Preprint
Review

Nickel Based Electrocatalysts for Water Electrolysis

Altmetrics

Downloads

1917

Views

544

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

21 January 2022

Posted:

24 January 2022

You are already at the latest version

Alerts
Abstract
Current hydrogen production is based on the reforming process leading to the emission of pollutants; therefore, a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production, as it does not produce any carbon-based pollutant byproducts. Production of green hydrogen from water electrolysis using intermittent sources (e.g., solar, eolic) would facilitate clean energy storage. However, the electrocatalysts currently required for water electrolysis are noble metals, making this potential option expensive and inaccessible for industrial applications. Therefore, there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms, structure, and morphology. Even though some works tend to be contradictory, they have lit up the path for efficient nickel-based electrocatalysts. For these reasons, herein, a review of recent progress is presented.
Keywords: 
Subject: Chemistry and Materials Science  -   Electrochemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated