Preprint
Article

Fault-Tolerant Detection Systems on the King's Grid

Altmetrics

Downloads

145

Views

248

Comments

0

This version is not peer-reviewed

Submitted:

16 January 2022

Posted:

18 January 2022

You are already at the latest version

Alerts
Abstract
A detection system, modeled in a graph, uses "detectors" on a subset of vertices to uniquely identify an "intruder" at any vertex. We consider two types of detection systems: open-locating-dominating (OLD) sets and identifying codes (ICs). An OLD set gives each vertex a unique, non-empty open neighborhood of detectors, while an IC provides a unique, non-empty closed neighborhood of detectors. We explore their fault-tolerant variants: redundant OLD (RED:OLD) sets and redundant ICs (RED:ICs), which ensure that removing/disabling at most one detector guarantees the properties of OLD sets and ICs, respectively. This paper focuses on constructing optimal RED:OLD sets and RED:ICs on the infinite king's grid, and presents the proof for the bounds on their minimum densities; [3/10, 1/3] for RED:OLD sets and [3/11, 1/3] for RED:ICs.
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated