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Abstract: This study challenges the conventional interpretation of the interior Schwarzschild metric, particularly
the notion of a timelike radius leading to "spaghettification" at the curvature singularity. Contrary to previous
assumptions, the angular term of the interior metric signifies not shrinking spheres but rather the precession
of reference frames within spherically symmetric voids — analogous to cosmic voids — expanding over time.
This is the result of treating the internal radius as an imaginary radius instead of simply a time-dependant
scale factor of the angular term of the metric. Moreover, it is proposed that the expansion of these voids is the
source of Dark Energy without the need for a cosmological constant. Comparisons with observational data
reveal the model’s compatibility with the ACDM framework, underscoring its viability as a model of cosmology.
Additionally, we present a novel coordinate chart facilitating visualization of transitions between the exterior
spacetime surrounding massive objects and the interior voids, without traversing an event horizon. Intriguingly,
the Schwarzschild metric unveils a duality between our Universe and an Antiverse, with the event horizon
demarcating their convergence. This duality sheds light on fundamental properties such as electric charge and
quantum spin, elucidating their connection to spacetime geometry and the existence of mirror antimatter within

the Antiverse.
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1. Introduction

The Schwarzschild metric describes two spacetimes separated by an event horizon. The spacetime
outside this horizon is well understood and its predictions have been successfully verified over the past
century. The spacetime inside the horizon, commonly treated as the spacetime inside a black hole, has been
believed to be unobservable to anyone outside of a black hole since light is not able to cross outside the
horizon. As such, it is believed that the predictions associated with this spacetime are untestable.

When moving from the exterior region to the interior, the signature of the metric is reversed such
that the timelike coordinate of the external region becomes spacelike in the interior region and likewise
for the spacelike coordinate. This means that the radial spacelike coordinate of the exterior region
becomes a timelike radius in the interior. This timelike radius has been interpreted as a time-dependant
scale factor on the angular term of the metric in the interior. But this interpretation leads to the belief
that at the curvature singularity, an observer is infinitely stretched in one direction, and infinitely
compressed in all other directions. This is referred to as spaghettification’.

However, as is described in this paper, this interpretation of the timelike radius is shown to be
incorrect. If one draws a set of spacelike concentric circles around an arbitrary point in the internal
metric, then this interpretation suggests that every one of those circles will have the same proper
circumference because they all have an angle of 27t but since the radius r in the metric is a time, then
all the circles at a given time will have the same radius and therefore the same circumference.

To address this problem, we examine in detail what a timelike radius really means. It is demon-
strated that the timelike radius in the interior region can be thought of as an imaginary radius. The
angular term of the metric does not describe shrinking spheres, but rather it describes the precession
of the reference frame about an axis for a frame inside a shell infinitely far away in space but located in
the finite past of the frame. This leads to the conclusion that the interior metric describes spherically
symmetric voids in the Universe (the voids in the cosmic web) which expand in volume as time passes.
It is conjectured that the expansion of these voids is the true source of Dark Energy in the Universe.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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This model is compared to cosmological data and the ACDM model and it is found that this model
fits the data just as well as ACDM without the need for a cosmological constant.

In the final sections of the paper, a coordinate chart is developed which allows us to visualize the
movement from a spacetime region near a spherical mass (the exterior spacetime) into one of these
voids (the interior spacetime) without crossing an event horizon. In the course of the analysis, we find
that the Schwarzschild metric actually describes both a Universe and mirror Antiverse and that the
event horizon is where these two spaces meet. With both the Universe and Antiverse mapped, we
show how electric charge can be understood as a particle’s intrinsic spin about an imaginary radius
(time) and quantum spin is the particle’s intrinsic spin about a real radius (space). Furthermore, we
find that the timelike and spacelike radii in the Antiverse are negative relative to the Univeerse, such
that the Antiverse contains all the mirror antimatter of our Universe.

2. Analysis of the Schwarzschild Geometry

The internal region of the Schwarzschild metric (Region II in Figure 1) is described with:

i = —(% - 1)dt2 41 cdr? — A0 1)

u_
-
Equation 1 is the internal metric and for the rest of the paper it is important to remember that when
discussing the internal metric, ¢ is the spacelike coordinate and r is the timelike coordinate.

The internal metric is currently believed to describe the interior of a Black Hole. But consider the case
of a spherically-symmetric vacuum surrounded by a spherically-symmetrically distributed infinite amount
of mass. This would be a spacetime surrounded by a shell with an infinite Schwarzschild radius (because
the mass of the shell is infinite). Since this is a spherically symmetric vacuum, it must be described by the
Schwarzschild metric. This is also the description of spherically-symmetric vacuua in our Universe, since
the surrounding Universe is effectively a shell of infinite mass (every region of the Universe is light-like
connected to the Big Bang in all directions, which acts as a shell of infinite mass). Therefore, the internal
metric describes the spacetime of the pockets of empty space in the Universe. The constant u in the internal
metric is a time constant whose value in years will be later derived from cosmological data. Choosing a
value for this constant amounts to choosing the units of time for analysis.

Figure 1 shows the Kruskal-Szekeres coordinate chart for both the internal and external metrics
where light travels on 45 degree lines on the chart [1]:

Figure 1. Kruskal-Szekeres Coordinate Chart
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The coordinate definitions and metric in Kruskal-Szekeres coordinates for the internal metric are
given below (derivation of the coordinate definitions and metric can be found in reference [2] where

v=Tand u = X).
/ r . t
T = (1 — ;)eu Sln_l"l (21,[)

. , (2)
X =4/ (1 - ;)eu cosh (2u>
With the full metric in Kruskal-Szekeres coordinates given by:
g _ A i 2 21092
dr? = ——e u(dT —dX)—rdQ 3)

On this diagram, the T = X lines represent the infinitely dense shells in both scenarios. We can
see that at ¥ = r; = u (the "Horizon"), both metrics are the same. The origin T = X = 0 location/time
describes a point in space of infinite temporal density for the external solution and a point in time
with infinite spatial density for the internal solution. The T = +X lines are light-like geodesics. The
external region is shown in quadrant I of Figure 1 and the internal region is in quadrant II. Quadrants
III and IV will be examined in section 9. We can also see in Figure 1 that for the internal metric, the
horizon is located at t = oo, meaning the Schwarzschild radius and therefore mass of the shell is infinite
(because t is the spacelike coordinate). Thus, it is clear from the geometry that the source masses of the
Schwarzschild metric are not concentrated at r = 0 (which is not anywhere mathematically implied or
demanded in the derivation of the Schwarzschild metric), but rather at the event horizon itself.

So the internal solution describes a spherically symmetric vacuum surrounded by a horizon
which, from the perspective of an observer at some r between the horizon and » = 0, surrounds the
vacuum infinitely far away in space and at some finite time in the past. And from the perspective of that
observer, this horizon, which looks like a surrounding sphere, is a time where space is infinitely dense.
A spacetime fitting this description would be any empty space in the Universe whose surrounding
mass is spherically symmetric. Voids in the cosmic web would be an example of such a spacetime, and
the horizon of the metric in this case would be the Big Bang, which is an event at some finite time in
the past that surrounds all points in the Universe and has an infinite spatial density. And an observer
in the present Universe can never reach the Big Bang, no matter how far they travel through space,
which is in alignment with the fact that the shell surface of the metric (r = u), from the perspective of a
present observer, is infinitely far away from them in space.

Therefore, the Big Bang looks like an infinitely dense shell (viewed from the inside) at times
later than the Big Bang, but looks like an infinitely dense point (because the proper distance goes to
zero regardless of coordinate distance at that time) in the frame of an observer in the Universe as the
Universe approaches r = u (we will show that the scale factor at ¥ = u is 0 in section 3.1).

Now we must show that the space in the internal metric is isotropic and homogeneous. The
equation for a 2D hyperboloid surface embedded in three dimensions is given by:

2 .2 L2
oy
ol + w2 +1 4)
For our purposes, we will be considering the special case where a = b = ¢, which gives the one and
two sheeted hyperboloids of revolution. Next, we note the following relationship with regards to the
Kruskal-Szekeres coordinates:

X2_T2= (% - 1)e5 )

Equation 5 appears to be only for one dimension of space, but if we think of X as a radius, then it can
describe a 3D isotropic hyperboloid. So comparing to Equation 4, if we set a? = b? = ¢2 = (£ — 1) e =
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p? and X2 = R? = x? 4 y* where R is a radius of a circle in this example, we obtain an equation that
matches the form of Equation 4 where :

R =12 = p? ©)

Equation 6 describes 2D hyperboloid surfaces for a given r where the external metric has positive
p? and the internal metric has negative p?. This means that the external metric describes a 1-sheet
hyperboloid while the internal metric describes a 2-sheeted hyperboloid. Note that Figure 1 is for
constant § and ¢, meaning there exists identical diagrams for each 3D spherical direction.

We will for now focus on regions I and II from Figure 1, where region I captures the external
metric and region II captures the internal metric. If we choose some constant value of r = rg in each
region and plot Equation 6 for each region, we get the surfaces shown in Figure 2.

Internal »-Surfaces External r-Surface

Figure 2. 2D Surfaces of Constant  for Internal and External Metrics

In the internal case where we have two separate sheets, we will only focus on the top sheet for
now. The meaning of the bottom sheet will be discussed in section 9. In the external metric, the sheet
represents an equatorial circle of space around the central body at all times. This circle is on a plane
with a normal at the center and pointed vertically in Figure 2. If we then consider circles on all planes
whose normals are at different angles relative to the normal of the plane we are currently visualizing,
we get a 2D spherical surface representing the space surrounding the central body at constant r.

Light cones in Figure 2 are oriented vertically and light travels on 45 degree lines. If we consider
the right side of Figure 2, representing the external metric, choose any point on the surface and project
a past and future light cone out of that point (this will just be a vertical cone centered at that point). We
see that the external metric is homogeneous in time (along the surface of the sheet) and inhomogenous
in space (directions perpendicular to the surface), though still isotropic about the center line.

Now consider the top sheet on the left side of Figure 2 representing the internal metric. Choose
any point on the surface and project a past and future light cone from that point. We can move that
point to the apex of the surface (at t = 0) by hyperbolically rotating the spacetime until the point is at
the apex. We can do this without changing anything in the spacetime because the hyperbolic rotation is
a translation in ¢, and 9y is Killing vector of the manifold. When the point is rotated to the apex, we see
then that the light cone is symmetric relative to the surface left and right and into and out of the page.
This symmetry means the spacelike foliations of the internal metric are isotropic and homogeneous.

This can be extended to three spatial dimensions by allowing R to be the radius of a 3D sphere. In
this formulation, we put ourselves at R = 0 and the circles on the surfaces on the left side of Figure 2
will become spheres that are isotropic and homogeneous in space and inhomogeneous in time, which
is consistent with the Cosmological Principle.
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Now imagine we are situated at some point in empty space in the Universe facing in some
direction. There is a plane of infinite space at the present time perpendicular to the direction we are
facing. This plane is the hyperbolic sheet depicted on the left side of Figure 2 where we are situated at
the apex of the sheet. So the direction we are facing is the normal vector to this sheet (with the vector
origin at the apex of the sheet) and just like in the external case, there are similar planes constructed
from normals at all different angles to the direction we chose to face and when we put all of these
together, we get an infinite 3D space at the present time.

But the points on this collection of sheets at 7y are spacelike to us because they all exist at the
same time as us and we can only see points on past sheets whose light has had time to reach us. Light
paths in Figure 1 are lines at 45 degrees and light cones in Figure 2 are oriented vertically where the
beginning of the Universe is at the origin between the two sheets and time moves forward as the top
sheet moves up the diagram vertically. So we can construct an image of what a 2D slice of the Universe
would look like to us in this geometry with our position at the center. Figure 3 shows the present
sheet (rg) where we are positioned in space at the apex of the sheet. We then show a cross section of
that sheet on the Kruskal-Szekeres coordinate chart with the past light cone shown (dashed lines at
45 degrees emanating from t = 0 at rp). That light cone intersects past sheets of constant v > r (past
sheets not shown in the top left of Figure 3 but are represented by the hyperbolas the dashed lines
intersect in the top right of the figure) and these intersections are projected onto the plane at the origin
to give us a 2D image of our past light cone of the Universe. The density of the spatial coordinates at
different radii (and therefore times) is depicted with the shading inside the projection.

Figure 3. Projection of the Past Light Cone on a Flat Plane

As we can see in the lower projection in Figure 3, concentric circles around the center of the
projection (marked with "x") are circles of constant distance and time from us. So we see that as we look
further away in space and back in time, the Universe becomes more dense until at the beginning of the
Universe, which corresponds to an infinite distance and finite time from us, the Universe is infinitely
dense. This is in line with our current observations of the Universe.

There is much more to explore about this geometry, particularly the angular term of the metric,
which will be studied in detail in section 4. But we will first analyze the radial aspect of the metric in
the context of cosmology to demonstrate its ability to fit existing cosmological data.
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3. The Internal Metric as a Model of Cosmology

In this section we show that the internal Schwarzschild metric can be used as a model of cosmology
where the metric represents the dynamics spherically-symmetric vacuua in the Universe. Every frame
centered in a spherically symmetric vacuum in the Universe is surrounded by an infinite shell an
infinite distance in space away from the frame and a finite distance in the past. The shell in this
model would be the Big Bang. Cosmological parameters are calculated for the model and the model
is compared to supernova and quasar data as well as the ACDM model and the results show that
the model is in good agreement with the data, giving a current Hubble constant of roughly 71.6
km/s/MPc. The model predicts that the total proper time from the Big Bang to the present is roughly
35.2 billion years (as opposed to the 13.8 billion years in the ACDM model) and that the transition
redshift is close to 0.75.

3.1. The Scale Factor

Expressions for the proper time interval along lines of constant ¢ and () and the proper distance
interval along hyperbolas of constant r and () from Equation 1 are:

ds u
I i,/?—l—j:u (7)

d'r_i r :il ®)

dr u—r a

And the coordinate speed of light is given by:

(dt) —+ 7 Zilz )
dr light u—r a

Where a is the scale factor (because ¢ is the spatial coordinate and r is the time coordinate and therefore

Equation 7 describes how the proper distance between two points separated by coordinate distance dt

evolves over time). First we should notice that none of the three equations depend on the ¢ coordinate. This

is good because the ¢ coordinate marks the position of other galaxies relative to ours. Since all galaxies

are freefalling in time inertially, the particular position of any one galaxy should not matter. The proper

temporal velocity, proper distance, and coordinate speed of light only depend on the cosmological time 7.
A plot of the scale factor vs. r (with u = 1) is given in Figure 4 below:

0.2 0.4 0.6 0.8 1.0
¥

Figure 4. Scale Factor vs. r for u =1
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3.2. The Co-Moving Observer

Let us take a co-moving observer somewhere in the Universe we label as ¢ = 0 as the origin of an
inertial reference frame. We can draw a line through the center of the reference frame that extends
infinitely in both directions radially outward. This line will correspond to fixed angular coordinates
(Q)). There are infinitely many such lines, but since we have an isotropic, spherically symmetric
Universe, we only need to analyze this model along one of these lines, and the result will be the same
for any line.

We must determine the paths of co-moving observers (dt = dQ) = 0) in the spacetime. For this
we need the geodesic equations for the internal Schwarzschild metric [2] given in Equation 1. In these
equations u represents a time constant (in Figure 1, the value of u is 1). The following equations are the
geodesic equations of the internal metric for t and r (0 < r < u) for dQ) = 0:

d’t dr dt
at__uw darat (10)
dt2  r(u—r)dtdr
d?r u
= 11
dtz 22 ()
Looking at points 0 < r < u, then by inspection of Equation 10 it is clear that an inertial observer at
rest at t will remain at rest at ¢ (5% = 0if j—; =0).

Let us next demonstrate how the internal metric fits with existing cosmological data and calculate
various cosmological parameters using that data.

3.3. Calculation of Cosmological Parameters

In order to compare this model to cosmological data, we must solve for # and find our current
position in time (rp) in the model. Reference [3] gives us transition redshift values ranging from
zt = 0.337 to z; = 0.89, depending on the model used. We can use the expression for the scale factor
in Equation 7 to get the expression for cosmological redshift from some emitter at »r measured by an
observer at rq [2]:

_a _ [r(u—r)

Furthermore, the deceleration parameter is given by:

da  4r
=5=—-3 13
a2 u (13)
By setting Equation 13 equal to zero, we can solve for #. With this and equation 7, we can calculate the
scale factor at the Universe’s transition from decelerating to accelerating expansion a;:

4 1
ap=1z—-1=—7 14
t 3 7 (14)
Using Equations 12, 14, and the transition redshift estimate, we can get an expression for the present

scale factor:
1+2z

V3
Next, we find expressions for # and our current radius rg by noting that light from the CMB has been
travelling for roughly 13.8 billion years of coordinate time r. Therefore, we can set &, = u —rg = 13.8
and use Equations 7 and 15 to obtain the following for u and ry:

ag=a(1+2z) =

(15)

u— 1’0 erO 3067‘0
a3 ai  (1+2z)? (16)

ro =
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3
u :VO‘I‘OCrO :0(70 <(1—|—Zt)2+1> (17)

Next we compute the CMB scale factor (acpsp) and coordinate time (rcpsp) in this model where the
redshift of the CMB (z¢pp) is currently measured to be 1100:

ao

CMB = 75— (18)
u

CMB = T 2 (19)

We can next derive the Hubble parameter equation using the scale factor. The Hubble parameter is
given by (in units of (Gy)~1):
a u

H:EZZr(u—r)

(20)
Table 1 below gives the values of u, ry, Hy, ao, 9o, acmp, and qcpp given the upper and lower bounds
of z; from [3] as well as the 0.75 transition redshift value and assuming a,, = 13.8. All times are in Gy
and Hy is in (km/s)/Mpc.

Table 1. Limiting Cosmological Parameter Values Based on z; Measurement and a 13.8 Gy Age of the
Universe.

Zt Kr, u 1o Hy ag 40 acMB___4CcMB
0.337 13.8 370 232 56.6 0.77 -049 0.0007 0.99
0.75 13.8 273 135 716 1.01 -1.02 0.0009 0.99
0.89 13.8 254 116 776 1.09 -1.17 0.0010 0.99

From the results in Table 1, we see that the true transition redshift is likely close to 0.75 given
the fact that the current value of the Hubble constant is known to be near 71.6. Thus, more accurate
measurements of the transition redshift are needed to increase the confidence of this model, but the
0.75 transition redshift is in fact a prediction of the model and we will see this when it is compared to
astronomical data later in this section.

Table 2 has the proper times from r = u to the current time for co-moving observers (dt = rd() = 0)
by integrating Equation 1. The column T4 gives the time from » = u to r = 0. The expression for T

turns out to be quite simple:

7T
Ttot = E u (21)

In Table 2 below, the column T,;,,i, gives the time between r = rg and r = 0.

Table 2. Limiting Proper Times Based on z; Measurements and an age of 13.8 Gy for the Universe
(Time is in Gy)

Zt Xry [ Ttot  Tremain
0.337 13.8 || 42.2 58.1 159
0.75 13.8 || 35.2 429 7.7
0.89 13.8 || 33.7 399 6.2

Note that the proper time Ty of the current age of the Universe is actually much larger than the
coordinate time u — ry. And even though we are presently only about halfway through the “coordinate
life” of the Universe (according to Table 1), the amount of proper time remaining is actually much
less than the amount of proper time that has already passed (according to Table 2). This provides a
measurable prediction from the model: as telescopes such as the JWST peer farther into the past with
greater accuracy, we should expect to find stars, galaxies, and structures that are much older than
expected because of the increased amount of proper time available for such things to form in the early
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Universe. Hints of this has already been found with the star HD 140283, whose age is estimated to be
nearly the age of the Universe itself [4].

Next we would like to use the u and r values found to compare the model to measured supernova
and quasar data. First we need to find r as a function of redshift. We can do this by solving for r in
Equation 12:

u(l+z)>?
SETCES L .
ag+ (1+2z)
We can derive the expression for t vs. r along a null geodesic where the geodesic ends at the current
time rp and t = 0 by setting d7 = rd(Q) = 0 in Equation 1 and integrating:

ror u—ro
t = dr =uln{ —— | +ry — 2
/r r un< r> ro—r (23)

o U—71

Next we substitute Equation 22 into Equation 23 to get coordinate distance in terms of redshift:

2 2 2
as+ (1+2z) (1+z)
t = 7 ull 0 — 24
o7 ln< 1+ a2 ) Zravae|
We need to convert the distance from Equation 24 to the distance modulus, 3, which is defined as:
Dp
=51 —= 2
M 5 OglO( 10 ) ( 5)

Where D;, in Equation 25 is the luminosity distance. Luminosity distance is inversely proportional to
brightness B via the relationship:

Bx — 26

D2 26)

The brightness is affected by two things. First, the spatial expansion will effectively increase the

distance between two objects at fixed co-moving distance from each other. This will reduce the

brightness by a factor of (1 + z)? (because the distance in Equation 26 is squared). But there is also

a brightening effect caused by the acceleration in the time dimension. We define v = ’fi—f = % as the

temporal velocity of the inertial observer at some r and the speed of light at that r as v, = % = u% The
ratio of these velocities gives us:

e _dtdr _dt a1 27)

v drdt dt  a®> a
Equation 27 tells us how far a photon travels over a given period of time measured by the inertial
observer’s clock. So we see that as light travels from the emitter to the receiver, this speed decreases.
This decrease in the speed from emitter to receiver will result in an increased photon density at
the receiver relative to the emitter, increasing the brightness. Therefore, this effect will increase the
brightness by a factor of:

0 _ 14, (28)

a
This effect is not accounted for in the current relativistic cosmological models and therefore gives a
second prediction that light from the distant Universe should appear brighter than expected.

Taking these brightness effects into account, the total brightness will be reduced by an overall
factor of 1 4z relative to the case of an emitter and receiver at rest relative to each other in flat spacetime.
Equation 26 in terms of co-moving distance t and redshift z becomes:

14z 1

Betarar 7 B eary 29)
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Giving the luminosity distance as a function of co-moving distance t and redshift z:
Dy =tV/1+z (30)

Which gives us the final expression for the distance modulus as a function of co-moving distance and

redshift:
tvV1+z
w=>5logy| —5—

A plot of distance modulus vs. redshift is shown in Figure 5 below plotted over data obtained from the
Supernova Cosmology Project [5]. A Curve calculated from the z; = 0.75 row in Table 1 is plotted as
this value provides the best fit for the data.

(31)

48 -
46 -
a4 -
42
40 -
38 -

36 -

34 T T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4
z

Figure 5. Distance Modulus vs. Redshift Plotted with Supernova Measurements

Figure 6 shows the same curve from Figure 5 for the Hubble diagram plotted out to higher
redshifts with the quasar data from [6] also shown with error bars.

52

50

e /

46 &L a

44 T

42 v

40

38 ||
]

36 I

0 0.5 1 15 2 25 3 35 4 45 5

z

Figure 6. Distance Modulus vs. Redshift Plotted with Quasar Measurements
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Figure 7 is a comparison of the ACDM model with the Schwarzschild model with the z; = 0.75
transition redshift. As can be seen in this figure, both models are in very close agreement for the range
of data available.

50
% N A IR A G—
46
# 44 —
Hy=67.66
Q,=0.689
40 — — — - Schwarzschild
z,=0.75
38
36
0 " i 3 ! |

z

Figure 7. Distance Modulus vs. Redshift Comparison with ACDM

Finally, by subtracting r¢ from Equation 22 we can calculate the lookback time for a given redshift.
Figure 8 shows the lookback time vs. redshift for the three transition redshifts from table 1.

— = =
0o o N =3

Lookback Time in Gy (r-1)

4
2
0
0 1 2 3 4 5
Z
----- 7zt=0.337 —zt=0.75 --- zt=0.89

Figure 8. Lookback Time vs. Redshift

4. The Angular Term r2d()?

The angular term of the internal metric has a time as a radius. This is typically thought of as a
scale factor for spatial spherical surfaces of the space, but that cannot be what is being described in that
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term. The reason is simple. Imagine that one draws a set of concentric circles around some point at the
same time r (spacelike circles). This would be represented by the circles on the top surface of the left
sidde of Figure 2. The circumferences of the circles must get larger as we move away from the center
point. But these circles are at the same time r. So if the proper circumference of the circles was given
by 27tr, then all those circles would have the same circumference, which is nonsensical. Furthermore,
it is also believed that at » = 0, an observer would experience "spaghettification’, which implies
that the observer is infinitely stretched in one direction and infinitely compressed in the directions
perpendicular to the stretch direction. In this scenario we must ask "In which spatial direction is the
observer stretched?". The logical answer is that the stretch happens in the radial direction. But the
radial direction is in the direction of time, not space. Therefore, we cannot chose a direction in space for
the stretch and we therefore must reject the spaghettification hypothesis and consider more carefully
the meaning of time being a radius.

In the external metric, we measure the angles relative to the frame of the central body (the source
of the metric). For the internal metric, there is no central body that can be referenced as the source of
the metric. Instead, we must use the distant surrounding Universe as a reference, with the Cosmic
Microwave Background being an optimal reference in this case. If we consider an inertial frame in
the internal metric, we can draw a line from the center of the frame to some point on the CMB and
orient a gyroscope along that line. As we move through empty space, the change in angle between
the gyroscope axis and the original connecting line will be the change in angle d() in Equation 1,
representing a change in the orientation of the reference frame relative to the surrounding Universe.

