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In this paper, it is proposed that to fully understand the Cosmology of the Universe, we need
to consider the FRW metric to measure the Universe in our past light cone and the internal
Schwarzschild metric to accurately predict the scale factor. The unknowns in the internal
Schwarzschild metric are solved for using cosmological data and it is shown that the predictions it
gives match observations without the need for a cosmological constant. The entire Schwarzschild
metric in Kruskal-Sezekeres coordinates is examined and we see that it describes two CPT symmet-
ric Universes moving in opposite directions in the time dimension. One Universe contains matter
while the other contains antimatter. It is then shown that due to the sign of the angular term in
the internal Schwarzschild metric, the time dimension is complex-valued which allows the Universes
to, in a sense, bounce off each other at the Big Bang due to particle annihilation and reproduction,
after which both Universes expand away from one another. At the singularity, the geodesics reverse
their direction in time and begin to re-collapse toward each other. This creates a discontinuity in
the geodesics at the singularity, giving rise to the singular nature of the coordinates at that point
in time. Finally, we look at the external solution and find that gravitational event horizons cannot
be formed or reached until the end of the re-collapse. We find that all the gravitational event hori-
zons in the Universe represent the same point which is the annihilation event at the end of re-collapse.
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I. INTRODUCTION AND MOTIVATION When carefully examining the internal Schwarzschild
metric, we will find that the radius of the angular term
is actually imaginary. From this it will be shown that
at the Big Bang, the Universe is at the event horizon of
the Schwarzschild metric where the imaginary radius of
the Universe is maximum and the real radius is zero. As
time passes, the imaginary radius transitions to the real

radius, which we see as the Universe expanding.

Let us consider a 2D shell of gas spherically symmet-
rically distributed in space. This shell will collapse ac-
cording to the Schwarzschild metric where the entire shell
falls toward its own center. This metric is a vacuum so-
lution because there is no matter at smaller radii, the gas
exists effectively at a specific radius at any given time.

Now suppose we have an observer in the gas. The ob-
server is a 2D creature that can only see along the surface
of the shell. For the sake of the example, let us say that
the observer on the shell expects to see the matter around
her to slowly start to pull together over time due to grav-
itational attraction. However, over time, the observer
would find that the matter is collapsing more quickly
than expected because it is not taking into account the
additional collapse that comes from the fact that the en-
tire shell is falling in the external Schwarzschild space-
time. Next, we will examine the Schwarzschild metric in de-

As will be shown, this is an analog to the 4D Cos- tail.
mology of our Universe. In the Cosmological case, we
can imagine that the matter and energy in the Universe
is isotropically distributed throughout infinite space (3D
space in this case), but exists only at the present time
(time is the radius in this case). Another way to say

What we end up with is a Universe modelled as an in-
finite collection of uniformly distributed particles where
each particle creates a dimple in the surrounding space-
time. The FRW metric tells us the mass distribution
of the particles, the external Schwarzschild metric de-
scribes the spacetime surrounding each particle. As we
will see, these can be thought of as 'real’ metrics. The
internal Schwarzschild metric describes how the distance
between the dimples changes over time. This metric can
be thought of as the ’imaginary’ metric.

II. THE SCHWARZSCHILD METRIC

this is that matter and energy in the past and future has
no gravitational effects on the present. The curvature
of the present spacetime can be understood completely
using present data. As will be demonstrated, that 3D
space is falling in the internal Schwarzschild spacetime.
The acceleration in time of the 3D space is what gives us
the scale factor that predicts an accelerated expansion
without the need for a cosmological constant.

The Schwarzschild metric is the simplest non-trivial
solution to Einstein’s field equations. It is a vacuum so-
lution for the spacetime around a spherically-symmetric
distribution of energy. The general form of the metric
can be expressed as:

I

— T+ ——dr? — r2d0? (1)
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Depending on the ratio %, we get three distinct descrip-

tions of spacetime:

1. uw = 0: This gives us the flat Minkowski metric of
Special Relativity.

2. &+ < 1: This describes the metric for an eternally
spherically-symmetric vacuum centered in space.
This metric is also used to describe the vacuum
outside a spherically symmetric object occupying a
finite amount of space (like a star or planet).

3. % > 1: This describes the metric for a spher-
ically symmetric vacuum centered on a point in
time. Analogous to the second case, this met-
ric should also describe a vacuum of time out-
side a spherically-symmetric object spanning infi-
nite space. The center of the metric is everywhere
in space, but at a single point in time (just like one
could say that the vacuum described in the second
case is centered at all times on a single point in
space).

An important observation is that the internal metric de-
scribes a vacuum solution to the field equations. But the
Universe is clearly filled with energy, so how can this so-
lution apply? In order to satisfy the requirements of the
metric, the Universe must be “a spherically-symmetric
energy distribution occupying an infinite amount of space
for a finite amount of time”. For this metric to be a cos-
mological description, it must be that Universe only truly
exists in the present and in a very real sense moves into
the future. The surrounding vacuum is the future, and
the Universe is freefalling through time toward the tem-
poral center of the metric.

Time being the radial dimension of the metric com-
bined with the fact that the solution is a vacuum solu-
tion gives a mathematical justification for our intuitive
notions of past, present, and future. The in-homogeneity
along the radial direction gives us an arrow of time that
distinguishes the ‘past’ and ‘future’ analogous to the way
the external solution gives us an absolute distinction be-
tween ‘up’ and ‘down’. And the vacuum as described
above gives us a boundary between them, that boundary
being the ‘present’ time.

Observation has shown that the Universe is:

e Spherically Symmetric
e Homogeneous in space
e In-homogeneous across time
We will also make one further assumption in this paper:

e The Universe only ever occupies a single instant of
Cosmic time and moves from one moment of cos-
mic time to the next where the time measured by
observers between cosmic times depends on their
respective motions.
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Relativity of simultaneity does not prohibit the idea of
the energy existing at a specific Cosmological time be-
cause of the nature of the metric. In Cosmology, we can
determine absolute motion and absolute simultaneity be-
cause we have the Cosmic Microwave Background. For
example, consider two events that are causally discon-
nected. If observers at each event see the CMB tem-
perature to be uniform in all directions (the observers
are co-moving), then if both observers measure the CMB
to have the same temperature at both events, then we
know the events are absolutely simultaneous, even if a
third observer in motion sees them as non-simultaneous.
Any observer in motion through space, inertial or oth-
erwise, will see a dipole on the CMB, and that dipole
will provide all the info about the state of motion of the
observer. Therefore, we can define past, present, future,
and motion in an absolute sense. To put it another way,
the fact that cosmological time is finite into both the past
and future allows us to specify the distance of any event
from either the beginning or end of time absolutely.

Let us call events the same distance away from us in
time celestial spheres. We can classify these spheres into
three types:

1. Dynamic Spheres — These are the spheres that
galaxies reside on. Objects on these spheres main-
tain a constant coordinate distance from us and
move forward in time. We are able to move toward
or away from objects on these spheres by moving
through space. If we fix our sights on a particular
galaxy, the light we see from that galaxy is being
emitted later in time as we ourselves move through
time.

2. Static Spheres — These are spheres fixed in time.
The Cosmic Microwave Background is the most ob-
vious example of these spheres. Light from the
CMB sphere is always emitted from the same cos-
mological time, but as we ourselves move through
time, we see light from that time emitted from far-
ther and farther away from us in space, giving the
impression that the CMB sphere is growing. We
cannot move toward or away from any objects on
this sphere because it is frozen in time.

3. The Dark Sphere — The Dark Sphere is the Big
Bang and lies beyond the CMB. It is in principle
unobservable for two reasons. First, the CMB is
opaque so that any light from the Big Bang cannot
penetrate it. Second, even if the CMB was not
blocking our view, any light from that sphere would
be infinitely redshifted in the frame of all future
observers since the scale factor on that sphere is
Zero.

These spheres are shown in terms of the internal
Schwarzschild metric in Figure 1. Figure 1 shows the
Schwarzschild coordinates of the internal metric plotted
on the Kruskal-Szekeres coordinate plane [1]. In these co-
ordinates, space is the ‘¢’ coordinate emanating from the
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center of the diagram (Big Bang) and time is the ‘r’ co-
ordinate depicted as hyperbolas (time is flowing forward
as r goes toward zero). The upper right quadrant of this
diagram represents a single fixed direction (6 = const,
¢ = const). So each bold line representing a sphere
would be a point on each sphere over time. Note that
light on this diagram travels on 45-degree lines.

