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Abstract: ALDH+ H1975 lung adenocarcinoma stem cells (LSCs) are a rare cell population identified 

in lung adenocarcinoma (LUAD). LSCs can self-renew, drive tumor initiation, growth, metastasis, 

and recurrence, and are also considered to be the main cause of poor prognosis due to their intrinsic 

resistance to drugs and chemotherapy, causing them to be a promising target for LUAD therapy. 

Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), 

and circular RNAs (circRNAs), exert many significant regulatory functions in the pathogenesis of 

human cancers, showing the necessity for a comprehensive understanding of the mechanisms that 

underlie lung carcinogenesis. Nonetheless, research on many known transcripts and messenger 

RNAs (mRNAs) has already generated new information. Unknown biomarkers in ncRNAs and sys-

tematic and comprehensive interrelation with unknown ncRNAs and mRNAs may also provide 

insight into the biology of LUAD. Herein, we identified a set of novel ncRNAs that include miRNAs, 

lncRNAs, circRNAs, and obtained differentially expressed patterns of ncRNAs and mRNAs in LSCs 

and ALDH- H1975 LUAD tumor cells (LTCs) using stringent bioinformatics pipelines. Through a 

meta-analysis of the identified landscapes, we constructed novel competitive endogenous RNA 

(ceRNA) networks to reveal the potential molecular mechanisms that regulate the hallmarks of LSCs 

and LTCs. This study presents a summary of novel ncRNAs and the fundamental roles of differen-

tially expressed ncRNAs implicated in the activity of LSCs and LTCs. We also provide a more com-

prehensive resource for the future identification of diagnostic, therapeutic, and prognostic bi-

omarkers in LUAD. 
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1. Introduction 

Lung cancer is the most common respiratory tumor and is the leading cause of cancer 

deaths worldwide, with ~18% mortality rate and ~22.4% incident ratio among all cancer 

deaths[2,3]. Non-small cell lung cancer (NSCLC) is the most common form of lung cancer, 

accounting for ~90% of all cases, and lung adenocarcinoma (LUAD) is its most common 

histological subtype[4], with a dismal prognosis and 15% of patients surviving 5 years 

after diagnosis[5]. 

Cancer stem cells (CSCs), a biologically particular subset with stem-like characteris-

tics of cancer cells, play a critical role in tumor heterogeneity and are involved in tumor 

initiation, growth, metastasis, recurrence, and drug resistance[6]. Increasing research has 

demonstrated that the leading cause of poor prognosis for LUAD[7] is the presence of 

LUAD stem cells[8], which could initiate and sustain primary and metastatic cancer re-

lapse and growth[9]. Previous evidence[10] and our most recent studies have shown 

[11,12] that ALDH+ H1975 LUAD cells(LSCs) displayed strong CSC-like properties[13] 

and acted as LSCs to influence the formation of a tumor niche, tumor initiation, and re-

currence[7]. Our most recent study showed that LSCs have the capacity for self-renewal 

and differentiation enables the generation of tumor cells and promote tumor growth[11], 

recurrence, and metastasis. Therefore, LSCs are a promising target for interfering with the 

therapeutic mechanism of LUAD formation and LUAD therapy[7]. Elucidation of the dif-

ferences and underlying molecular pathways that characterize LSCs[14] is important to 

identify and evaluate potential diagnostic, therapeutic, and prognostic biomarkers of 

LUAD[15]. 

LncRNAs, circRNAs, and miRNAs are three subtypes of non-coding RNAs, which 

account for a huge proportion of the human transcriptome[16]. The diverse types of these 

ncRNAs are marked by sequence length, spatial architecture, and regulatory functions in 

various pathophysiological processes in cancer. Separately, miRNAs[17] are the most 

studied single-stranded ncRNAs with a length of ~20 nucleotides[18]. According to bind-

ing to specific 3'-untranslated regions (UTRs) of their target mRNAs or RNA, miRNAs 

could silence multiple targeted mRNAs expression and RNA simultaneously[19]. Regu-

latory modulation of one-to-many miRNAs influences multiple oncogenic and tumor re-

pressive pathways[20,21], such as the overexpression of has-miR-17-92 in lung cancer en-

hance cell proliferation[22] and has-let-7 in lung cancer is associated with the overall sur-

vival of patients[23]. LncRNAs are over 200 nucleotides in length[24] and have the ability 

to regulate gene expression rather than protein encoding capability[25]. Extensive studies 

have shown that lncRNAs may influence cancer progression by regulating mRNAs and 

miRNAs[26]. CircRNAs are a novel subtype of non-coding RNAs. Although circRNAs 

function as lncRNAs[27], their uniquely circular structure provides them with greater sta-

bility than linear lncRNAs[28]. CircRNAs have been confirmed to play a vital role in var-

ious types of cancer[29]. Great advances show that mRNA transcripts are regulated or 

repressed by lncRNAs/circRNAs and miRNAs, individually or in combination [30]. A 

novel mechanism in the regulatory network[31] is the identification of the interaction be-

tween mRNAs, lncRNAs/circRNAs, and miRNAs, which has been defined as the ceRNA 

network. More importantly, lncRNAs/circRNAs, up-regulate transcript expression by 

binding miRNA sites, for example, lncRNA HRCR acts as a miR-233 sponge to prevent 

cardiac hypertrophy[32], lncRNA CHRF functions as an endogenous sponge of miR-489 

to limit miR-489 expression[33], and lncRNA APF works as a sponge of miR-188-3p to 

prevent decomposition of ATG7[34]. 

Although previous attempts have focused on the differences between LUAD cells 

and the adjacent normal cells based on known transcripts and genes to explore the cause 
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and treatment options of tumorigenesis, tumor metastasis, relapse, and drug resistance, 

unknown ncRNA sets and the associated molecular mechanism between LSCs and LUAD 

tumor cells (LTCs) are necessary to provide insight into the biological properties and of 

LUAD. 

Therefore, the identification of unknown biomarkers and a meta-analysis of un-

known ncRNAs and mRNAs between LSCs and LTCs can help us to fully reveal the mo-

lecular events associated with tumorigenesis, metastasis, relapse, and drug resistance 

from the perspective of LSCs. 

2. Materials and Methods 

2.1 RNA isolation and miRNA sequencing 

Two ALDH + LSC and two ALDH- LTC samples were obtained from our previous 

study[11]. A total of ~3–5×106 cells were used for the isolation of RNA. Total RNA of cel-

lular samples was extracted using TRIzolTM reagent (Invitrogen, Carlsbad, CA, USA) 

based on the manufacturer's protocols. At least 3 μg RNA per sample was used as a sub-

strate for the subsequent analyses. Sequencing libraries were generated using the NEB-

Next® Multiplex Small RNA Library Prep Set for Illumina® (NEB, USA), according to the 

manufacturer's recommendations. Index codes were added to the attribute sequences of 

each sample. Briefly, the NEB 3' sequence replication (SR) adaptor was directly and spe-

cifically linked to the 3' end of miRNA, small interfering RNA (siRNA), and piwi-inter-

acting (piRNA). After the 3' ligation reaction, the SR random primer (RT) was hybridized 

to the excess of the 3' SR adaptor, which was transformed from a single-stranded DNA 

adaptor into a double-stranded DNA molecule. This important step prevented adaptor-

dimer formation. Thus, dsDNAs were not ligation-mediated substrates for T4 RNA Ligase 

1 and therefore did not ligate to the 5' SR adaptor in the subsequent ligation step. The 5' 

end adapters were ligated to the 5' ends of miRNA, siRNA, and piRNA. The first-strand 

cDNA was then synthesized using M-MuLV reverse transcriptase (RNase H-). PCR am-

plification was performed using LongAmp® Taq 2X Master Mix, SR Primer for Illumina, 

and index primer (X). 

The PCR products were purified on an 8% polyacrylamide gel (100V, 80 min). DNA 

fragments corresponding to 140~160 bp (the length of small non-coding RNA plus the 3' 

and 5' adaptors) were recovered and dissolved in 8 μL elution buffer. Library quality was 

evaluated on the Agilent Bioanalyzer 2100 system using DNA High Sensitivity Chips. 

Clustering of the index-coded samples was performed on a cBot Cluster Generation Sys-

tem using the TruSeq SR Cluster Kit v3-cBot-HS (Illumia) according to the manufacturer's 

instructions. After cluster generation, library preparations were sequenced on an Illumina 

Hiseq 2500/2000 platform, and 50-bp single-end reads were generated. 

2.2 RNA raw data quality control and reads mapping statistics 

Two LSC samples and two LTC samples were obtained from our previous study[11]. 

Raw reads of miRNAs and lncRNAs/circRNAs/mRNAs from the Illumina Hiseq platform 

were conducted using ReSeqTools[35] to remove reads with poly-N (ratio of N greater 

than 10%)/adapter sequence and low-quality reads (reads with more than 50% bases hav-

ing quality Q-value ≤5). Raw reads of miRNAs were then processed to filter reads con-

taining poly A/T/G/C regions. Clean reads from each miRNA sample were mapped to the 

human reference genome (version GRCh38) using Bowtie[36], with no mismatches. Clean 

reads of lncRNAs/circRNAs/mRNAs were aligned with the same human reference ge-

nome mentioned above using HISAT2 with '-rna-standness RF' and other default param-

eters[37]. The mapping results were sorted, analyzed, and indexed using ReSeqTools[38] 

and Samtools[39].  

2.3 Identification of miRNAs 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2022                   doi:10.20944/preprints202201.0286.v2

https://doi.org/10.20944/preprints202201.0286.v2


 4 of 18 
 

 

Based on the aligned small RNA reads, miRbase 20.0[40] was used as a reference, and 

miRDeep2/srna-tools-cli[41] were used to identify potential miRNAs and to define the 

secondary structures. Based on RepeatMasker[42], the Rfam database[43] mapped reads 

originating from protein-coding genes, repeat sequences, rRNA, tRNA, snRNA, and 

snoRNA[44] were removed. Based on the characteristics of the hairpin structure of the 

miRNA precursor, the Dicer cleavage site, and the minimum information of the small 

RNA reads not annotated in the above steps, miREvo[45] and miRDeep2[41] were inte-

grated to predict novel miRNAs, and the base bias was counted at the first position and 

at all positions of all identified miRNAs. For alignment and annotation, the diversity RNA 

was counted with the following priority rule: known miRNA > rRNA > tRNA > snRNA > 

snoRNA > repeat > mRNA > novel miRNA, to ensure each unique small RNA to be 

matched to only one annotation. MiRNA expression levels were estimated as Transcripts 

Per Million (TPM)[46] using StringTie[47], whose equation was normalized to the expres-

sion level: 

 

TPMi= (Ni/Li)*1,000,000/sum (Ni/Li+……..+ Nm/Lm) 

 

In the above formula, Ni indicates the mapped reads in exon i. Li indicates the 

length of exon i. Nm indicates the mapped reads in exon m. Lm indicates the length of 

exon m. 

2.4 Identification and quantification of lncRNAs/circRNAs and mRNAs 

The total mapped reads for each sample were assembled by StringTie[47] using a 

reference-based approach with an optional de novo assembly step, and a comprehensive 

annotation file with full-length transcripts and potential novel ncRNAs was generated. 

Transcripts with low confidence (exon numbers <2), length 200 nt, repeat annotations, 

and low expression (FPKM<0.05) were removed by the filtering step in Figure 2c. Quanti-

fication of known ncRNAs and mRNAs was performed by StringTie for each sample. Four 

tools, including CNCI (Coding-Non-Coding-Index)[48], CPC (Coding Potential Calcula-

tor)[49], Pfam-scan[50], and PhyloCSF (phylogenetic codon substitution frequency)[51] 

with default parameters, were used to predict the coding potential of transcripts, which 

were filtered and became candidate sets of novel lncRNAs. Cufflinks were used to calcu-

late Fragments Per Kilobase of exon model per Million mapped fragments (FPKM)[52] of 

both the lncRNAs and the coding genes in each sample. FPKMs were defined as the total 

mapped exon Fragments/(mapped reads (millions)*exon length (KB).  

The BAM files mentioned above were used to identify circRNAs. The detection and 

identification of circRNAs was based on our previous studies[11]. TMP was used to quan-

tify the circle RNAs. 

2.5 Differential expression analysis 

After quantification of digital transcript expression, a differential expression analysis 

of lncRNAs and mRNAs between the LSC and LTC groups was performed using Cuffd-

iff[53], which was based on the negative binomial distribution model. mRNA gene tran-

scripts with a P-adjust < 0.05 and |log2 foldchange| ≥ 2 were assigned as differentially 

expressed (DE) genes. 

DE analysis of miRNA and circRNAs between two conditions was performed using 

the DESeq2 R package[54]. P-values were adjusted using the Benjamini & Hochberg 

method to control the false discovery rate[55]. Corrected P-value < 0.05 and |log2 fold-

change| ≥ 2 were established as the threshold for significant DE. 

2.6 Kyoto Encyclopedia of Genes and Genomes analysis and Gene Ontology anal-

ysis on differentially expressed mRNAs 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DE 

mRNA was carried out using DAVID 6.8[56] using default parameters, to ascertain the 
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potential functions of genes that participate in cancer progression of LSCs and LTCs, sep-

arately. Gene Ontology (GO) analysis was performed based on Metascape 3.5 websites[57], 

which organized genes into hierarchical categories and uncovered the gene regulatory 

network using the database of the most recent biological processes. The P-value was ad-

justed using the Benjamini & Hochberg method to control the false discovery rate and to 

identify significant KEGG pathways and GO terms. 

