9; = i 02 = Z;‘u 52 Bpl =4(1-B3)? + 82 02. Operator 8}2)1 is related to

the theory of plate extension (see below).

Let us assume that the functions p;3, w; and their derivatives with respect to #; and
T have the order of unity as ¢ — 0. Under this assumption, system (10) can be integrated
by making use of asymptotic iterations [38]. In the zero order approximation, we omit in
(10) all the terms with € and €?. Then the system (10) gives

Pl =s33+0(e), py=si5+0(e),

0 2 0 (12)
w3 = U3 + ,32533€ + O(S), w; =v; + si3¢ + O(e)r

where sj3, v; are arbitrary functions of 7; and 7. By substituting (12) in the sum of BC (7),
we find 1
P2 15
S;3 = *Sl , 0 = LI (13)
T hop

Now we are in the position to obtain the first order approximation. By restoring the
terms with ¢ and substituting into them already known zero order approximation, we
come again to the system, which allows integration, and so on. It is convenient to write
integrals of the odd functions of { as even functions, which turns to zero at { = %1 (e.g.,
the integral of { is (¢? — 1) /2). Then formulae (13) is valid for any approximation. After

constructing approximation of pj;, v’ of desirable order 7, one can substitute them in the

difference of BCs (8) and obtain the relations between the boundary values l(sﬂ) ﬁl(ﬂ),

i.e. the EBCs. Besides, we have the formulae for all the displacements and stresses in the
film (for pj;, pij, formulae (11) must be used). As soon as the problem for the domains Dy,
D3 connected via the EBCs is solved, one can reconstruct the distribution of the stresses
and the displacement in the film with the asymptotic error O (" 1).

In the original variables, the EBCs of the second order have the form

~(1)  ~(=1 . a5; dSi3 22U
G “h2<a£f+ t ) + a5

(= dS
i3 *‘Ti(:«; D= *]1712( 2,32) - — jahapa | Q

_ 02U,
. _AR2 ]
pilli + (3 4ﬁ2) axiax-] ’

L " all, oU;\ . H3p>
ué)_ug )7/\ o 533+P3—]1h2< 2ﬁ%)<a +8x> ]1;;42

7 2
1) (-1 _ha g ous . I _ ) 5k
i; i; = " Siz+ P; — ]1h2 +]2 1210 0O;Si3 + (1 /32) axiaxj ’

(14)

(3533,
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where
2 2 1 92 1-2p3 ;32 02
O =4(1-83)-— , Q3= A+,
pl ( 52) asz Gt 2 of2 3 B3 Gt o2 -
02 02 1 o2 02 02
0= (2 ﬁ2>az 2 2o BTaiataa
ioar X xj
0
j12 = 0,1 are switches of approximation. In the case Frodie = 0, operator (), can be
X2
written in the form
0, =2 P (1-v3)p
P 1—1 ax% E; ot? |”

Such an operator describes propagation of an extensional wave in a thin plate with
free faces (see, e.g., [38]). In the problem under consideration, this operator becomes
dominating only in the case y, >> u, which is not in the focus of the present investigation.

If él(il) = 0, the zero-order terms of (14) coincide with those obtained in [23,25].
The first order approximation (j; = 0) is in agreement with that in [23] except the terms
with j, in the first two equations in (14), which referred to the first approximation in [23].
Apparently, this discrepancy is caused by the procedure of the EBCs derivation used
by Rokhlin and Wang [23], which employs a transfer matrix for the vectors containing
stresses and particle velocities.

If convenient, one can shift the vertical coordinate in domains D; and Dj to calculate
(Afl(;ﬂ), ﬁl(il) on the same surface in the global coordinate system, but this operation is
not necessary.

In the zero order approximation (j; = jo = 0), the EBCs are spring-type BCs
(1) _ 5(=1)

0 =0. ?r.( ) =50
33 33 ’ i3 B 16)
ugn geff/\ ) ﬁl(l) _ ﬁlgq) _ §¢ff&(l)

with effective compliances

hy

eff _
& T A+ 21

hy | -1
sl et e, (17)
corresponding to effective stiffnesses £ = (g5f)~1, ;4% = (g5%)~1. Formulae (17)
show that in the case of an imperfect contact the effective compliances are the sums of
those of the film itself
hy hap3

h

eff eff 2

, € = 18
63’0 /\2 =+ 2“112 2] 61,0 U2 ( )

and those of the interfaces between the film and the external layers.

In the case of a symmetric laminate (hy = h3 = h, E{ = E3, 11 = v3, p1 = p3,
c;‘l(_l) = 51(1) =g = 1), it is convenient to shift the coordinate y locally in D3 as
z =1y —hy/2,and in D; as z = y + h /2. Then in the global coordinate system (x1, x2, z)
the surfaces of the waveguide are defined by z = £ and the interface by z = 0. The
boundary values Ul(;l) ﬁ,(il) mean the limits as z — £0 (we have a discontinuity here
because of the film).
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The problem can be separated into two independent ones: for the symmetric
vibrations defined as

1 3 1 3
ul( ) z=— - ul( ) z=d ué ) z=—d - _ué) z=d’ 19
» _ o0 D ) (1) ) 19)
1 z=—d n z=d’ U lz=—d U z=d’ i3 z=—d i3 z=d’

(d € [0, h]), and for the antisymmetric vibrations characterized by

1) 3)

( (
u; = —u; u =u

bolz=—d Uolz=d 3 li=—4 3 =’ (20)
A @ LW @ L @

L PR L P A P § o lz=d" "8 |z=—g B =4

It is sufficient to consider only one of two external layers, e.g., the upper one (the domain
index is omitted below).
The symmetry proprieties imply

Sy =033, U;=1;— 03, DP3=2803, Spz=U3=P,=0

for the symmetric problem and

Siz =0, Uz =13~ 033, P,=2803 Sp=U=P=0

for the antisymmetric one. According to these relations, two conditions in (14) are
satisfied identically, and the other two give the EBCs for each case:
for the symmetric vibrations:

s~ Y 3 . _AR2 ]
03 ]1h0(1 Zﬁz) o, johopa | QUi + (3 4ﬁ2) axiax,l'
- - ' @)
~ 1o o\ (oUi  oU\ kB
i3 = 5657033 — jiho (1 2ﬁz> o, + o, 23 O3033;
for the antisymmetric vibrations:
~ . 8?71»3 aa—]B . a2ﬁ3
033 = ]1ho<axi + ax; + j2hop2 52 7
(22)

L. o0Us Ry o\ %073
= 5800 b i | A%+ (1-8) 5 |

Here 03, i1} are boundary values on the lower surface of the upper layer.

The material parameters of soft films considered in this work (see Table 1) are
related to the parameters of the external layers (aluminium) as p/p1 ~ 1, up /1 < 1.
An analysis of EBCs (21) and (22) taking into account the additional small parameter
u2/n1 shows that the the underlined terms in (15), (21) and (22) are small. By omitting
them we obtain the simplified EBCs used in Section 5.

2.3. Thickness resonance frequencies

Except the rare cases of backwards waves, the cut-off frequencies of LWs coincide
with thickness resonance frequencies, which are eigenvalues of the problem analogous
to that for LWs, but with wavenumber k = 0 (see [38] for more details). In the laminate
under consideration, these frequencies can be separated into two groups: thickness
stretch resonance frequencies, for which the corresponding eigenforms satisfy conditions

ugq) =0, Ul(g) = 0, and thickness shear resonance frequencies with ugq) =0, aég) =0.
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For the antisymmetric vibrations, the thickness stretch resonance frequencies are

defined as fj] o = wy /27, where wyj,  (n = 1,2,...) are w-roots of equation

h (cos why — - ‘uzpzwsin th) + P12 sin why cos w—h =0. (23)
Bay/Hip1 2001 ciL

201 P2 2001,
In the case of a soft interlayer, we have yp/y1 < 1, so the roots of Eq. (23) allow
additional separation in two groups, approximately defined by equations

sin w—h =0 (24)
C1,L
or " L
cos Wha _ ”‘uzpzwsin Wha =0. (25)
201 P2 2cy1

The roots of Egs. (24) and (25) are thickness stretch resonance frequencies of the external
layers and the film with SBCs on its surfaces, respectively. In the case of a thin film, the
thickness resonances are extremely high-frequency ones. But in the case pp/p1 < 1,
which is considered here, these resonances can arise at the relatively low frequencies. If
23 — oo, the lowest thickness stretch resonance frequency of the film is defined by the
whz

C2,L
described by two-term asymptotic approximation:

lowest root of equation cos

= 0. If 253 — 0, this frequency can be approximately

1 2
- 3 if 33 — 0,
2 n (14 722P 2
fis = P22 6112 (26)
(S5 P
Lo .
201y i 23 — ©

For the 50 ym-thick two-sided epoxy tape from Table 1, f§ = 10.7 MHz at 553 = oo
and fg < 3 MHz if 53 < 9GPa/mm. The number n of the frequency (26) in the
series fy . depends on the relation between parameters of the external layers and the
film, including the interface stiffnesses. In the case when the frequency (26) coincides
with some of the root of Eq. (24), so-called “repulsion effect” arises, so we do not have
multiply root in such a situation.

The antisymmetric thickness shear resonance frequencies are defined as f; =
wy o/ 27, where wj o are w-roots of equation

h h v/ h v/ h h
sinw— <sin Wi + szzwcos Wit ) _ vipn cos Wi Co! wl_ 0, (27)
1,1 2cy1 bl 2co1 Vi1 201 ot

which can be separated analogously to Eq. (23) if u2/p; < 1, except the case of the
lowest thickness shear resonance frequency f7; . The latter cannot be observed in the
film considered separately, and is characteristic only for three-layered waveguides. In
a strongly inhomogeneous waveguide, the part of the dispersion curve starting from
this frequency comes to be in the long-wave range in respect to the external layers (i.e.,
L > h, where L is the characteristic wavelength). This case is thoroughly studied in
[40], where the two-mode asymptotic polynomial expansions of the Rayleigh-Lamb
dispersion relation approximating both the fundamental antisymmetric wave and the
first high order wave can be found. In the laminate considered in the present paper, this
effect can be obtained if ji; or s is sufficiently small. The antisymmetric thickness shear
resonance frequencies of the film are high and not of interest for the present investigation.
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The thickness stretch resonance frequencies for the symmetric vibrations are defined
S — S S 1
as f ot = Wy /27, where wj, ; are w-roots of equation

sin w—h (sin why + = ﬂzpza}cos why ) — P1viap2 cos why cos w—h =0. (28)
1L Bav/Hip1 201 L

200 p2 2051

The properties of the roots of Eq. (28) are analogous to the ones of Eq. (27). In particular,
the lowest thickness stretch resonance frequency f7  is also of the type, that is charac-
teristic only for three-layered waveguides and comes to be in low-frequency range in
respect to the external layers, if y5 /B2 or sz is sufficiently small. The thickness stretch
resonance frequencies of the film are very high in this case.

The symmetric shear resonance frequencies are of more interest for the present
investigation. They are defined as f} 4 = wy;, /27, where w;, ., are w-roots of equation

sin w—h (cos why — Vzpzwsin why ) + = Hap2 sin wh; cos w—h =0. (29)
c1,T 2cy1 7l 2cy1 VAP 2ca7 C1,T

As pp/y1 < 1, the roots of Eq. (29) can be separated into two groups, approximately

defined by equations
. wh
sin— =10 (30)
C1,T
or L L
cos wha _ v]/lzpzwsin Wiz =0. (31)
2co 1 Val 2001

As for Egs. (24) and (25), we have here the thickness shear resonance frequencies of the
external layers (Eq. (30)) and those of the film with SBCs on its surfaces (Eq. (31)), acting,
in contrast with (25), in the tangential direction. If r; — co, the lowest thickness shear

h
resonance frequency of the film is defined by the lowest root of equation cos 2(4272 =
2T
As 311 — 0, two-term asymptotic approximation can be derived, so we have
1 2
— -l if w1 — 0,
27 (1 + %1]12
faon & P22 6112 (32)

For the 50 ym-thick two-sided epoxy tape with the material properties given in Table 1,
fien <3MHzif 4 <15 GPa/mm.

In the narrow frequency ranges of the thickness resonance frequencies of the film
the vibrations of the interlayer are of the long-wave, high-frequency type [38]. In this
case, the assumptions made by integration of the system (10) are not valid, so the
EBCs constructed above are not applicable in these regions. In [38], the procedure of
asymptotic analysis specified for the long-wave, high-frequency vibrations, is developed,
which could be also applied in the case under consideration. In the present work, we
restrict ourselves to long-wave, low-frequency EBCs, constructed above.

3. Properties of Lamb waves in laminates with soft interlayer
3.1. Main properties of dispersion curves and vibration forms

In this paper, slowness curves (SCs) s = k(w)/w are investigated since SCs for
various GWs could be easier distinguished compared to wavenumbers k or phase
velocities w/k(w). Some SCs for LWs in the three-layered waveguide with soft interlayer
might be somehow similar to the SCs for pure upper or lower waveguides analogous
to [19,26]. To investigate this effect more detailed, it is natural to compare guiding
properties of the symmetric laminate with a soft thin mid-layer and a homogeneous
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Figure 2. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 ym
film / 2 mm aluminium) and 2 mm thickness aluminium plate.

waveguide, which is the first layer of the laminate. Figure 2 demonstrates SCs of 4.05 mm
thickness plate (2 mm aluminium / 50 ym film / 2 mm aluminium) and 2 mm thickness
aluminium plate. Hereinafter, SCs of symmetric and antisymmetric elastic waves are
shown using lines of different colours. To distinguish SCs for the two considered
waveguides, capital letters are used for the laminate (A, Sy, . . .), while lower-case letters
denote GWs propagating in the layer (ag, s, . . .). It is observed that the SCs of different
GWs propagating in the laminate and in the layer almost coincide in wide frequency
ranges. For example, these are ag and Ag modes if f > 0.8 MHz; sg for the layer and A4
for the laminate if f > 0.7 MHz; aj, s1 for the layer and Sy, A and for the laminate for
all the frequencies higher than their cut-off frequencies. The largest discrepancy between
SCs for two considered waveguides occurs for first GWs.

An insight into the nature of such a coincidence can be given via the consideration
of the wave-fields corresponding to these GWs. The displacement distribution of LWs
propagating in 4.05 mm thickness plate (2 mm aluminium / 50 ym film / 2 mm alu-
minium) and in 2 mm thickness aluminium plate are depicted in Figures 3-5, where the
variation of horizontal u; (x3, f) and vertical u3(x3, f) components of the displacement
vector of the first Lamb waves (LWs) are shown as contour plots.

The employment of EBCs (21) and (22) provides better understanding of peculiar
properties of LWs revealed in numerical investigation. Let us write down the boundary
conditions for the upper layer with the zero-order approximation of EBCs (j; = j, = 0):
for the symmetric vibrations:

Ul3|z:h = U33|z:h =0,
) (33)
013,20 =0, 053], = ?}52 uz|,—o;

2
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Figure 3. Displacement distribution uy(x3, f) of LWs Ag and Sy propagating in 4.05 mm thickness
plate (2 mm aluminium / 50 ym film / 2 mm aluminium) and LW ag propagating in 2 mm
thickness aluminium plate.
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Figure 4. Displacement distribution u(x3, ) of LWs Aj and S; propagating in 4.05 mm thickness

plate (2 mm aluminium / 50 ym film / 2 mm aluminium) and LW s propagating in 2 mm

thickness aluminium plate.

for the antisymmetric vibrations:

03], = 013],=, =0,

2]/12 (34)
J33|z=0 =0, 013|z=0 = Eul‘z=0'

After solving the problem for the upper layer, one can construct the wave-field in the
lower one by continuation of the solution according to (19) or (20). From BCs (33) and
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Figure 5. Displacement distribution 1y (x3, f) of LWs A and S, propagating in 4.05 mm thickness
plate (2 mm aluminium / 50 ym film / 2 mm aluminium) and LW a; propagating in 2 mm
thickness aluminium plate.

(34), one can easily see that the problem is reduced to the statement for a single layer
with stress-free BCs on the top surface and elastically constrained the bottom one. Notice
also, that the elastic constraint acts only in the normal direction to the surface in the
symmetric case (33). On the contrary, in the antisymmetric case (34) we have the elastic
constraint only in the tangential direction. To analyze the influence of this constraint,
one must take into account the properties of LWs in a single layer.

On the basis of the asymptotic analysis carried out in [38], the relations for the first
LWs can be obtained. Thus,

for mode sg:
4 3 h__ h_ _ o
013 = E1€7013, 033 = E1€7033, Uz = i3, U1 = iy, 013 ~ 033 ~ fl3 ~ 1Ty (35)
for mode ag:
4- 3 h__ - . S
033 = E1€°033, 013 = E1€7013, ug = S, u3 = i3, 033 ~ 013 ~ 1 ~ 13; (36)
for modes sy, ay, .. .:
_ _ h_ h_ _ _ _
013 = E1013, 033 = E1033, uz = 5, W = 53, 013 ~ 033 ~ i3 ~ 1. (37)

Here € = mth/L, where L is the characteristic wavelength. For the mode sy, this wave-
length can be roughly estimated as L ~ ¢,/ f, where ¢1 5 = y/E1/(1 — v2)p; and f is

the frequency. For the other modes of a single layer, L ~ c;1/f. All the modes of a
single layer satisfy three BCs out of four BCs in (33) and (34). Let us investigate the last
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BC, considering the antisymmetric mode of the laminate as a couple of antisymmetric
modes ag. Introducing (36) in (34), we have

i],_0=0,€—0;

h 1/2
i} huy 7 — K o (2
e 0-13|z:O = ?}; ul'z:O - Ul3|2:0 Kul|z:0’ € <h2E1) ’ (38)
_ hus '\ _
0'13|Z:0 = O(thl) u1|Z:O, e~ 1.

In the numerical example under consideration, the shear interlayer parameter is

h‘uz

— =011

IoEs 01K (39)
Expressing € through f (¢ = mhf/c; 1), one can estimate the transition frequency,

h 1/2
corresponding to € ~ <h‘uE2> ¢ ftrans = 0.16 MHz. One can see from (38) that the
2E1

laminate behaves itself approximately as an antisymmetric couple of antisymmetric
modes ag at f >> firans, as a single layer of the thickness 2k = 4mm at f < firans, and
in the vicinity of firans as an antisymmetric couple of modes in a layer of the thickness
h = 2mm with a strong elastic constraint at the bottom surface. In the last two cases, the
BCs for the upper layer are essentially asymmetric, so the waveform must be different
from that of ag. All these proprieties can be seen by mode Ay in Figure 3.

The other antisymmetric modes are not fundamental, so the using of (35) with
€ — 0 has no sense for them. Let us consider the antisymmetric mode of the laminate as
a couple of symmetric modes sp. Introducing (35) in (34), we have

) AN

= K i1 ’ ~ —_— ,'

N b 013],—0 = Kit1|,—p, € (bEl)
€fﬁ3h:ogfﬁggzulkzo‘ﬁ s
01350 = (

thl) a1|Z:O’ e~1.

In this case € = 7thf/ C1,pl and firans = 0.48 MHz. The behaviour defined by (40) can be
observed by mode A; in Figures 2, 4.

Now let us consider the symmetric mode of the laminate as a couple of symmetric
modes sg. Introducing (35) in (33), we have

(40)

i3),_0=0,€—0;
1/2
) hyin
h U|—K12|,e~<> ;
2 = _ H2 331z=0 3lz=0 2
€ 033|,_0 = ——= U3|,_g — hyE 41
33],—0 InEr 2 3l,—0 2E185 (41)
i} hyin
033],_n =0 ——== | i3], € ~ 1,
33|270 (hZEl,B%> 3|270
and firans = 0.67 MHz. Here the stretch interlayer parameter
h}lz
=0.6 (42)
haE1B5

is not so small as the shear one given by (39). Consequently, the influence of the elastic
constraint on symmetric modes of the laminate is stronger than that on the antisymmetric
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ones. For the symmetric mode of the laminate considered as a couple of antisymmetric
modes ag we introduce (36) in (34) and obtain

L 1/4
_ - 2
033].—o = Kiiz|._o, € ~ <h2£ﬁ2> ’
2
(43)

_ hua
U33|z:0 = O(ﬁ) u3|Z:0/ e~1
2

with € = 7mhf/ciT and fians = 0.44MHz. Here the behaviour of the laminate is
complicated by the repulsion effect, because of which the mode Sy begins as a one
defined by (41) and transforms to one defined by (43) at f > 0.5 MHz, and visa versa
for Sy. As f < firans, the mode Sy behaves as mode sg for a single layer of the thickness
2h = 4mm. The slowness of sy in the long-wave range do not depend on the thickness,
so the transition from the first line of (41) to the third means that the coincidence between
the SC of sy and that of the laminate becomes worse at f >> firans = 0.67 MHz. With
taking into account the repulsion effect, one can see the behaviour defined by (41) and
(43) by modes Sy and S; in Figures 2, 3, 4.
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Figure 6. Classification of GWs propagating in homogeneous elastic waveguide and symmetric three-layered waveguide
with thin soft mid-layer.
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257 Introducing (37) in (33) and (34), we obtain the third lines in (41) and (38), respec-
258 tively. Thus, all the next modes can be approximately considered as couples of modes of
250 the single 2mm-thickness aluminium layer (see an example of this behaviour in Figure
260 D). The classification of possible variants is presented in Figure 6. Notice, that the accu-
261 racy of this scheme depends on the values of parameters (39) and (42). The asymptotic
262 behaviour (37) is not applicable in the vicinities of the thickness resonance frequencies
263 (see [38]). These vicinities are rather narrow, so they are not considered in the present
26a  Work.

265 3.2. Influence of the mechanical properties of interlayer
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Figure 7. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 ym interlayer / 2 mm
aluminium) for four materials: two-sided epoxy tape (dashed thick lines), two-component epoxy adhesive (dash-dotted
lines), cyanoacrylate adhesive (dashed thin lines), silicone rubber (thick solid lines).

Let us investigate the influence of the mechanical properties of the soft thin in-
terlayer on the characteristics of LWs propagating such as the considered symmetric
laminate. Figure 7 exhibits SCs for LWs propagating in 4.05 mm thickness plate (2 mm
aluminium / 50 ym interlayer / 2 mm aluminium) with perfect contact BCs at the
interfaces, where properties of four various materials listed in Table 1 are employed to
simulate thin soft interlayer: two-sided epoxy tape (dashed thick lines), two-component
epoxy adhesive (dash-dotted lines), cyanoacrylate adhesive (dashed thin lines), silicone
rubber (thick solid lines). The Young’s moduli of adhesives vary in a relatively narrow
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range, whereas Poisson ratios belong to a wide range including most of the adhesives
(0.35 <v <0.48).

One can see that most of the SCs are dissimilar for the considered materials, al-
though there are frequency ranges, where SCs for all the materials coincide (1-1.3 MHz
for Ay, 1.5-3 MHz for Aj). All these peculiarities can be explained based on the analy-
sis, presented above. For example, the close values of the tangential effective stiffness
(&% = 20.4GPa/mm for two-component epoxy adhesive, > = 20.9 GPa/mm for
silicone rubber) explains the fact, that all the antisymmetric modes for these two ma-
terials coincide. The SCs of symmetric modes for two-component epoxy adhesive
(%gff = 88.3GPa/mm) and cyanoacrylate adhesive (%gff = 72.9GPa/mm) lay close
together in all the frequency range up to 3 MHz. For the silicone rubber, the value of the
tangential effective stiffness become extremely large (55" = 544.6 GPa/mm) because
of the small value of B, for such a Poisson’s ratio, and the latter explains the peculiar
behaviour of symmetric modes. Thus, it can be concluded that the dissimilar material
properties of the thin soft interlayer lead to distinguishable dissimilar SCs.

The comparison of SCs for the laminate and the aluminium sublayer shows that
the growing of the Young modulus E; influences the symmetric couples of sublayer
modes more than the antisymmetric ones. This fact could be explained on the basis of
the scheme in Figure 6, since it is obviously easier to bend a thin film than to stretch it in
the transverse direction.

3.3. Influence of the thickness of interlayer

Figure 8a demonstrates SCs for four different values of iy LWs and illustrate the
influence of the soft interlayer thickness on the SCs. A discrepancy distinguished by
eye can be observed even for two similar thicknesses h; = 40 ym (dash-dotted lines)
and hy = 50 ym (dashed lines). One can also see, that the SCs move close to those of an
aluminium sublayer, when the thickness of the film grows, except the narrow frequency
ranges near the cut-offs of the film. This effect is in agreement with formulae (18) and
the analysis performed in Sections 2.3, 3.1.

In Figure 8b, the SCs for LWs calculated using EBCs (21) and (22) are compared
with those computed using the exact three layer model. Up to 1.25 MHz, on can see no
difference between SCs obtained with the use of the SBCs (zero order EBCs, j; = j, = 0)
and by the exact three-layer model, except the region around the “turn”of mode Sy. For
the second order EBCs (j; = j» = 1), one can see a good agreement everywhere except
the frequency range around 2.2 MHz, where the EBCs do not describe an additional
mode. This is an example of the effect mentioned in the end of Section 2.3 and related
to the thickness resonance frequencies of the film. Indeed, for the two-sided epoxy
tape with the parameters listed in the Table 1 and »; = oo, the formula (32) gives
fsh = 2.2 MHz for the 100 ym-film. For the 50 ym-film, we have f3 4 = 44 MHz. In
this case, the agreement between the three layer model and one with second order EBCs
(21), (22) is very good up to 3 MHz.

3.4. Influence of the adhesive bonding or imperfect contact

The condition of the perfect contact is an idealization, which, from the practical
point of view, can be considered only as an approximation. The estimation of the
applicability of such an approximation is not a trivial problem. The possible way to
solve it may be found with the use of mathematical modeling, in which the possible
contact degradation is taken into account via the SBCs (3). In Figure 9, the SCs for
various combinations of s¢; and i3 are presented. Comparing this figure with Figures
7,8a, one can see that it is hard to distinguish between the effects of the thickness, the
material properties or the interface stiffnesses variation, unless the thickness resonance
frequency of the film comes to be in the considered frequency domain, as in Figure 8a
for the 100 ym-thick film. This is explained by Figure 8b, which show that the principal
behaviour of SCs can be described by the model with zero order EBCs, in which the
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Figure 8. SCs of LWs propagating in the laminate (2 mm aluminium / h; thickness film / 2 mm aluminium) at h, =
10,40, 50,100 ym (a) and in 4.1 mm thickness plate (h; = 100 ym) calculated using asymptotics (14) with one term (thin
dashed lines), with two terms (solid lines) and exact solution (thick dashed lines) (b).

parameters of the film are presented only through combinations (17). Still, the extraction
of all the film-related parameters including the interface stiffnesses from dispersion
properties of LWs is possible, when the experimental data meet certain requirements,
which are investigated in Sec. 3.5.

In the case of weakened interfaces with large values of §; = 5 !, the numerical
calculation of dispersion curves the 50 ym-film reveals the effect of sharp increase of
slowness analogous to that shown in Figure 8. It can be seen from Figure 9a, that this
effect is most likely to be observed by symmetric modes, when the interface is weakened
in the tangential direction.

