The introduction of organic and inorganic substances to the environment is a result of human activities such as agriculture, domestic and industrial wastewater which leads to pollution. Treatment processes of these wastewaters are being conducted globally to eliminate easily settled materials and recover nutrients in an attempt to release clear and apparently clean effluent into natural waters. Lack of removing inorganic nitrogen and phosphorus nutrients is the greatest cause of eutrophication in water bodies which inhibits the life of other organisms as well as pose a threat to human life and loss of the economy. Different technologies have been applied and are being developed to recover nutrients as well as heavy metals from wastewater to meet the permissible limits before discharging effluents. Wastewater treatment using microalgae offers an opportunity to provide tertiary bio-treatment and production of valuable biomass. Microalgae use the available inorganic nitrogen and phosphorus for their growth which are then harvested for various uses. Additionally, they have the ability to remove heavy metals and some toxic compounds. The main specific microalgae species in this study is the Chlorella sorokiniana with the Aequorea victoria jellyfish This paper reviews some of the wastewater treatment processes and focus on the use of microalgae and some of the shortcomings of the technologies and how they can be improved to achieve maximum nutrient recovery economically with low energy demand.
Keywords:
Subject: Environmental and Earth Sciences - Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.