In a Newtonian Universe, this angle would never change because even if we moved around a
curvilinear path through space, the gyroscope would remain fixed in its orientation. But in Special
Relativity, there is a kinematic effect known as Thomas Precession in which the orientation of the
gyroscope will change as a result of an acceleration being applied to the observer at an angle to the
observer’s current velocity. The Thomas Precession is given by:

I K Gl v
wT:C2<7+1)axv (32)

Where
1

Ly
Tz

At non-relativistic speeds, this precession is very small, essentially zero at human scales. We can think
of this kinematic precession as the ‘spin’ of an object since it is an intrinsic rotation of the object’s
reference frame. We see this kind of ‘spin” analogously in the external metric with geodedic precession.
The precession of the perihelion of Mercury’s orbit is a direct example of this. The perihelion precesses
because the orientation of Mercury’s reference frame changes (relative to a coordinate system fixed to
the sun) as it orbits, resulting in the direction of the orbit relative to the sun’s stationary coordinate
system changing over time.

As will be discussed in section 6, % is related to the magnitude of the CMB dipole that would be
seen when moving through space. In terms of curvilinear motion, % will always represent the tan-
gential velocity to the observer’s path. Furthermore, the combination of the CMB dipole’s magnitude
as well as the angular velocity of the dipole as it moves across the CMB will give us the acceleration
normal to the path at each point. Noting that the centripetal acceleration of a body moving with
tangential velocity v and angular velocity w can be expressed as @ = wv, we can get an alternate
expression for the Thomas Precession as follows:

2 2
o —ap ) (L%
or=an(75) () o

(33)
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Where @p is the angular velocity of the CMB dipole as it moves over the CMB and % is the tangential
velocity, which is related to the magnitude of the CMB dipole. If we create a basis for the observer’s
reference frame by aligning gyroscopes along three perpendicular directions, then we can define the
angles 6 and ¢ in that basis which describe the general motion of the dipole over the CMB. With those,
we can express Equation 34 in terms of 6 and ¢ as:

. 20\ [1dt\?
wo = (CUD,Q +CUD,¢ s1n9) (7’:_ 1) (Cd?’) (35)

Therefore, Equation 35 tells us how the orientation of the observer’s reference frame changes at each
instant while the observer is in motion, giving us the magnitude of % = wq for the frame at each
instant. This change in orientation manifests itself in the frame of the observer as a rotation of the
surrounding Universe around the basis defined by the aforementioned gyroscopes. An important
thing to note here is that at modest speeds (% << ), the rotation of the reference frame’s orientation
(which is what the internal metric describes), is much lower than the rotation of the CMB dipole such
that if the dipole makes a 27t rotation in a given amount of time, the actual angle of rotation in the
metric will be much lower than 27 over the same period of time'.

2
We can further simplify Equation 35 by noting that (% %) = 7;;1 = (7+13yg7’1)

, giving us:
wo = ((/JD,Q +Wpy sin 9) (r—1) (36)

But from the metric, it is clear that there can still be precession of the reference frame, even if there
is no centripetal acceleration through space. An observer moving in a straight line with a precessing
inertial frame would see the CMB dipole angle fixed relative to the gyroscope basis and the entire
Universe would appear to rotate around the gyroscopes.

The same would be true for a co-moving observer with the difference being that there would
be no dipole visible on the CMB. Since there are timelike paths with non-zero dQ) and dt = 0, this
means that the co-moving observer can still have an angular velocity in this metric even though it is
not moving through space. A precessing reference frame is the only interpretation of the angular term
of the metric that is consistent with this condition. Given these interpretations of the motion in t and
(), it is notable that if an object had some intrinsic spin already and started moving in ¢, the object
would move on a curved trajectory analogous to a charged particle moving in a magnetic field. It is as
though the inertia of the spinning body in motion becomes a vector that precesses according to the
spin magnitude and direction.

In the frame of an observer with this intrinsic spin, they see the entire Universe rotating around
their inertial frame as they move in a straight line relative to their basis. But from the perspective
of a co-moving frame with no spin, the particle with spin will move on a curved trajectory under
the influence of a fictitious cosmological Coriolis force (the momentum vector of the particle rotates
without an external force being applied as a result of the precession of the inertial frame). This
effect could be related to the Dark Matter effects observed in galaxy rotation curves. In scenarios
where galactic formation involved high initial gas rotation leading to significant geodetic precession,
subsequent star formation within these galaxies, as stars migrated outward from the galactic center,
would encounter Coriolis acceleration. This acceleration would result in stars maintaining orbits
around the galactic center with tangential velocities exceeding theoretical expectations.

We can make a loose analogy to this with the external metric. Consider a point in space some distance r from the center of a
star. If you move in a circle around that point in a plane perpendicular to the radius r, the angle in the metric will not be 27
because you are not revolving around the star. Rather, the angles will be defined by the base of a cone whose tip is at the
center of the star.
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The path of light should also be affected by the angular term of the internal metric. When light is
gravitationally lensed, its momentum vector changes direction, so from the perspective of the light,
the Universe has rotated around it. We can see the precise behaviour of lensed light by looking at the
geodesic equation for angular motion [2] (we will examine the case for planar rotation where 6 = 7).

d?¢ 2d¢ dr

AT rad 7
For light, we will use A = r. If we consider light lensed by a galaxy, as the light passes the galaxy
at some coordinate time r(, it will have some angular velocity ¢y and initial angle ¢y as it leaves
the galaxy. It is currently assumed that the light then continues along a straight line as it leaves the
gravitational field, but as we shall see, this is not the case. The ¢y would be the angle caused only by
the gravitational lensing, without any additional effects from the cosmological model (i.e. the angle
we would expect when only taking into account the mass of the galaxy). Given these initial conditions,
the solution to Equation 37 is:

9(r) = go+oro(1- -2 ) (38)

During expansion, both the bracketed expression and ¢ will always be negative (because dr is negative
and rg > r) such that the second term is always positive. Therefore, during expansion, the observed
lensing angle will be increased by the amount ¢org (1 — r7°) as a result of this effect (where r is the
coordinate time at which the light is observed). Furthermore, since %‘f for the light increases over time,
the % will correspondingly decrease as well and the result of this is that the increase in lensing angle
over time will also result in a redshift of the light relative to unlensed light.

We see that the ‘excess angle’ is dependant on the lensing rate ¢. So if we consider two cases
where in one case, the light is gently lensed over a large distance/time by some angle ¢y and in the
other case, light is lensed by a more dense mass the same ¢y, the lensing rate ¢y would be higher in the
second case relative to the first. So even though the pure gravitational lensing angle ¢y would be the
same in both cases, the observed angle would be greater in the second case because the lensing rate ¢
would be greater in that case.

5. The Metric Singularities

Now that we have begun to understand the nature of the angular term of the internal metric and
its relationship to Cosmology, we now examine the nature of the singularities of the metric.

The metric has two singularities: a spherical singularity and a hyperbolic singularity. The spherical
singularity is the place where the ggg and gyy components of the metric vanish. This singularity is
also a curvature singularity because the manifold curvature is governed by the r coordinate and when
r = 0, the g;» component also vanishes.

As discussed in section 4, the singularity at r = 0 does not mean that space is compressed there.
In fact, it is at ¥ = r; where g+ vanishes and this indicates that the time coordinate becomes infinitely
compressed in the case of the external metric and the space coordinate becomes infinitely compressed
in the case of the internal metric. We can see the hyperbolic singularity clearly in Figure 1 where the
t coordinate, shown as a hyperbolic angle in that chart, converges at r = rs. We can also show this
convergence in Schwarzschild coordinates in Figure 9

On this chart, the t coordinate lines are the curved lines and they come from solving the metric
for rest observers (dr = d() = 0) and integrating to get the following equation:

s
T:t‘/1—7 (39)

Where each line corresponds to a fixed value of ¢, with t = 0 being the flat line on the r axis. Vertical
worldlines on this coordinate chart are the worldlines of observers at rest and their height is the proper
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time elapsed. We can see that for a given At, less proper time passes for rest observers the closer they
are to the horizon.

T A

>
6

o]

0 1 2 3 -
Figure 9. Falling Worldlines on the Modified Schwarzschild Coordinate Chart

We can conceptualize the ¢ coordinate lines as analogous to isocontours on a contour chart, where
t = 0 represents the highest level and t = co represents the lowest level. The trajectory of a falling
observer (shown as sequential arrows in Figure 9) follows the geodesic of shortest distance from the
highest level to the lowest level, ensuring their worldline remains perpendicular to the t coordinate
lines at every point. Consequently, the worldlines of all observers falling from rest at t = 0 start
vertically at t = 0, gradually curving to maintain orthogonality to the t coordinate lines at each point,
and eventually becoming horizontal at t = oo, ¥ = r5. Thus, Figure 9 depicts the convergence of the ¢
coordinate on a Schwarzschild coordinate chart.

Alternative coordinate systems, such as the Kruskal-Szekeres coordinates, offer a means to
disguise the hyperbolic singularity by providing a different representation of spacetime. To illustrate
this concept, consider a flat terrain with a trench dug out along its center. As one approaches the center
of the trench, the slope increases, reaching infinity at its center, which is infinitely deep. If distance
markers are placed along the ground, spaced equally following the trench’s slope, an infinite number
of markers would be required to reach the trench’s center. These markers represent the coordinate
analogous to t.

However, when observing the terrain from above, the center of the trench appears as a line on
a plane. By laying coordinates on this plane, the center of the trench becomes a finite distance from
any reference point, and the markers previously placed on the ground (representing the ¢ coordinate)
appear infinitely dense at the trench’s center. This planar coordinate system mirrors the Kruskal-
Szekeres coordinates and similar approaches, which merely hide the hyperbolic singularity, making
the metric regular at the horizon.

But let us now consider what happens to observers at the spherical singularity at r = 0. As
previously discussed, this singularity is a point in time around which reference frames precess. The
idea of ‘spaghettification” at the singularity has already been ruled out, so what then is the nature of
this singularity in terms of inertial frames?

Consider a reference frame with a non-zero rate of precession in some direction. From the
perspective of this frame, the entire Universe is revolving around the frame and the rate and direction
of rotation of the Universe tells the frame its rate and direction of precession. But at the the singularity,
the scale factor becomes infinite and all incoming light from the external Universe becomes infinitely
redshifted. This means the reference frame can no longer determine its rate of precession or its
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orientation because it no longer has the surrounding Universe as a reference against which to measure
these quantities. Therefore, the spin of reference frames in these conditions is undefined.
But the Universe does not end at the singularity. When the Universe reaches the singularity, it
continues to evolve in time except that rather than r decreasing over time, » now starts increasing.
We can show this more explicitly for a co-moving frame. The definition of the Kruskal-Szekeres T

coordinate is given by T = 4/ (1 — %)e% sinh (i) , and we can define the velocity of the frame in T
(for constant f) as:
T 2 t
vp=4 g cosh() (40)
dr 2uiJu—r 2u
We take the negative solution for region II of the Kruskal-Szekeres chart since T increases when r

decreases there. We can see that this velocity is —co when r = u and zero when r = 0. So the velocity
(i.e. motion through time) is zero at the singularity. If we take the derivative of this velocity we get:

T _ WV ehi(u? 1) cos (t> (41)
dr? dr 4uS/2(yu —r)3/2 2
Since dr is negative, this tells us that 4V will be positive from * = u to r = 0. But Vr is negative
and therefore, the acceleration of the worldline is opposite to the velocity, causing it to decelerate in
T and therefore the acceleration vector would point toward T = X = 0. We can also see that this
acceleration is non-zero at the singularity. So if V7 is 0 at r = 0 and the derivative of Vr is non-zero and
pointed toward T = X = 0 at r = 0, then this means that after approaching the singularity from r > 0
the worldline stops moving in increasing T at the singularity and begins to move in the direction of
decreasing T. When the worldline then starts falling back toward T = X = 0, V7 is still negative, but
dr is now positive. Thus dVr will be negative, meaning the worldline accelerates toward T = X = 0.

Therefore, the spherical singularity represents a turnaround point for the geodesics where co-
moving reference frames switch from moving with negative dr through time to moving with positive
dr through time.

In section 7, we will see how when we combine the two metrics into a unified spacetime, the
passage through r = 0 emerges quite naturally from the combined coordinate chart. But first we will
examine cosmological motion in the context of the internal metric.

6. Understanding Cosmological Motion: A Thought Experiment

A very important fact about the internal metric is that there is no preferred location in space,
which is consistent with the cosmological principle. The angular term of the metric, which has a center
in time at all space, must be thought of differently than we usually think of spherical metrics centered
in space as was discussed in section 4. We can always put ourselves at the center of space t = 0 and if
we pick an arbitrary direction at some fixed time r, the ¢ dimension is a linear dimension that extends
infinitely in front of us in that direction as well as infinitely behind us in the opposite direction. So
even though we are not centered in time in the metric, we can always model ourselves as being at the
center of space. Understanding this is very important for visualizing what the Universe looks like
when we move cosmological distances.

Imagine a Universe full of Black Holes, each one with a particle moving in the its gravitational
potential in arbitrary ways. We will focus in on one such system. Let’s surround our Black Hole and
particle system with a larger sphere containing both of them centered on the Black Hole and large
enough that the path of the particle always remains inside it. The orientation of the system is locked to
the sphere so that if the sphere moves or rotates, the system as a whole moves and rotates with it.

The CMB shines on this sphere, and the temperature monopole of that light is directly related to
the cosmological time r and therefore local time #'. When the temperature monopole is zero, we are at
r =t = 0. So the monopole temperature of the CMB gives us a measure of cosmological time.
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We've already discussed the cosmological angular motion ‘2—9 as the Thomas Precession of the
reference frame relative to the CMB. The magnitude of this spin may also be correlated to the observed

CMB quadrupole. So this leaves us with cosmological linear motion g—;. We can figure out our

cosmological velocity % by observing the magnitude and orientation of the temperature dipole cast
on the sphere from the CMB. If the system is moving through ¢, one side of the sphere will be more
blue than the monopole and the polar opposite side will be more red than the monopole. The Black
Hole, which is at rest relative to the sphere can figure out how fast and in which cosmological direction
the sphere is moving in by observing the magnitude of the dipole as well as its orientation.

So when an observer moves linearly in ¢, half the sky will be blueshifted and the other half will
be redshifted and the circle perpendicular to the dipole direction will have no red or blueshift. For
simplicity, let’s assume all galaxies are co-moving. If we are also co-moving and we look at a set of
galaxies surrounding us at a fixed » > ry, these galaxies will be equally redshifted in our frame as time
goes on. If we then move in t in some direction, what we would see is that we move closer to the
galaxies in the blueshifted portion of the sky and away from the galaxies in the redshifted portion of the
sky. How much closer or farther away we move from a particular galaxy depends on the magnitude of
the red or blueshift in the direction the galaxy sits in the sky. So if we shift our position by moving in ¢
in some direction, when we later come to rest the galaxies that originally sat on a shell equally distant
in space and time from us will now each appear at different distances and times from us depending on
our direction of travel. Figure 10 shows our pure motion in ¢ on the Kruskal coordinate chart.

Figure 10. Depiction of Linear Cosmological Motion

Time moves upward in this diagram, so we start at t = 0 and see two galaxies in each direction
equidistant in both space and time from us connected by equal length null geodesics (dashed lines).
The galaxies we see are assumed to be co-moving in this example. Then we move in ¢ along some
direction as we fall through time. The diagram shows us how our view of the galaxies along our
direction of motion changes due to this motion. When we are at some r < rq later, we no longer see the
two galaxies equidistant in time and space from us. We see the galaxy we moved toward at a closer
distance in both space and time to us than we did at the beginning. Conversely, we see the galaxy we
moved away from at a greater distance in both space and time than we did originally (though we still
see a future version of the galaxy relative to when we saw it at the beginning). But we can always
define our position as ¢t = 0 and we can do this by shifting the 3 points depicting the end of the motion
in Figure 10 along hyperbolas of constant » by the amount t we moved. In this depiction, we would
remain at t = 0 and the galaxies would be the things moving in our reference frame (i.e. we would
hyperbolically rotate the galaxies). It would look like one galaxy is moving toward us while the other
is moving away.
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If we were to imagine that we are revolving around some point in space in a circle and defined
our t coordinate as 0 in the Kruskal diagrams for the entire motion, the worldlines of the galaxies in all
directions would be sine waves along their lines of constant ¢ with the phase of a given wave being a
function of direction. In other words, the entire Universe would appear to wobble around us (which
manifests itself as the CMB dipole sweeping across the CMB). Note that dt # 0 on a circular path since
t is a hyperbolic angle, not a radius. Very importantly though, the angle we sweep as we go around
that circle is not the angle in the metric. As has been discussed, the actual angle that would go into the
metric would be much smaller than the angle of revolution around the point. It would be the result of
the Thomas Precession caused by the angular motion.

In Figure 11, we show a visualization of a circular orbit to help illustrate the role of the t and ()
coordinates along a curved path (sequential parts of the cycle are numbered in ascending order).

1 2 3

-
N

.

4 5

Figure 11. Visualization of Circular Orbit

At the left side of the figure, we are at the start of the orbit where the large circle represents a set
of galaxies equidistant from the orbiter at that point. The smaller dashed circle represents the orbit
and the arrow represents the direction of motion of the orbiter at a given moment. As we move left
to right, we show the orbiter as fixed with the space moving beneath it. What is being shown here
is that the best way to view the orbit is to imagine the entire space moving beneath the orbiter (the
orbit and distant galaxies are fixed together and the orbit is moved beneath the orbiter). The small
bold cross-hairs attached to the observer represent the orientation of the orbiter’s reference frame. As
we look left to right on the figure, we see these cross-hairs rotating slightly and this rotation represents
the d() of the orbiter such that as the orbiter returns to its initial position at the far right, the cross-hairs
are rotated relative to the far left of the figure.

Finally, it is important to emphasize the df is a hyperbolic angle, not a traditional arc length or
radius. So if we imagine travelling around a t x t square, we would do a hyperbolic rotation through
angle t in one direction, then another hyperbolic rotation through angle ¢ in a perpendicular direction,
and so on until we return to the initial position. In the case of a circular or general curved orbit, we just
do the limiting process of this where we apply continuous hyperbolic rotations through infinitesimal
angles dt in continuously varying directions. This is why a circular orbit does not have a constant ¢
(and therefore, we still see a CMB dipole while moving in a circular orbit).
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7. Combining the Metrics

The hypothesis put forward is that the internal Schwarzschild metric describes the spacetime of
spherically symmetric vacuua in the Universe. If this is correct, then we must consider how this metric
and the metric of the vacuum surrounding a spherical mass transition into each other.

We can imagine that moving from the spacetime of the external metric to the spacetime of the
internal metric amounts to moving from the gravitational field of a spherical mass that is part of a shell
to the interior of that shell. If we are just outside of the inner boundary of the shell, then motion will be
governed by the external metric, but once the boundary is crossed, motion is governed by the internal
metric where there is no longer a preferred direction in space. Therefore, at the inner boundary of the
shell, the effective Schwarzschild radius of the mass of the external metric goes to zero in the frame of
the observer crossing that boundary. This boundary is illustrated in Figure 12.

Metric Boundary

Figure 12. The Metric Boundary

The spacetime inside that boundary will be described by the internal metric (and the volume of
this space will change over time according to the scale factor a) while the spacetime outside of it near
one of the stars will be described by the external metric.

We can join the two metrics together via the time dimension. First, let’s note that in the internal metric,
the sign of the dr term is opposite to the sign of the d() term. But in the external metric, these terms both
have the same sign. We can make the signs of the terms in the internal metric the same as follows:

dr? = — (” - 1>dt2 + 7 1_1dr$ + (ir;dQ)? (42)

r
i ti

By making the arc length of the d() term imaginary, the dr and d() terms now have the same sign. Thus, we
can think of the radius of the internal metric as an imaginary radius and henceforth we will refer to the
radius of the internal metric as r; to distinguish it from the real radius of the external metric r.