2.7 Analysis of the CeRNA network and survival analysis 

LncRNA-mRNA co-location networks were predicted and performed based on the 

parameters of the upstream and downstream 100 kb distance of DE lncRNAs. 

Prediction of miRNA target gene was performed on miRanda[58], PITA[59], and 

RNAhybrid[60],, separately. The overlapping results of miRNAs and mRNAs pairs using 

the three software algorithms provided the final pairings. At the same time, miRNA target 

prediction of lncRNAs/circRNAs was performed by miRanda. 

The generation of ceRNA networks was performed using Cytoscape 3.9.0[61] and the 

identification of the modules in the ceRNA networks was performed using MCODE 

2.0.0[62], a Cytoscape 3.9.0 plug-in with default parameters. Survival analysis was per-

formed using the UALCAN website[63] and the lnCAR website[64] with default parame-

ters. 

3. Results 

3.1. Identification of novel and known miRNAs and differentially expressed miRNAs in LSCs 

and LTCs 

In our analysis, two LSC samples (ALDH+ H1975 LUAD tumor cells (LSC1-m) and 

ALDH+ H1975 LUAD tumor cells (LSC2-m)) and two LTC samples (ALDH- H1975 LUAD 

tumor cell (LTC1-m) and ALDH- H1975 LUAD tumor cells (LTC2-m)) were obtained as 

described in our previous study[11]. Raw MiRNA data was obtained using the Illumina 

Hiseq 2500/2000 platform and 50 bp single-end reads were generated. Sequencing reads 

of small RNA tags (18–30 nt) extracted from raw reads were 16.62 Mb (LTC1-m), 17.93 

Mb (LTC2-m), 15.58 Mb (LSC1-m), and 11.82 Mb (LSC2-m), respectively. The correlation 

between these four samples is shown in Figure 1b. MiRNAs expression landscape analysis 

on sequencing reads was performed to dissect the distribution of ncRNAs, to predict novel 

miRNAs, also known as miRNAs and DE miRNAs. Of these, at least 91.61% of the total 

small RNA tags were perfectly mapped to the Hg38.94 genome in the four tumor samples. 

Interestingly, more than 55.74% of the small RNA tags in LTC2-m were mapped to known 

miRNAs, and only 0.01% of those small RNA tags were predicted to be novel miRNAs. In 

contrast, the percentage of known miRNAs in LSC2-m was only 32.5%, while the percent-

age of novel miRNAs was only 0.02%. The remaining small RNA tags were assigned to 

rRNA, tRNA, snoRNA, and exons. (Additional file: Table S1). The most abundant class 

of small RNA tags was miRNAs, followed by other (Figure 1a). Overall, 100 new miRNAs 

and 1379 known miRNAs were obtained (Figure 1c). The base bias at the first position 

(based on 22nt) and all the positions of the identified miRNAs (~18~30nt) were similar in 

the new miRNAs and the known miRNAs (Figure 1d; Figure S1). These predicted novel 

miRNAs and known miRNAs (Figure 1e) were used for the subsequent analysis. The 

overview of the study flow is shown in Figure 1 and the Supplementary file: Figure S1. 

A total of 954 common miRNAs were obtained in the two groups (LSCs contained 

LSC1-m/LSC2-m and the LTC group consisted of LTC1-m/LTC2-m). A total of 208 specific 

miRNAs were expressed in the LSC group, and 196 specific miRNAs were expressed in 

the LTC group (Figure 1f). Of these, 53 up-regulated miRNAs and 27 down-regulated 

miRNAs were identified (Figure 1g). 
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Figure 1. Distribution of novel and known miRNA and DE miRNAs. (a) small RNA (sRNA) cate-

gory ratio; (b) Sample correlation; (c) MiRNA percentage from the miRbase database of known miR-

NAs; (d) first base bias and position base bias on known miRNA; (e) TMP density of all miRNAs; 

(f) Venn diagram on predicted miRNA in LSCs and LTCs; (g) volcano plot of DE miRNAs 

3.2. Identification of novel and known lncRNAs/circRNAs and DE lncRNAs/circRNAs, mRNA 

identified in LSCs and LTCs 

The raw data relative to lncRNAs/circRNAs/mRNAs were retrieved from our previ-

ous study[11]. Reads were sequenced using the Illumina Hiseq2500 platform as 125 bp 

pair-end reads. The correlation between the four samples evaluated is shown in Figure 2a. 

We obtained approximately 79.3 Mb pair-end reads, 93.45% of which could be matched 

to the Hg38.94 genome. Subsequently, using the HTseq software, we identified the distri-

bution of known transcripts. Approximately 79.64% of the reads were in protein-coding 

genes and 4.12% were known lncRNAs for a total of 3091 known lncRNAs (Figure 2b, h). 