Two examples of SCs for symmetric modes in the case of continuous vertical
displacements, i.e. 33 = oo, are presented in Figure 9b for s; = 2.5GPa/mm and
271 = 4.2GPa/mm. The investigation of vibration forms shows that in the vicinity of
the frequency (32) they are characterized by “trapping”of the energy by the film, so the
external layers nearly cease to move at all. Since the measurements of the wave-field
are usually made on the outer surfaces of the laminate, this effect can manifest itself
only as gaps in the experimentally acquired dispersion curves of symmetric modes.
For example, for »r; = 2.5GPa/mm one must see the gap by the modes Sy and S; in
frequency range Gy, and by the modes Sy and Ss in frequency range G, (see Figures 9b,
10, 11). Here we consider only modes, which are observed in the experiment (see Sec.
5). Of course, analogous gaps could be observed for the other symmetric modes, if one
could see the modes themselves.

3.5. Analysis of the influence of the film parameters on the basis of EBCs

If the goal is to consider plane LW propagating in x;-direction, the EBCs (21) and (
22) can be written in simpler form by setting d/dx; = 0 up = 0, 09 = 03 = 0. Besides,
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Figure 9. SCs of symmetric LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 ym film / 2 mm aluminium)
with the imperfect contact for four different combinations of normal and tangential stiffnesses s (a) and symmetric LWs for
two different values of the interface tangential stiffness if 53 = oo (b).
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Figure 10. Displacement distribution uy (x3, f) of SLWs propagating in 4.05 mm thickness plate
(2 mm aluminium / 50 ym film / 2 mm aluminium) with imperfect contact (x; = 2.5 GPa/mm,
K3 = 00)

in the case of a soft film one can use the simplified EBCs, obtained in the end of Sec. 3.5.
Let us write them down in the form

vy 0033 | . U1 et e 07013
— vy 0x1 +]redh0P2|:at2 — Jsimy ( g ) o2 |

~ 1 vy [diz a0
W= Sfig i 0z { ]51m2< off geff) 13}

013 = —j1ho 1

dx1

~ho(1=200)? /g \2 97033
- ]Slmﬁ (6 ) 250 (44)
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Figure 11. Displacement distribution uy (x3, f) of SLWs propagating in 4.05 mm thickness plate
(2 mm aluminium / 50 ym film / 2 mm aluminium) with imperfect contact (x; = 4.2 GPa/mm,
K3 = OO)

for symmetric LWs and

013 ’n . 1 —2v 0°7:
033 = —jiho=— ox; +]redhopz[at2 ]sim2< Sff - 2( 2)§eff) at;3]’
8u3 . 1 1—-21p 80'33
= Cl 013 — 1 o{ax ]sim2< g — 21— )éeff>

. 0%
s (e58) a5 ()

for antisymmetric ones. In (44) and (45), the film-connection is characterized by five
material parameters: Ceff, Ceff, v, 02, éeff By setting jsim = 0, we come to reduced EBCs:

N ) vy o0 9%y
013 = —jihog ZV 8x33 +jreahop2—5 57
SLW: 1 o
N N . v, Ol
i3 = = &M653 — j1ho 23
2 1—v,0dx; (46)
91 215
033 = _]1]’10 ox1 +]red 002—=0 52
ALW:

~ 1 aul
=5 $613 — j1ho=— o

The advantage of (46) consist in the fact, that they contain only four material parameters:
g',‘eff {,‘eff vy, p2. Let us also write down the first order EBCs

~ . vy 90 o0
013 = *]1h01 _21/ Wm, 033 = —jiho 8;3
SLW: ! . ALW: ! 47
— g Gan — L% ﬁzigeffo. B hau
3 033 — jih Ol—vzaxl' 13— J1 Oax
with three parameters and the zero order EBCs
~ 1 - N .
SLW: 13 =0, @i3= 5 o33, ALW: Ga3 =0, @i = 7§§ff013 (48)

containing only two ones. As one can see from (44—47), the parameters 15, py arise
only in the higher-order asymptotic approximations. It means that their estimation
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from the experimental data can be strongly affected by the noise and the other type of
experimental errors. Thus, it is advisable to define the regions, where the influence of
each of the parameters is the most pronounced. This can be done on the basis of the
EBCs as follows.

Let us assume that we have two aluminuim plates of the thickness 2mm, glued
together by a film, and the experimentally acquired SCs of LWs. The material properties
of the aluminuim can be determined by conducting an analogous experiment for a single
plate, so we assume them to be known and coinciding with those given in Table 1. The
thickness of the film is also assumed to be known and equal to 50 ym, but its material
parameters must be extracted from the experimental data. Let us also suppose, that
we are not sure whether the contact between the film and the aluminium is perfect or
not. Therefore, we have to determine 5 parameters: Ej, v2, p2, ¢1, ¢3. This problem is
equivalent to the evaluation of parameters (’,‘Eff, @'eff , V2, 02, 'ff(f) entering in EBCs (44), (
45).

At the first step, we calculate SCs with material parameters of a film, which is
expected to be similar to the one used in the experiment (e.g., the two-side epoxy tape
from the Table 1), using both the exact three layer model and the zero-order EBCs (48).
By comparing the results, we can find region Z \ A in the slowness-frequency domain,
where the SCs are well described, when using zero-order EBCs (see Figures 12a and
13a). Analysis of the properties of Lamb waves presented in Sec. 3.1 allows to define
modes within these regions, which are strongly influenced by the film. These modes are
indicated by arrows in Figures 12a and 13a. If the experimental data for these parts of
SCs are available, one can determine parameter (',‘gff by matching the symmetric modes
and &t for the antisymmetric ones. Notice, that these two parameters can be determined
independently.

If the contact between layers is perfect, we can also find the Poisson’s ratio (PR) at
this stage:

eff 2 eff
Vpr = M (49)
1 3
Let us call this a provisional Poisson’s ratio, since it is not valid in the case of an imperfect
contact.

At the next step, we calculate the SCs using the first order EBCs with already
known g‘fff and Cgff. The comparison shows that the influence of the new parameter v,
consist mainly in improving the SC of the wave Sy in the region A (see Figures 12a,b,e
and 13a,b). If we have the data for this region, we can choose an appropriate value
of 1p, which is called an experimental PR. A discrepancy between the provisional PR
and the experimental PR indicates that the contact is imperfect. For example, we have
vpr = 0.19 for 50y = 20GPa, 53 = 20GPa, vpr = —0.05 for sy = o0, 53 = 20GPa, and
vpr = 0.43 for sy = 20GPa, 33 = oo instead of v, = 0.4 for the two-side epoxy tape.
Thus, the provisional PR is not suitable in the case of an imperfect contact. However, the
experimental PR is valid in both cases.

Now we are in the position to define the density by calculating the SCs using
reduced EBCs (46), in which all the parameters except p, are known. The influence of
02 is most pronounced in the regions B and C (see Figures 12b,c,d,f or B, c and D 13b,c).
At the last step, we determine the parameter 6‘;’% by using the simplified EBCs (44), (45)
and matching the SCs in the regions E and F (see Figure 13c,d). If the accuracy of the
simplified EBCs is not sufficient (as in the region F in Figure 13d), one can use tri-layer
model and match the Young modulus Ej, since all the other parameters of that model
can be expressed through it and already known quantities. On the each step beginning
from the second one, an iteration procedure for the refinement of parameters is possible
(e.g., after the determination of pp we can refine v, to meet the small changes between
the first order and reduced EBCs in the region A (see Figure 12e), then, if necessary,
refine p; to meet changes in B, C, and so on).
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Figure 12. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 ym film / 2 mm aluminium)

for different approximations of EBCs.
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Thus, all the material parameters related to the film can be determined. In the case
of a perfect contact §‘13,f6 = fff, i.e., all the material parameters are already known before
the last step. In this case, the simplified EBC can be used to check the found parameters
(see Figure 12d e,f).

The consideration above shows that experimental data of high accuracy are needed
to determine all the parameters of the film. If such data are not available, it is more
reasonable to define the effective stiffnesses »ff = (£5)~1, 54 = (25)~1 only. They
allow to describe the SCs with a practically good accuracy and are sufficient to detect
the damage of the interfaces between the film and the aluminium. In the case, when all
the parameters are required, the step-wise algorithm presented above can be used to
check, whether the amount and accuracy of the experimental data are sufficient to fulfil
the task or not.

4. Properties of other guided waves in laminates with soft interlayer
Besides the Lamb waves, the laminate under consideration can guide horizontally
polarized shear waves (SH-waves). The anti-plane problem describing them can be

0
obtained for the general statement in Section 2.1 by setting 11 = u3 = 0, Fro 0. The
2

corresponding EBCs follow from (14) or (21), (22) after the same setting. Let us write
down anti-plane EBCs for a symmetric laminate:
for the symmetric vibrations:

G2z = —johopaQen (2 — E2023), (50)

for the antisymmetric vibrations:

1B
i) = ECSHUB + 2 ﬁﬂshffzsl (51)

i — LaiZ eff
o cgpot2 72
symmetric SH-wave coincides with some SH-wave of the single layer with asymptotic
error of the second order. With the same error, the antisymmetric SH-wave is SH-mode
of the same layer with elastic constraint on the bottom surface, defined by the effective
stiffness %gff = (Cgff)’l (see (51)). If this stiffness is sufficiently small, we have a long-
wave, low-frequency mode with non-zero cut-off frequency. This case is thoroughly
studied in [41].

The properties of SH-waves in the laminate are analogous to those of LWs analyzed
in Sec. 3.1, but in this case the symmetric modes are not affected by the stretch interlayer
parameter. In the long-wave range in respect to film (h, < L), all the SH-modes can
be considered as a symmetric or antisymmetric couple of symmetric or antisymmetric
SH-waves of the upper (or the lower) layer, with an exception of the mode ASHj. The
latter represents an antisymmetric couple of symmetric modes sshy at high frequencies,
but at low frequencies it behaves differently and has non-zero cut-off frequency.

The form of EBCs (50), (51) shows, that in their range of applicability the dispersion
curves of antisymmetric SH-waves depend mainly on the parameter &5. The depen-
dence on the shear modulus y; in particular is defined by the second-order asymptotic
term, so it must be very weak. If the stiffness s = 6{ L is not too small, the dispersion
curves of symmetric SH-waves depend weakly on pp, p2 and hy. In the case py < 3,
the first term in (g, is small comparing to the second one, so the dispersion curves
are not sensitive to yp. These conclusions are in agreement with the results of paper
[10], where a similar problem was considered and the non-sensitivity of the mode SH;
(SSH; in the notations of the present paper) to yy and s was revealed by means of
numerical FE-based investigation. Thus, in the range of applicability of EBCs (50), (51) it

where Oy, = is defined by (17). As one can see from (50), the
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is hardly possible to extract both i and sz from the experimentally acquired dispersion
properties of SH-waves.

As for LWs, the EBCs (50), (51) fail in the vicinities of the thickness resonance
frequencies of the film. On the basis of the three layer model, the latter are defined by
Egs. (27), (29), (31) with 1 instead of 5. The lowest of such frequencies is observed
for symmetric modes. Only if this frequency comes to be in the frequency range under
consideration, one can find both i, and s¢. Thus, even in the best case, SH-waves allow
to determine only three parameters of the film: the shear modulus, the density and the
interface stiffness in tangential direction. So it is of interest to study the possibilities of
the other GWs.

Let us consider a semi-infinite laminate, occupying the domain —oo < x1 < 00,x3 <
0,0 < x3 < h (see Figure 1). In this case, the plate can support one more type of
GWs — edge waves (EWs), propagating along the edge x, = 0 in x1 direction and
exponentially decaying as x, — —oo. These waves were intensively studied theoretically
(see the overview [42] and the references therein), in the recent time their existence and
properties were confirmed in several experimental studies [43—46]). But the EWs in a
laminate glued by a thin soft film were not yet investigated.

In this work, we consider a symmetric laminate with perfect contact on the inter-
faces, and employ the second order EBCs (21), (22). The problem is reduced to one for
the upper layer with free top surface, EBCs (21) or (22) at the bottom surface, and BCs
on the edge x, = 0

h ho h
01(21) =q;(x1,2t), /o Ul(zl)dz—k/o Ul(zz)dy:/o q1(x1,z,t)dz, (52)

2)

where | = 1,2,3, q;(x1,z,t) are prescribed loads. In (52), (Tl(z are stresses in the film,
which can be calculated with the asymptotic error O(€®) as stated in Sec. 2.2 after
deriving the EBCs. We assume that the film is unloaded, and require the satisfying
of edge BC for the film in the integral form only, which is justified for the case of the
long-wave vibrations (L > hy).

This statement of the problem is analogous to that one considered in [43], so one
can apply the same method, which is based on the use of the Laplace and the Fourier
integral transforms and expansion through wave modes of the infinite layer. As in [43],
both LWs and SH-waves must be taken into account. The unknown constants of the
expansion are determined by satisfying BC (52) as described in [43].

EWs correspond to poles wy, (k) (k is the wavenumber) in the complex plane w,
which are found numerically. The calculated slownesses of EWs are shown in Figures
14 and 15 together with the slownesses of LWs and SH-waves. The notations EA,, ES,;,
introduced for a homogeneous plate, are applicable to a symmetric laminate as well. The
SCs for an aluminium plate of the thickness 2 mm are also shown here for comparison.

The attenuation of EWs defined as Im wy, (k) is shown in Figures 16. This effect is
caused by the radiation of the energy transferred into the interior of the plate due to
the coupling of EWs with propagating LWs and SH-waves. It is characteristic for edge
modes with attenuation that their dispersion curves split into branches because of the
intersection with the cuts in the complex plane, associated with propagating Lamb and
SH-modes.

The behaviour of the SCs for SH-waves is demonstrated in Figure 14 and their
comparison with the SH-waves in the 2mm-thick aluminium homogeneous layer is
shown in Figure 15. It confirms the results of the theoretical analysis given above. Except
ASH,), all the SH-waves of the laminate are only slightly influenced by the film. The
behaviour of EWs is more complicated. As one can see from the Figures 14, 15, in the
laminate with a soft thin interlayer one can observe a richer family of EWs than in a
monolithic layer. In general, it reproduces the main properties of LWs investigated
n Sec. 3.1. There are the pairs of SCs in Figures 14, 15 corresponding to SCs of EWs
in a 2mm-thick aluminium layer, although the EWs associated with eags, esys and
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Figure 14. Slownesses of all GWs propagating in 4.05 mm thickness symmetric laminate with a soft thin interlayer (2 mm

aluminium / 50 ym film / 2 mm aluminium).

symmetric waves associated with ea; were not found. Apparently, the influence of the
film has moved the corresponding poles to the hidden sheets of the Riemann surface. It
is interesting to notice that the high order EWs EAg 5, ESp 5, ES; in their main features
are close to fundamental waves: their SCs are in general lay close together, and their
cut-off frequencies and attenuation is small. To our best knowledge, such type of EWs,
which could be called quasi-fundamental EWs, was not studied before. The other higher
order EWs revealed in this paper are better observed in a thick plate, as it was shown in
[44].

The most interesting from the practical point of view are fundamental waves
EAy, ESp and theirs pairs EAg5, ESp5, ES1, which are most likely to be observed in
the experiments. The analogy with LWs allows to suggest that they can provide the
information about (f?ff, (fgff and, in the case of highly accurate experimental data, about
1 and py. However, the possibility of the evaluation of y; and &, taken separately is
rather questionable, unless the available frequency range contains regions, where the
long-wave EBCs are not valid because of some resonance phenomena in the film. In
the latter case, EWs have an advantage in comparison with LWs and SH-waves. As it
is shown in [43], EWs are well observed by measurements on the edge, where one can
acquire the wave-field in the neighbourhood of the film, and so obtain more information
about dynamic behaviour of the latter, than from data acquired on the faces of the
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Figure 15. Slownesses of EWs and SH-waves propagating in 4.05 mm thickness symmetric laminate with a soft thin
interlayer (2 mm aluminium / 50 ym film / 2 mm aluminium) and 2 mm aluminium plate.

laminate. The investigation of EWs on the basis of the three layer model would make
this paper too voluminous, so it will be the topic of our future work.

5. Comparison: theory vs. experiment
5.1. Experimental setup

To verify the predicted properties experimentally, a three-layered specimen was
fabricated of two 2 mm-thickness aluminium plates joined by a film (acquired from
selbstklebefolien.com) of 50 um thickness as shown in Figures 1 and 17. The resulting
laminates were further cured for 24 hours at room temperature under uniform pressure
of 2000 Pa.

GWs in the specimen are excited by a thin adhesively attached circular piezoelectric
actuator of 5 mm radius and 0.5 mm thickness manufactured from PZT PIC 151 (PI
Ceramics). Out-of-plane velocities of propagating wave packages are measured on the
surface of all the specimens by Polytec PSV-500-V laser Doppler vibrometer, which head
is placed about 1100 mm above the sample minimizing the oblique angle laser beam
measurement errors [47]. The scheme of the experimental setup is shown in Figure 17.

5.2. Analysis of the experimental data

Experimental slownesses for the laminate composed of two 2 mm aluminium plates
of dimensions 600 x 150 x 2 mm3 (|x;| < 300, —150 < x, < 0,0 < x3 < 4.05) and 50 ym
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LDV Soft irinterlayet
\ Alumium plate

0.05 mm

Scan points

Transducer

Figure 17. Sketch of the experimental setup.

film made of two-sided epoxy tape between them are shown in Figure 18 by circles.
These slownesses have been computed applying the matrix pencil method (MPM) [48]
to out-of-plane velocities measured along the interval 20 < x; < 180 mm, x; = —75 mm,
x3 = 4.05 mm with 0.3 mm step. As it can be seen from Figure 18, the MPM-data are in a
good agreement with theoretically calculated slownesses for the three-layered laminate.
In particular, one can see the pairs of dispersion curves laying closely together (Ap and
So, A1 and a part of S1, A4 and S4), which were predicted and explained in the theoretical
part of this investigation.
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Figure 18. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium / 50 ym film / 2 mm aluminium)
determined via the MPM (circles) and estimated theoretically (solid lines).

Table 2. Material properties found experimentally.

Material Eff. stiffness Density Young modulus Poisson’s ratio
GPa/mm [ kg/m3 E, GPa v
%1‘3ff %gff
Aluminium - - 2715 72 0.345
_si 16 E
Two-sided 1 2 900 0.26-0.35 0505 — 20E| 5
epoxy tape GPa

The material parameters, used for theoretical SCs in Figure 18, were determined as
follows. Preliminary, we refined the parameters of the aluminum layers in an analogous
experiment for a single 2mm-thick plate before gluing. The material properties of
aluminium plate are shown in the Table 2. Notice, that the experimental data for the
laminate itself can be also used to refine the parameters of the aluminium. It was shown
in Section 3.1 that the SCs of modes A; in the range 1.1-1.3 MHz, A; and A4 in the
range 1.5-2.7 MHz are nearly coincident with those of a single 2mm-thick aluminium
layer, and these stretches are well observed in MPM-data. However, these parts of
experimental data are useless, when the goal is to determine the parameters of the film.
Let us consider the data, which cannot be described by SCs of an aluminium plate, and
proceed according to the procedure given in Section 3.5.

-1
At the first step, we find the values of the effective stiffnesses ( fff) =t =1-

-1
1.2 GPa/mm, (@’gff) = 4% = 24.5-27.5 GPa/mm by fitting the experimental data in
the region Z \ A with the SCs, calculated on the basis of the model with zero-order EBC.
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The provisional Poisson’s ratio (49) changes in the limits v,y =0.474-0.481 and seems to
be too high for this material. Since vp; increases when g grows, we can suggest that the
film-aluminium interface has some compliance in the tangential direction. At the second
step, we can only say that v, = 0.3-0.5, since the divergence of the MPM-data is too large
to find the Poisson’s ratio more definitely. But the influence of v, is negligible in the
region B, so we can define the density as p, = 800-1000 kg/m?>. For the last step, there
are no data in the regions D and E, so it is impossible to determine the last parameter
@if(f). It means, that the experimental data are insufficient to define the Young modulus of
the film and the stiffnesses of the interfaces. However, with the use of some additional
considerations we can deduce the limits of the estimated values of E; and 5.
Taking into account the symmetry, we express from (17)

Loy ha(1+12) L ma(1+12)B3
¢1= 5 5 g3 = Egs 5 (53)

From the condition §; > 0, {3 > 0 follows that the pair (E;, v2) must lay in the domain
P N Pywith Py @ Ey > 2ha(1 +v2)56%, Pyt Ey > 20y (1 +12) B354, Besides, from (53)
follows s1 = ¢ ts Z%fff, 73 = Gq > 2%§ff. Applying these inequalities together with
formulas (26) and (32), we obtain estimations

ffal,st > fﬁ,O ffsl,sh > ftgl,O/ (54)

where f§ ) is the root of Eq. (23) at 553 = 2%§ff, ya/ P — oo, which is the nearest to the

approximate value (26) as ;3 — 0. Analogously, fj , is the root of Eq. (29) at 3¢, = 2%1'3ff,