N I 47\ Dark Sphere
N Static Sphere

. Dynamic Sphere

FIG. 1. Celestial Sphere Types on Kruskal-Szekeres Coordi-
nate Chart

III. THE SCALE FACTOR

Expressions for the proper time interval along lines of
constant ¢ and € and the proper distance interval along
hyperbolas of constant r and 2 from Equation 1 are:

ds u—r
— =14/ =+ 2
dt r “ (2)

1
dT_:t r _,1 3)

dr u—r a

And the coordinate speed of light is given by:

dt 1
() S . (4)
dr light u—r a

Where a is the scale factor. First we should notice that
none of the three equations depend on the ¢ coordinate.
This is good because the t coordinate marks the position
of other galaxies relative to ours. Since all galaxies are
freefalling in time inertially, the particular position of
any one galaxy should not matter. The proper temporal
velocity, proper distance, and coordinate speed of light
only depend on the cosmological time 7.

A plot of the scale factor vs. r (with u = 1) is given in
Figure 2 below:
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FIG. 2. Scale Factor vs. r for u =1

IV. THE CO-MOVING OBSERVER

Let us take the center of our galaxy as the origin of
an inertial reference frame. We can draw a line through
the center of the reference frame that extends infinitely
in both directions radially outward. This line will corre-
spond to fixed angular coordinates (6,¢). There are in-
finitely many such lines, but since we have an isotropic,
spherically symmetric Universe, we only need to analyze
this model along one of these lines, and the result will be
the same for any line.

The radial distance in this frame is kind of a compound
dimension. It is a distance in space as well as a distance
in time. The farther away a galaxy is from us, the far-
ther back in time the light we currently receive from it
was emitted. Fortunately the u/r > 1 spacetime of the
Schwarzschild solution plotted in Kruskal-Szekeres coor-
dinates provides us with a method to understand this ra-
dial direction. Figure 1 showed the u/r > 1 solution on a
Kruskal-Szekeres coordinate chart where, in this model,
the hyperbolas of constant r represent spacelike slices of
constant cosmological time and the rays of ¢ represent
spatial distances. We will focus on the upper half where
the half represents an observer pointed in a particular
direction and the positive t’s represent the coordinate
distance from the observer in that particular direction
while the negative t’s represent coordinate distance in
the opposite direction.

We must determine the paths of co-moving observers
(dt = dQ = 0) in the spacetime. For this we need the
geodesic equations for the internal Schwarzschild metric
[2] given in Equation 1. In these equations u represents
a time constant (in Figure 1, the value of u is 1). The
following equations are the geodesic equations for ¢ and
r (0 <r <w) for dQ2 = 0:

Pt u drdt e+ 1drdt (5)
dr? r(u—r)drdr T a2r drdr
d2r u a?+1

@ (6)
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Looking at points 0 < r < u, then by inspection of Equa-
tion 5 it is clear that an inertial observer at rest at ¢ will
remain at rest at ¢ (573 = 0if j—ﬁ = 0). Also, we see
that if an observer is moving inertially with some initial
%, then if g—: < 0, the coordinate speed of the observer
will be reduced over time (the coordinates are expanding
beneath her) and if g—: > 0, the coordinate speed will be
increased over time (the coordinates are collapsing be-
neath her).

V. CALCULATION OF COSMOLOGICAL
PARAMETERS

In order to compare this model to cosmological data,
we must solve for v and find our current position in time
(ro) in the model. Reference [3] gives us transition red-
shift values ranging from z; = 0.337 to z; = 0.89, depend-
ing on the model used. We can use the expression for the
scale factor in Equation 2 to get the expression for cos-
mological redshift from some emitter at r measured by
an observer at rg [2]:

I

Furthermore, the decelration parameter is given by:

aa  4r
=5=—=-3 8

¢=5=" (8)
By setting Equation 8 equal to zero, we find that the scale
factor at the transition from decelerating to accelerating
expansion a is:
4 1
S-1=— )
3 V3
Using Equations 7, 9, and the transition redshift esti-
mate, we can get an expression for the present scale fac-
tor:

ay =

1+Zt
V3

Next, we find expressions for u and our current radius rg
by noting that the Universe has been found to be roughly
13.8 billion years old. Therefore, we can set a,, = u —
ro = 13.8 and use Equations 2 and 10 to obtain the
following for v and ry:

ap = a(1+2¢) = (10)

u—Tro iy, 30y,
To ag ag (1 + Zt)z ( )

3 S+ 1) (12)

“:“+a“:a“<u+z>
t

Next we compute the CMB scale factor (acprp) and co-
ordinate time (rcpp) in this model where the redshift
of the CMB (z¢ap) is currently measured to be 1100:

ap
= — 13
GeMB =T ZCMB (13)
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u

remMB = (14)

1+a,p
We can next derive the Hubble parameter equation using
the scale factor. The Hubble parameter is given by (in
units of (Gy)~1):

=12 “

a1 (19)

Table I below gives the values of u, rg, Hy, ag, q0, acy B,
remB, and gop g given the upper and lower bounds of
z; from [3] as well as the average of the upper and lower
bound values and assuming «,, = 13.8. All times are in
Gy and Hy is in (km/s)/Mpc.

zt Qe |l w ro Ho a0 g acmB rcmMB qQoMB
0.337 13.8(|37.0 23.2 56.6 0.77 -0.49 0.0007 36.95 0.99
0.614 13.8(/29.7 15.9 66.2 0.93 -0.86 0.0008 29.65 0.99
0.89 13.8{|25.4 11.6 77.6 1.09 -1.17 0.0010 25.35 0.99

TABLE I. Limiting Cosmological Parameter Values Based on
z+ Measurement and a 13.8 Gy Age of the Universe

From the results in Table I, we see that the true tran-
sition redshift is likely between 0.614 and 0.89 given the
fact that the current value of the Hubble constant is
known to be in that range. Thus, more accurate mea-
surements of the transition redshift are needed to increase
the confidence of this model, though we do see that it is
able to reproduce measured results.

Table IT has the proper times from r = u to the current
time as well as the CMB for stationary, inertial observers
(dt = rdQ) = 0) by integrating Equation 1. The column
Tior gives the time from r» = u to r = 0. The expression
for 404 turns out to be quite simple:

Ttot — gu (16)
In Table II below, the column 7,¢mqin gives the time be-
tween r = rg and r = 0.

2t Qrg T0 Ttot Tremain TCMB
0.337 13.8{|42.2 58.1 159 8.6
0.614 13.8(||37.1 46.7 9.6 2.4
0.89 13.8/|33.7 39.9 6.2 2.3

TABLE II. Limiting Proper Times Based on z; Measurements
and an age of 13.8 Gy for the Universe (Time is in Gy)

Note that while the coordinate times for the current
age of the Universe (u—rg) are close to current estimates
(for high z;), the proper time 7y is actually much larger.
And even though we are presently only about halfway
through the “coordinate life” of the Universe (according
to Table I), the amount of proper time remaining is actu-
ally much less than the amount of proper time that has
already passed (according to Table II).

Next we would like to use the u and r¢ values found to
create an envelope on a Hubble diagram to compare to
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measured supernova and quasar data. First we need to
find r as a function of redshift. We can do this by solving
for r in Equation 7:

u(l+ 2)?
== 17
" a2+ (1+42)2 (17)
We can derive the expression for ¢ vs. r along a null
geodesic where the geodesic ends at the current time rq
and t = 0 by setting dr = rd{2 = 0 in Equation 1 and
integrating:

"oy
t =
o UW—T

Next we substitute Equation 17 into Equation 18 to get
coordinate distance in terms of redshift:

2 2
ag + (1+2)
t=ro+u [ln< 1+ —

druln(uro)+r0r (18)
r

(1+2)*
a2 + (1+ 2)2

| a9

We need to convert the distance from Equation 19 to the
distance modulus, p, which is defined as:

D
p = 5logyg <1(j):> (20)

Where Dy, in Equation 20 is the luminosity distance. Lu-
minosity distance is inversely proportional to brightness
via the relationship:

1
B x — 21

B2 (21)
The brightness is affected by two things. First, the spa-
tial expansion will effectively increase the distance be-
tween two objects at fixed co-moving distance from each
other. This will reduce the brightness by a factor of
(1+42)? (because the distance in Equation 21 is squared).
But there is also a brightening effect caused by the ac-
celeration in the time dimension. We define V = % = %
as the temporal velocity of the inertial observer at some
r and the speed of light at that r as V. = % = a—12 The

ratio of these velocities gives us:

Ve _dtdr _dt _a _1 (22)

V. drdr dr a® a
Equation 22 tells us how far a photon travels over a given
period of time measured by the inertial observer’s clock.
So we see that as light travels from the emitter to the
receiver, this speed decreases. This decrease in the speed
from emitter to receiver will result in an increased photon
density at the receiver relative to the emitter, increasing
the brightness. Therefore, this effect will increase the
brightness by a factor of:

ao
— =1 23
=142 (23)

Taking these brightness effects into account, the total
brightness will be reduced by an overall factor of 1+ z
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relative to the case of an emitter and receiver at rest
relative to each other in flat spacetime. Equation 21 in
terms of co-moving distance ¢ and redshift z becomes:

1+2 1
Bmm%Bmm (24)

Giving the luminosity distance as a function of co-moving
distance t and redshift z:

DL =t/1+z (25)

Which gives us the final expression for the distance mod-
ulus as a function of co-moving distance and redshift:

W) o)

p = 5logy, ( 10

A plot of distance modulus vs. redshift is shown in Figure
3 below plotted over data obtained from the Supernova
Cosmology Project [4]. Curves calculated from all three
values of z; in Table I are plotted, giving an envelope for
the model’s prediction of the true Hubble diagram.

FIG. 3. Distance Modulus vs. Redshift Plotted with Super-
nova Measurements

Note that the middle curve corresponds to z; = 0.614
and the lower curve corresponds to z; = 0.89. The super-
nova data is better fit by a curve between these values.
The curve halfway between (with z; = 0.75) gives us
Hy =716, a9 =1.0, qp = —1.0, u = 27.3, and rg = 13.5.

In [5], the authors analyze a large sample of quasar
data to obtain distance moduli at higher redshifts than
is possible with supernova data. Figure 4 shows the same
predicted envelope from Figure 3 for the Hubble diagram
plotted out to higher redshifts with the quasar data from
[5] also shown with error bars. The black diamonds in the
figure are the 18 high-luminosity XMM-Newton quasar
points described in [5].
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FIG. 4. Distance Modulus vs. Redshift Plotted with Quasar
Measurements

Finally, by subtracting r¢ from Equation 17 we can
calculate the lookback time for a given redshift. Figure 5
shows the lookback time vs. redshift for the three tran-
sition redshifts.

Lookback Time in Gy (r-ro)

0 05 1 15 2 25 3 35 a s 5
z

----- 7=0.337 ——2zt=0.614 — —2zt=0.89

FIG. 5. Lookback Time vs. Redshift

VI. THE ANTIMATTER UNIVERSE

Figure 6 shows the full Schwarzschild metric in
Kruskal-Sezekeres coordinates. The diagram can be split
in two along the diagonal where in the top right half,
forward time points up while in the bottom right half,
forward in time points down. Left and right are also
swapped when looking at the upper and lower halves.

We can therefore conjecture that the diagram is de-
scribing both a matter Universe expanding up from the
center and an antimatter Universe expanding down from
the center, each one moving toward a singularity. The
reason we expect an antimatter Universe is because the
directions of both time and space are reversed relative to
each other and therefore, we expect the particles of the
second Universe to have opposite charges relative to the
first. Thus, the pair of Universes (or 'Duoverse’) satisfies
CPT symmetry and the Kruskal coordinates T' and X
represent cardinal directions of space and time.

d0i:10.20944/preprints202201.0301.v1
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FIG. 6. Matter and Antimatter Universes

VII. COMPLEX COSMOLOGICAL TIME

Notice that the dr and rdS) terms in Equation 1
have opposite signs. As is the case in the external
Schwarzschild and FRW metrics, we would expect the
angular and pure radius terms to have the same sign.
We can remedy this by changing Equation 1 to:

dr? = _u

— e a4 ()2 d0? (27)
T T

Making the radius in the angular term imaginary gives
us the expected form of the metric. This can be under-
stood by imagining what a co-moving observer sees as
time passes.

Imagine an inertial observer at r = u and t = 0. The
radius of the Universe is completely imaginary at this
time. Then, as time passes, the observer sees space ex-
pand around them with the surface r = v now becoming
visible (ignoring redshift for the sake of this example)
with an increasing radius over time. We can interpret
this as a real radius increasing while the imaginary ra-
dius decreases.

Looking at Figure 6, let us imagine a complex plane
perpendicular to the page whose real axis is coincident
with the T axis of Figure 6. Setting u = 1, in Kruskal
coordinates the relationship between T and r along t = 0
is:

T=+

r=1+Wp (—T:) (29)

Where Wy is the Lambert W function. Therefore, we can
plot the relationship between T" and ir on the aforemen-
tioned complex plane in Figure 7 for both the matter and
antimatter Universes:

(1—r)er (28)
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FIG. 7. Imaginary Radius to Real Radius for the Matter
(Right) and Antimatter (Left) Universes

In Figure 7, we see two oblong curves, the right one for
the matter Universe and the left one for the antimatter
Universe with a vector whose projections give the mag-
nitudes of the real and imaginary radii at a given time.
The two Universes are coincident at i, representing the
event horizon/Big Bang era (in the rest of this paper, the
Big Bang will be referred to as Annihilation). Here, we
can say the matter and antimatter Universes have anni-
hilated with each other and new pairs of matter and an-
timatter are created from the annihilation, creating the
two Universes travelling in opposite directions of time.
Over time, the imaginary radii of the Universes decrease
while the real radii increase up to the singularity, where
the imaginary radii are zero and the real radii are 1.

The antimatter Universe moves in the opposite direc-
tion of time relative to the matter Universe, and so we
expect their vectors on this plane to rotate in opposite
directions as shown.

But looking at Figure 7, one can’t help but be tempted
to complete the curves by mirroring them in the real
axis. Doing so would indicate that right as the Universes
reach maximum expansion, the geodesics reverse in time
and the Universes begin to re-collapse toward each other.
This creates a discontinuity in the geodesics, resulting in
the singular nature of r = 0, which we will dissect further
in the next section.

VIII. NEWTONIAN ANALOG

This entire system is the temporal equivalent of two
masses initially moving apart from one another until they
reach a maximum separation distance u. At that point
they will start falling toward each other again due to mu-
tual gravitational attraction. When they meet at their
common center, they annihilate, creating new pairs of
matter/antimatter particles and begin moving away from
each other again, as if they’ve bounced off each other. It
is equivalent to the exchange of potential and kinetic En-
ergy, but in the time dimension. Looking at the equation
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E? = m? 4 p?, we can say that this process conserves E
by converting p into m during expansion (cosmological
redshift is a consequence of the loss of momentum) and
vice versa during the collapse.

Now consider the Newtonian example of a ball in a
gravitational field rising to a maximum height i and then
falling back to the ground. % will be positive on the way
up, negative on the way down and zero at max height.
But this also means that ((1% will be infinite at the max-
imum height because dh = 0 there. We might think
that when comparing this to the present case, t — 7 and
h — r, but this is incorrect. We know that r is our time
coordinate and 7 is the distance along the geodesic, so
h — 7 and t — r. So from Equation 3, we see that,
just like in the Newtonian example, ‘jl—; =0 and g—: =00
at the singularity because in this case dr = 0 at the
turnaround.

When the Newtonian ball falls back to the ground, if
the ball and ground were perfectly rigid and the colli-
sion perfectly elastic, there would be an infinite impulse
during the collision where the ball would shatter and the
fragments would once again start rising up into the air.
This is analogous to the matter and antimatter Universes

annihilating after the collapse and then re-expanding.

IX. THE NATURE OF EXPANSION

From Equation 4 we can calculate the angle of the cos-
mological light cone as § = arctan a% At the beginning,
when 6 = 7, the speed of light is infinite which means
all fractions of the speed of light are infinite, and that
manifests itself as space having zero size. As time pro-
gresses, the light cone closes. The closing of the light
cone manifests as an expansion of space since this means
the cosmological speed of light is getting smaller, so all
fractions of it also get proportionally smaller. The cosmo-
logical redshift and dimming come from the fact that the
present Universe is accelerating away from past events
through time. So if you set off to another galaxy at some
time with a constant velocity, over time that velocity will
effectively slow as the light cone closes even though no
forces have acted on the observer. Since the observer
does not feel any change in their velocity, they will de-
scribe this as an expansion of space since it will take them
longer to reach their destination. As 6 goes to zero, the
light cone closes completely meaning nothing can move
in space, manifesting itself as an infinite scale factor. The
Universe has lost all momentum and the momentum has
been converted into inertia and this increase in inertia
manifests as spatial expansion.