Meanwhile, using HISAT2 and StringTie, we assembled 188,945 new transcripts. Based 

on the assembled transcripts and known transcripts, we identified a total of 6487 novel 

lncRNAs using a specific bioinformatics pipeline A (Figure 2c, h; Methods 2.4). We found 

that the most abundant size class of known lncRNAs consisted of antisense lncRNAs 

(37%) and lincRNAs (31%), and the novel lncRNAs were intronic lncRNAs (77%) (Figure 

2f). In addition, from these short reads, we also identified 681 known circRNAs and 173 

novel circRNAs (Figure 2h) using the in silico pipeline B (Figure 2d; Methods 2.4). Most 

of the circRNAs were located in exon regions (Figure 2i). Of these, 630 circRNAs were 

identified (Figure 2j) in two groups. A total of 155 circRNAs were only expressed in LTC, 

while 68 circRNAs were only expressed in LSC. 
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Figure 2. Distribution of novel and known lncRNAs/circRNAs and DE lncRNAs/circRNAs, 

mRNAs. (a) Samples correlation; (b) Transcript classes; (c) in silico pipeline used for the identifica-

tion of novel lncRNAs. The purple number next to the bar is the remaining count of lncRNAs after 

filtering each step; (d) Bioinformatics pipeline used for the identification of circRNAs; (e) FPKM 

density of all transcripts; (f) Composition of known and novel lncRNAs ; (g) Violin plot of transcripts 

between lncRNA and mRNA, and group LTCs and group LSCs; (h) Counts of lncRNA and circRNA; 

(i) Composition of circRNAs; (j)Venn diagram showing predicted circRNAs in LTCs and LSCs, re-

spectively. 

3.3. Differential expression analysis and annotation analysis 

We used Cufflinks software to perform quantitative analysis on mRNAs/lncRNAs 

(Figure 2e, g) and used Cuffdiff to perform DE analysis on lncRNAs and mRNAs and 

finally obtained 16 up-regulated lncRNAs, 18 down-regulated lncRNAs, 378 up-regulated 

mRNAs, and 364 down-regulated mRNAs (Padj<0.05 and |log2 (Fold Change)|≥2). 

Meanwhile, we performed DE analysis on circRNAs using DESeq2 software and eventu-

ally obtained 54 up-regulated circRNAs and 60 down-regulated circRNAs (Padj<0.05 and 

|log2 (Fold Change)|≥2).  

We performed the KEGG analysis to identify the potential molecular pathways that 

regulate LSCs and LTCs. Up-regulated gene sets and down-regulated gene sets were an-

alyzed separately. The results of KEGG analysis identified common pathways (Figure 3a) 

in LTCs and LSCs, which showed the commonality between LSCs and LTCs. LSCs and 

LTCs are cancer cells. Hence, they have the traits of cancer cells, and share common can-

cer-related signaling pathways, such as Pathways in cancer, the MAPK signaling pathway, 

and the PI3K-Akt signaling pathway. KEGG analysis of up-regulated gene sets (Figure 3c) 

included pathways, such as Steroid biosynthesis, Fatty acid metabolism, Antigen pro-

cessing and presentation, Fatty acid degradation, Inflammatory bowel disease (IBD), Bio-

synthesis of antibiotics, HTLV-I infection[65], Drug metabolism-other enzymes, which 

may be related to immune evasion[66] and poor prognosis[65] in LUAD. Other pathways 

(Figure 3b), which were enriched by down-regulated gene sets included the Cell cycle, 

Osteoclast differentiation, Progesterone-mediated oocyte maturation, and Hippo signal-

ing pathway, may be involved in cancer proliferation and cancer cell heterogeneity[67].  
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With screening criteria using the P-value < 0.01, we then further conducted GO anal-

ysis on up-regulated DE mRNAs and down-regulated DE mRNAs, separately. We then 

conducted hierarchical clustering on GO analysis. Nine clusters of GO terms were found 

based on down-regulated gene sets and 12 clusters of GO terms based on up-regulated 

gene sets (Figure 3d, e). The nine clusters included cell fate commitment, positive regula-

tion of programmed cell death, intrinsic apoptotic signaling pathway, cell junction organ-

ization, actin cytoskeleton organization, regulation of cell-substrate adhesion[68], positive 

regulation of cell migration, and regulation of I-kappaB kinase/NF-kappaB signaling[69], 

which may play a vital role in cell migration, cell apoptosis, and cell communication as 

described in previous studies[70]. Clusters of GO terms based on up-regulated gene sets 

were enriched in the mitotic cell cycle, DNA replication initiation, telomere maintenance, 

regulation of cell morphogenesis, homeostasis of the number of cells, cell morphogenesis 

involved in differentiation, cell junction organization, positive regulation of alpha-beta T 

cell activation, steroid biosynthetic process, which may be linked to cancer growth, cancer 

proliferation, metastasis, and immune evasion. 