H2 — 00, which is the nearest to the approximate value (32) as ¢ — 0. For the following
considerations, let us assume the mean values for %fff, %§ff, 02, given in Table 2, as
the experimentally determined parameters of the two-side epoxy type. Then we have

fi & > 7.5 MHz, which is far outside the frequency limit of the experimental data. But

for the symmetric shear resonance frequency, the estimation (54) gives f{l > 1.6 MHz.
Theoretically, we could observe the effect of this resonance as gaps in SCs of symmetric
modes, if f§ ; < 3MHz. In our experimental data, we see the gaps by all modes around
1 MHz, 2 MHz and 3 MHz. Apparently, they are related to the spectrum of the pulse
load with the duration 1 ys. But the situation, when the frequency f{l comes to be in one
of the load-gaps around 2 MHz and 3 MHz, cannot be excluded. Starting from the fact,
that we can see mode Sy up to 1.75 MHz and mode S, in the range 2.08-2.7 MHz, and
taking into account the width of the gaps shown in Figure 9, we obtain estimations for
the possible values of f§

fmin,l < ffslrsh < fmax,lr ffslrsh > fmin,Z (55)

with fiin1 = 1.88 MHz, fiax1 = 2.03 MHz, fiin2 = 2.8 MHz. The numerical solving
of Eq. (29) with se; = & ! defined by (53), allows to determine the domains Qq, Qp of
the possible values of (Ejp, v;), for which the inequalities (55) are satisfied. Thus, the pair
(Ez,12) can lay in the domains P; N P3N Qq or P; N P3N Qy. For the %fff given in the
Table 2, we found P; N P; N Q; = &. By approximating the boundaries of P; N P3N Q1,
we come to the limits for possible values of E; and v, given in Table 2 (in the formula
for the lower limit of v5, E means the value of the Young modulus in GPa). According to

formulas (53), the values of %fff, %gff, E», v, define the interface stiffnesses:

%exp _ l %exp _ 1
1 - 7 3 - 7
1(%eff)_1 Ch(1+1) 1(%eff)—1 (14 vP)(1 - 2057F)
A 208 -
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p eff f

where E5F, 5P are some values from the ranges given in Table 2, 5, £ are exper-
imental values, also given in this table. The range of possible values of E; " and v ¥
corresponds to ranges 5, © € [4,6] GPa/mm and s © € [52,00) GPa/mm.

6. Discussion

With extensive analytical and numerical analysis, it is illustrated that mechanical
properties of the thin soft interlayer and the interface contact quality have a sufficient
influence on the EGWs properties in a three-layered laminate structures. Such impact can
be efficiently described both quantitatively and qualitatively by the derived EBCs, where
analytical expressions are now available for the expansion terms. Employing EBCs it
becomes possible to provide physically clear explanation to the observed behaviour
of high-order EGWs in considered laminate structures (i.e., emergence of mode pairs,
closed-form representations for cut-off frequencies, etc.). Moreover, specific frequency
regions and EGWs being most sensitive to interlayer mechanical properties and its
bonding quality with external lamina are revealed. Therefore, a consequential procedure
for soft interlayer identification based on the EBCs can be implemented using exper-
imentally evaluated EGW dispersion curves obtained from the measurements on the
specimen surface.

It is revealed that for a broad frequency range the interlayer influence on the
elastodynamic behaviour of the laminate structure could be reliably described by just the
effective stiffnesses 5™ and >4 being a combination of the elastic moduli of the film, its
thickness and interface stiffnesses. They could be reliably identified from experimental
data and might be already used in certain NDT/SHM applications for contact integrity
evaluation. For example, if the values of %fff and %gff are estimated in advance for a
reference pristine structure, their deviation from baseline values indicates the changes
either in contact condition or interlayer degradation. However, for some other practical
applications the mechanical properties of the film itself may be essential, as well as
the interface stiffnesses. In this case, one must take into account that the separate
determination of these parameters involves higher order terms of EBCs, which have
small influence on EGW behaviour. Therefore, special attention should be paid, whether
the amount and accuracy of the available experimental data is sufficient to determine
all the required parameters. For instance, with the experimental dispersion curves for
LWSs mentioned above, it is possible to provide unique output only if the thickness of
the film is known in advance and the perfect contact is assured. If (as in the example
considered) the last condition cannot be met for sure, the unique quantification of the
elastic moduli and the interface stiffnesses turned out to be practically impossible. This
result has its explanation in a well known fact that dynamic effects in a thin film have
correspondingly high frequencies, which are hard to achieve in the current experiment.
At lower frequencies the behaviour of the film is rather quasi-static, thus, not all of its
parameters are equally involved in the dynamics of the laminate. Still, the theoretical
analysis shows that from the complete and precise experimental data all the film-related
parameters could be determined.

The peculiar property of the thin and soft film is that the lowest of its thickness
resonance frequencies can be found in the low-frequency range, available for the experi-
mental investigation. In this case, some additional information about the film-related
parameters can be obtained, even if these frequencies could be observed only as gaps in
the experimentally acquired dispersion curves. In the present paper, ranges of mutual
variation of film and contact parameters are estimated via the consideration of possible
values of film-related thickness resonance frequencies. As a general recommendation,
it can be noticed that the broadening of the considered frequency range to include the
resonance phenomena in the film is the best way to achieve unique determination of its
parameters. In this regard, the EWs seem to be perspective candidate, since they allow
observation on the edge in the vicinity of the film.
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Although numerical examples and experimental validation are considered in this
paper for a symmetric waveguide only, the employed computational model and derived
asymptotic relations are valid for a laminate structure with dissimilar isotropic external
layers of arbitrary thickness. Therefore, a general case of a non-symmetric three-layered
laminate with soft thin film can be also efficiently investigated employing the analytical
relations of the derived EBCs.

For further research endeavors, it is essential to address viscoelastic behaviour of
the interlayer typical for polymer-based materials in a three-layered model (Section 2.1)
and EBCs and to investigate its influence on fundamental and high-order EGWs [49].
Another topic of emerging interest is the extension of the proposed methodology to metal-
composite and composite-composite bonded structures [50] considering anisotropic
mechanical properties of sublayers. The current study mainly concentrated on the
investigation of LWs propagation. Although SH-waves and EWs, generally speaking,
behave similarly, they might provide additional data for identification procedures (see an
example of SH-waves employment in [10]) including those based on the derived EBCs.
Therefore, further experimental and theoretical investigations related to the laminates
with thin interlayers should also exploit the potential of EGWs of other kinds.
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Abbreviations

The following abbreviations are used in this manuscript:

NDT non-destructive evaluation
SHM stuctural health monitoring
SCs slowness curves

EGWs elastic guided waves

GWs  guided waves

LWs Lamb waves

ALW  antisymmetric Lamb wave
SLW symmetric Lamb wave
EWs edge waves

BCs boundary conditions

EBCs effective boundary conditions
SBCs  spring-type boundary conditions
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