X. THE MANY WORLDS

To this point we have described the spacetime dynam-
ically, but there is still an open issue regarding the an-
gle in the internal Schwarzschild metric at which a given
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event takes place. As we will see, the answer to this ques-
tion is that it depends on from which location it is being
measured from.

Let’s consider the Universe at » = 0, the singularity.
Imagine a 3D flat space where every point in this space
is an observer in the Universe at » = 0. If we pick out
one such observer, when they look out at the Universe
(we will ignore the redshift for this argument and assume
the entire past light cone for the observer is visible), this
observer will see the Universe much like we see it today:
a dense plasma at the farthest distance followed by stars
and galaxies with decreasing densities as the radius gets
smaller. A 2D representation of this is shown in Figure
8 below where the observer is at the center of the circle.

FIG. 8. Observable Universe at » = 0

So each observer in the 3D flat space has a sphere like
this mapped to it. We will refer to these spheres as ob-
servable Universes. But the radius of the sphere is not
in the 3D space but is instead the 4th dimension. There
is also an antimatter sphere at each point that inter-
sects the matter radius at the r = 0 points and extend
into the negative direction of this 4th dimension. This
is a static picture, but dynamically, we can imagine the
spheres growing out from the r = 0 points in the 3D
space as time progresses. Thus, the r in Figure 8 is the
real radius from Figure 7 which grows as the imaginary
radius becomes real. So this model can be said to have
3 flat dimensions of space and 3 spherical dimensions of
time (though the 3 dimensions of space and two angu-
lar dimensions of time are dependant, so this can still
be reduced to a 4D spacetime). Furthermore, all light
beams in a given observable Universe converge at the cen-
ter of the time sphere, meaning that every point in the
3D space has null geodesics converging to them from all
directions as the geodesics approach r = 0, which satis-
fies the singularity theorem. We would normally imagine
light converging to the center of a volume, but that is
not the case here. In this scenario, every single point in
the volume has its own set of geodesics converging to it
from all directions.

Let us consider our current position in the Universe
where we sit at some r = ry. Imagine we send out light
from our current location in all directions. Assuming
none of the light is absorbed in transit, the light will
reach a spherical surface around us in the 3D space as the
light beams reach » = 0. Therefore, the angle at which
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we reside in the internal Schwarzschild metric depends on
which observable Universe we are measuring our position
from because we will be visible to all the observable Uni-
verses that lie on that aforementioned 2D shell in the 3D
space. Each of those observable Universes see us from a
different direction, and the direction from which a given
observable Universe sees us determines our angle in the
internal Schwarzschild metric. Another way to put it is
that each of the infinite observable Universes at r = 0
corresponds to a unique infinite set of null geodesics (one
geodesic for each direction) that converge at a given ob-
servable Universe’s t at » = 0.

These quasi 3+3 dimensional matter and antimatter
Universes contain all the events for a single expansion
from beginning to end (these dimensions are smooth and
continuous). However, the matter and antimatter Uni-
verses then re-collapse and eventually result in new ex-
pansions. Therefore, we can think of each successive ex-
pansion and contraction of the Universes as happening
along another dimension which is discrete. This dimen-
sion essentially labels the different countably infinite ran-
dom Universes.

Since each Duoverse begins with annihilation, this
means each Duoverse begins with a random configuration
after annihilation. Therefore, there is no cause and effect
relationship between Duoverses from cycle to cycle. This
means the cycles cannot be ordered sequentially because
there is no way to know which cycle preceded or will fol-
low the current cycle. If we cannot order the cycles in a
sequence, then we can think of them all as being parallel
to each other. While events within a cycle can have cause
and effect relationships (i.e. the events "happen’ at given
times), the various cycles themselves do not ’happen’,
they just exist along side all other cycles. Thus we can
think of the annihilation events as being a single event
from which infinite Duoverses emerge and to which they
return. This implies that finding ourselves in a particular
Duoverse is completely probabilistic where the probabil-
ity that we find ourselves in a Duoverse with a particular
configuration depends on how likely that configuration is
across all possible configurations (where many configura-
tions are similar enough to be effectively indistinguish-
able from each other). This gives us the many worlds
that have been invoked to explain quantum probability
in the Everett many worlds interpretation of QM.

XI. THE CHARGE AND SPIN HYPOTHESIS

Given that the matter and antimatter Universes are
moving in opposite directions in time, we can hypoth-
esize that the electric charge of a particle is related to
the orientation of the particle’s velocity vector in time.
The sign of the charges of matter particles would indicate
that the temporal velocities of these particles are oriented
parallel to the time radius of the matter Universe. The
antimatter particles have opposite sign and so their vec-
tors are oriented anti-parallel to the time radius of the
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matter Universe (or parallel to the time radius of the an-
timatter Universe). This could be perhaps understood as
differences in the directions of group and phase velocities
of the wave function in time:

1. Matter particles in matter Universe: Group and
phase velocities pointed in the same direction to-
ward positive time.

2. Antiparticles in matter Universe: Group velocity
pointed in positive time direction, phase velocity
pointed in negative time direction.

3. Antimatter particles in antimatter Universe:
Group and phase velocities pointed in the same di-
rection toward negative time.

4. Matter particles in antimatter Universe: Group ve-
locity pointed in negative time direction, phase ve-
locity pointed in positive time direction.

Consider the turnaround point at the singularity as the
Universe transitions from expansion to collapse. On the
way into the singularity, the phase and group velocity
vectors of matter particles are pointing toward the singu-
larity. At the singularity, the velocity vectors disappear
because of the turnaround and all matter becomes in-
stantaneously chargeless. Photons also converge at every
point in space at the singularity as discussed in the pre-
vious section. Once the collapse starts, the photons re-
emerge from every point in space and the matter group
and phase velocity vectors are pointed away from the
singularity, flipping the charges of all charged particles.
Therefore, relative to the expanding Universe, the col-
lapsing Universe is an antimatter Universe moving back-
wards in time (and this is mirrored in the other antimat-
ter Universe).

We can extend this hypothesis further by considering
the spin of Fermions. Fermions can be measured to be
spin up or spin down. We could interpret the spin to be
a physical spin about the time radius with, for instance,
spin up indicating the spin vector is parallel to the time
radius of the matter Universe, and spin down indicating
the spin vector is anti-parallel to the time radius of the
matter Universe. Treating Quantum spin as a rotation
about the time axis could be seen as a necessary con-
sequence of relativity: if space and time are equivalent,
then the possibility of rotations about an axis in space
implies that it is also possible to rotate about an axis of
time.

More generally, we can posit that the imaginary parts
of the quantum wave functions are vibrations of the wave
function along the radial time dimension.

XII. RELATIONSHIP TO THE EXTERNAL
SCHWARZSCHILD SOLUTION

Figure 9 shows the full Schwarzschild metric with cor-
responding worldlines in both the external and internal
solutions for the matter and antimatter Universes.
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FIG. 9. Universe Pair Production and Annihilation at the
Event Horizon

e At points 1, the event horizon/Annihilation, mat-
ter and antimatter pairs are produced as their re-
spective Universes begin moving through opposite
directions in time.

e At points 2, the Universes reach 'maximum height’,
where they turn around and begin collapsing to-
ward each other.

e At points 3, the Universes meet again at the event
horizon and annihilate each other, restarting the
process at point 1.

The back-and-forth lines on the T axis are actually the
rotations from Figure 7 (extended to the bottom half of
the plane) as seen by looking straight down the imaginary
axis.

For matter that is currently falling to become black
holes, we know that it takes a finite proper time in the
falling matter’s frame to reach the horizon. But looking
at Figure 9, we see that in the expansion phase it would
be impossible to reach the event horizon since t < 0
in that phase and no worldline can reach the horizon
at t < 0 without moving faster than light. Therefore,
we conclude that the black hole will never form because
the matter will not reach the event horizon radius until
the entire Universe has re-collapsed to the Annihilation
event, at which point all matter in both Universes will
meet at the event horizon and annihilate.

So in a sense, the whole Universe will ’fall into a black
hole’, where once the matter in it reaches the Annihi-
lation event after the Universe collapses (which corre-
sponds to the event horizon), it re-emerges into a new
expanding spacetime that is the next cycle of the ex-
panding Universe (i.e. its geodesic enters the black hole
region of the spacetime in Figure 9). All gravitational
event horizons are surfaces of future time that all matter
will fall to at the end of re-collapse as it is destroyed and
remade in an effectively new, expanding Universe.
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