 

Figure 3. KEGG pathway analysis and GO cluster analysis. (a) Common pathway found in both 

up-regulated gene sets and down-regulated gene sets; (b) specific Kegg pathways in down-regu-

lated gene sets; (c) specific KEGG pathways in up-regulated gene sets; (d)clusters of GO terms in 

down-regulated gene sets; (e) clusters of GO terms in down-regulated gene sets. 

3.4. Target prediction and integrative analysis of competitive endogenous RNA (ceRNA) net-

works 

Of the 742 DE mRNAs, 80 DE miRNAs, we predicted the target mRNAs of miRNAs 

using miRana, PITA, and RNAhybrid, separately. The overlapping results in the three 

software algorithms represented the final results. Of the 32 DE lncRNAs, 115 DE circR-

NAs, and 80 DE miRNAs, we searched for the target lncRNAs/circRNAs of miRNAs using 

miRanda. In addition, we searched for target mRNAs of lncRNAs by scanning coding 

genes 10k/100k upstream and downstream of lncRNAs and obtained 12 lncRNA-mRNA 

pairs. Finally, we built ceRNA networks with 420 pairs, which consisted of 90 DE mRNAs, 

80 DE miRNAs and 32 DE lncRNAs/96 DE circRNAs (Table S5: sheet1:ceRNA-pairs; 

sheet2: ceRNA-node-information). The 80 DE miRNAs included 78 known miRNAs and 
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2 novel miRNAs; the 32 DE lncRNAs included 8 known lncRNAs and 24 novel lncRNAs; 

and the 96 DE circRNAs included 73 known circRNAs and 32 novel circRNAs (Table 

S5_sheet2:ceRNA-nodes-information). The 420 pairs included 363 pairs comprising 

known molecules. The remaining pairs mostly involved novel molecules. Based on the 

StarBase v3.0[71] website, we identified 280 pairs, which contained most of the known 

ncRNAs and mRNAs that have been described previously. Interestingly, based on the 

ceRNA networks constructed using Cytoscape, we determined that the network could be 

divided into two subpopulations (Figure 4) satisfying two subnetworks that satisfied the 

ceRNA theory. That is, the right sub-network in Figure 4 included down-regulated miR-

NAs, up-regulated mRNAs, and lncRNA/circRNAs, while the sub-network on the left one 

consisted of up-regulated miRNAs, down-regulated mRNAs, and lncRNA/circRNAs. 

 

 

Figure 4. Constructed ceRNA networks. The left sub-network consisted of up-regulated miRNAs, 

down-regulated mRNAs, and down-regulated lncRNA/circRNAs; the right subnetwork consisted 

of down-regulated miRNAs, up-regulated mRNAs, and up-regulated lncRNA/circRNAs. Green ar-

row, lncRNA/circRNA; orange circle, mRNA; purple rhombus, miRNAs; combination of brown line 

and semicircle, inhibition or degradation, respectively; light green line or arrow, promotion; big 

shape(green arrow/orange circle/purple rhombus), up-regulation; small shape(green arrow/orange 

circle/purple rhombus), down-regulation. 

To reveal different pathways based on DE mRNAs in the ceRNA network of LSCs 

and LTs, we performed a GO analysis on 33 up-regulated genes and 54 down-regulated 

genes. The results are shown in Figure 5a, b. The GO terms of down-regulated gene sets 

clustered in cell junction, localization of cell, cell motility, cell migration, locomotion, in-

tracellular signal transduction, endocytosis, extracellular matrix terms, which are mecha-

nisms that may be linked to cell communication, the tumor microenvironment, exosomes, 

and cancer metastasis[72]. These enriched GO terms were similar to those of up-regulated 

gene sets, including cell adhesion, positive regulation of signaling transduction, vesicle-

mediated transport, lysosome, regulation of secretion, cell migration, locomotion, locali-

zation of cell, and cell motility. That is, communication between cells, such as LSCs-LSCs, 

LTCs-LTCs, and LSCs-LTCs, may depend on exosomes secreted by neighboring cells, 

which ultimately lead to altering cell functions such as cell migration and proliferation of 
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cancer cells. GO terms of up-regulated gene sets, such as fatty acid binding, positive reg-

ulation of defense response, Ras protein signal transduction, defense response, leukocyte 

aggregation, innate immune response, immune response-regulating signaling pathway, 

and cell surface receptor signaling pathways, likely influence the immune resistance of 

LSCs and may eventually be associated with a poor prognosis. The remaining GO terms 

in the up-regulated gene sets were cell growth, cell differentiation, cell junction assembly, 

cell morphogenesis, and cell proliferation, which are associated with the stemness of 

LSCs[73].  

We then identified the hub modules in ceRNA networks using the Cytoscape plug-

in: MCODE with default parameters. We obtained four main modules as shown in Figure 

5c. 

 

Figure 5. GO analysis and MCODE analysis. (a) GO analysis of up-regulated gene sets comprising 

the ceRNA networks; (b) GO analysis of down-regulated gene sets comprising the ceRNA net-

works.; (c) Four main sub-networks; (d) Heatmap of 11 transcripts in the four sub-networks. 

We developed the clustering heatmap for all 11 mRNAs in the four modules (Figure 

5d). Among these genes, two S100A8 transcripts and one S100A9 transcript were signifi-

cantly up-regulated and all were regulated by the same two novel lncRNAs (LNC_000305 

and LNC_000605). The three mRNAs were associated with several regulatory functions, 

such as regulation of defense response, regulation of NF-kappaB TF activity, and the Toll-
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like receptor signaling pathway. Furthermore, S100A9 was correlated with a poor prog-

nosis in LUAD[11]. We then listed all genes/RNAs in the four hub sub-networks based on 

the results of the Cytoscape plug-in: MCODE. According to the location of the novel mol-

ecules and using the gene symbols of known molecules, we performed a survival analysis 

including all the molecules obtained in the four hub modules in lung adenocarcinoma 

patients using the UALCAN website and the lnCAR website. Then, based on the survival 

analysis from the UALCAN website and the lnCAR website, we constructed the survival 

curve of a novel lncRNA and the mRNA, LNC_00236 and TUFT1, which belonged to the 

same sub-module. (Figure 5c; Figure 6a–c). The three curves revealed that the expression 

of TUFT1 and LNC_00236 was associated with the overall survival of LUAD patients. In 

addition, LNC_00236 was highly expressed in 40 patients with LUAD and may represent 

a potential prognostic biomarker. Further, the remaining novel lncRNAs may represent a 

potential resource for further research into prognostic biomarkers in the future (Figure 

6d). 

 

Figure 6. Survival analysis of LUAD patients Overall survival analysis stratifying patients by me-

dian expression of (a) TUFT1; and (b) LNC_00236; (c) Relapse-free survival analysis of patients strat-

ified by LNC_00236 expression; (d)LNC_00236 expression atlas in tumor and normal tissue. 

4. Conclusions 

Our study identified novel miRNAs, lncRNAs, and circRNAs, which represent an 

essential and crucial resource in understanding the underlying biology of LUAD. Specif-

ically, our study provided a detailed dissection of the constituents and functional proper-

ties of differentially expressed miRNAs, mRNAs, lncRNAs, and circRNAs between 

ALDH+ H1975 LSCs and ALDH- H1975 LTCs. Based on these data, an interaction network 

of differentially expressed miRNAs, mRNAs, and lncRNAs/circRNAs was constructed to 

investigate the potential novel regulatory mechanism. The findings of this meta-analysis 

provided more comprehensive and systematic information on the underlying hallmarks 

distinguishing LSCs and LTCs, and the pathogenesis of LUAD from the perspective of 

lung CSCs. This study also provides a rationale for further experimental validation of 

these regulatory mechanisms and their role in the prognosis and as therapeutic bi-

omarkers in LUAD. 

5. Discussion 

CSCs, as a rare cell population of cancers, display a broad spectrum of functional 

heterogeneity[12]. They exhibit similar properties with normal stem cells, such as self-

renewal, asymmetric cell division, and evasion of apoptosis[14]. These characteristics 

thereby enable them to initiate cancers, promote cancer growth, metastasis, and relapse[6]. 

In previous studies[10] and our most recent study[11], the experimental evidence indi-

cated that ALDH+ H1975 LSCs are the key CSCs that proliferate extensively and form new 

tumors, while the remaining cancer cells lack this ability. LSCs activities are diverse[16]. 
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For example, exosomes from LSCs are associated with cell proliferation, migration, adhe-

sion, and cell-cell communication[11]. Furthermore, several pathways are associated with 

cell cycle kinetics, DNA repair, and mRNA expression of multi-drug-resistance genes in 

CSCs that promote oncogenic resistance to chemotherapy and drugs[74]. In addition, ster-

oid biosynthesis of T cells induced from the microenvironment in CSCs and resident can-

cer cells may lead to immune evasion[66]. The above functions of LSCs may be broadly 

regulated by ncRNAs, such as miRNAs[21], lncRNAs, and circRNAs[27]. Furthermore, 

known and unknown biomarkers of ncRNAs and their systematic and comprehensive in-

terrelation with unknown ncRNAs and mRNAs may also be necessary to provide insight 

into the function of LSCs. Herein, we provide, for the first time the ncRNA expression 

profile, including known and unknown miRNAs, lncRNAs, and circRNAs of LSCs and 

LTCs.  

The gene expression profile of LSCs reflects the properties of LSCs that drive tumor-

igenesis. The regulatory mechanisms of mRNAs have been shown to be associated with 

ncRNAs[27]. Therefore, a meta-analysis on ncRNAs and their relative regulated mRNAs 

is needed to better reflect the underlying regulatory mechanisms of LSCs. We dissected 

the detailed constituents and functional properties of LSCs from ceRNAs, GO enrichment, 

and KEGG pathway analyses. In the GO enrichment and KEGG pathway analyses based 

on all DE mRNAs, we confirmed that (a) clusters of GO terms based on up-regulated gene 

sets were closely related to processes such as DNA repair, the mitotic cell cycle, cell mor-

phogenesis involved in differentiation, cell junction, positive regulation of alpha-beta T 

cell activation, and steroid biosynthesis. The pathways were highly correlated with the 

function of LSCs in oncogenic resistance to chemotherapy and drugs[74], immune eva-

sion[66]; while (b) clusters of GO terms based on down-regulated gene sets were closely 

related to the commitment of cell fate, the positive regulation of programmed cell death, 

and cell adhesion. These pathways may play a vital role in cell migration and cell apop-

tosis. In ceRNAs and relative GO enrichment analysis, we uncovered two main properties. 

First, the GO terms of down-regulated gene sets are clustered in cell-cell communication, 

such as cell junction, localization of the cell, cell motility, intracellular signal transduction, 

endocytosis, and the extracellular matrix. These GO terms were similar to our previous 

study, that is, communication between cells, such as LSCs-LTCs and LTCs-LTCs, and they 

may depend on exosomes secreted by neighboring cells, which ultimately result in cancer 

migration. Second, the GO terms of up-regulated gene sets also clustered in fatty acid-

binding, positive regulation of the defense response, Ras protein signal transduction, the 

defense response, and the innate immune response. These GO terms may influence the 

immune resistance of LSCs, such as immune evasion, as suggested above. The remaining 

GO terms in the up-regulated gene sets involved pathways such as cell growth, cell dif-

ferentiation, cell junction assembly, cell morphogenesis, and cell proliferation, which are 

closely related to the stemness of LSCs[72]. The ncRNAs associated with these terms and 

pathways may play a vital role in regulating the relative expression of mRNAs. These 

findings will provide a guide for future experimental verification of key ncRNAs and the 

identification of efficient biomarkers for cancer therapy and diagnosis. 

In summary, the novel ncRNA transcripts and the overall profile-based meta-analy-

sis of our study provide a comprehensive description of the biological molecular compo-

sition and properties of LUAD CSCs. We have dissected what is known and unknown 

about LSCs to provide a therapeutic perspective on these findings. 

Supplementary Materials: The supporting information includes Figure S1: First base bias and po-

sition base bias of novel miRNAs; Table S1: Detailed information of miRNAs; Table S2: Novel 

lncRNAs; Table S3: Novel miRNAs; Table S4: Novel circRNAs; Table S5: Information on ceRNA-

based molecular interactions and pairs. 
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Appendix A 

ncRNAs, Non-Coding RNAs 

CSCs, Cancer Stem Cells 

miRNAs, Micro RNAs 

lncRNAs, Long Non-Coding RNAs 

circRNAs, Circular RNAs 

mRNAs, Messenger RNAs 

LSCs, Lung Adenocarcinoma ALDH+ H1975 Stem Cells 

LTCs, Lung Adenocarcinoma ALDH- H1975 Tumor Cells 

LUAD, Lung Adenocarcinoma 

ceRNA, Competitive Endogenous RNA 

NSCLC, Non-Small Cell Lung Cancer 

UTR, Untranslated Region 

TMP, Transcripts Per Million 

FPKM, Fragments Per Kilobase of exon model per Million mapped fragments 

PCC, Pair Chiastic Clipping 

PEM, Pair End Mapping 

DP, Dynamic Programming Alignment 

KEGG, Kyoto Encyclopedia of Gene and Genome 

GO, Gene Ontology 

Padj, Adjusted P-value 
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