We must now consider how the spacetime of the external metric is affected by the expansion
and collapse of the internal metric. The ¢ coordinate of the external metric is the proper time of an
observer at infinity (a Minkowski observer). But in the real Universe, the infinite observer will be a
co-moving observer in a cosmic void. The proper time interval of the co-moving observer is given
by dt, = \/%1011’1'. Therefore we can set dt of the external metric to d7 of the co-moving observer of

the internal metric. Likewise, the r coordinate of the external metric is the proper distance between
spatial coordinates in the frame of the infinite observer. But for the co-moving observer in the internal
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metric, the proper distance of spatial coordinates changes over time according to ds¢, = ,/ % — 1dr,

(for clarity, we are calling the ¢ coordinate in the internal metric 7, since it is a spatial coordinate and is
different from the external metric’s r; coordinate).
If we substitute dt = dt., and dr = ds., in the external metric, the external metric for fixed Q)

becomes:
1—1s 1_1
dr? = (u_’>dr%<lr’_,s>dr$ (43)
ri T

This metric can be used for both spacetimes where r; > 0 for the external metric and s = 0 when the

shell boundary is crossed and we are in the internal metric.
The radial speed of light of the external metric in these coordinates becomes:

dr, — I
o) =t (44)

c ¥i

Let’s consider the expansion phase of the Universe. In this phase dr; is negative and if the light is infalling
then dr, is also negative, so we use the positive solution. When we get to the end of expansion at #; = 0,
we see that the speed of light also goes to zero, meaning light comes to rest instantaneously at that time. If
light stops moving through space at that time, then every geodesic must also stop moving through space at
that time. As we continue up past the singularity, dr; becomes positive and since we are using the positive
solution of equation 44, dr, must also be positive for the originally infalling light ray.

From this we can conclude that during the expansion phase of the Universe, particles fall toward
massive objects. But during the collapse of the Universe, gravity becomes repulsive and masses repel
one another. So it appears that true Black Holes will never form in our Universe because getting to
the horizon requires infinite proper time in the frame of the co-moving observer. But the co-moving
observer reaches 7; = 0 in finite proper time and at that point falling objects come to rest and then are
repelled by the central mass.

We can depict the union of the two metrics’ coordinate chart using a Penrose-like diagram to
stitch the spacetimes together as shown below [7].

Metric Boundary
Toward Schwarzschild Toward Shell
Radius Center
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3
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Figure 13. The Full Schwarzschild Metric
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In this diagram, the left point on the diamond is the Schwarzschild radius of a Black Hole and the
right point is the center of the spherical shell. The bottom point would be the Big Bang and the top
point would be the future time when the Universe has fully collapsed. The center horizontal line is the
curvature singularity at 7 = 0 and the center vertical line is the Metric boundary (the inner surface of a
spherical shell). The external metric spacetime is on the left side of the diagram and the internal metric
spacetime is on the right. The lines going from bottom to top are spatial coordinate lines related to 7.
The lines running left to right represent time coordinates related to r;. Another fact of this coordinate
chart is that all geodesics are vertical at the center horizontal line (which was shown mathematically
for both the internal and external metrics previously).

This diagram is a patchwork of Penrose diagrams where the left side is the left half of the Penrose
diagram for the external metric. The right side is made up of the Penrose diagram for the internal
metric at the bottom right and its reflection at the top right. So rather than stitching the spacetime
together at the event horizon, the spacetimes meet at the Metric boundary. Note that unlike on the
typical Penrose chart, light-like geodesics are not straight lines on this diagram.

The spacelike coordinate lines on the left side of the chart are related to the r coordinate. Likewise,
the spacelike coordinate lines on the right side of the diagram are related to the t coordinate. Looking at
Figure 13, the diagram is finite in width, but the Schwarzschild radius (the leftmost point) is infinitely
far in r from the center of the diagram. Furthermore, if we make the shell infinite in size, then the
rightmost point, which is the center of the shell (t+ = 0 where ¢ is the spatial coordinate of the internal
metric), is infinitely far in f from the center of the diagram. If we want r, from equation 43 to be 0 at
the Schwarzschild radius (leftmost point of Figure 13, 1 at the center of the diagram, and 2 at the center
of the shell (rightmost point of the diagram), then we can define 7, in terms of the r coordinate of the
external metric and ¢ of the internal metric respectively:

rr =1 —tanh <r11> (45)
-

rr=1+ tanh(i) (46)

We can solve for 1 — = as a function of r, with equation 45 so that the metric from equation 43 in the
> 0 region (left side of Figure 13) is only a function of r, and r;:
Ts 1

1—- 25 = 47
r  l1+tanh '(1-r) &

An important thing revealed by this coordinate chart is that we can think of the r, coordinate of the
external metric as a real radius and the r; coordinate of the internal metric as a perpendicular imaginary
radius (in the mathematical sense) as previously mentioned. The Kruskal-Szekeres coordinate chart
also implies this as when we compare region I to region II, the r coordinates run perpendicular to each
other along the X and T axes. So r, increases from left to right in this chart and r; decreases from the
bottom to the middle, then increases from the middle to the top.

We now have two radii describing the spacetime. This implies that we also have two sets of
spheres describing the spacetime. The real set of spheres is the one we’re used to which is a set of
spheres in space surrounding a spherical mass. So when we orbit a mass, we are changing our real
angular coordinates. The imaginary set of spheres are spheres of time. When we change the orientation
of our reference frame, we are changing our imaginary angular coordinates.

The situation shown in Figure 13 has fixed 0, ¢, 6;, ¢;. Consider the planar rotation (6 = %) of a
particle around a central mass. In Figure 13, this rotation would be a rotation about the r; axis where
only ¢ changes. Now if we consider a reference frame that is precessing (as described in section 4)
about an axis aligned with r;, this would amount to rotation in a plane perpendicular to the 7, axis
(the plane is parallel to the r; axis and is perpendicular to the page. If a frame with such a precession
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moved in the radial direction, it would move in a straight line because the spin direction of the frame is
in the direction of motion. But if the frame moved in a non-parallel direction to the spin, its real angle
in space would change over time as a result of the frame’s precession from the perspective of a frame
at rest without any such spin. But as discussed in section 4, from the perspective of the precessing
frame, it is the Universe that would appear to rotate around the frame as it moves in a straight line.

8. Condensation and Evaporation

7

We will now describe in more detail the physical meaning behind the "Expansion” and "Collapse
phases of the Universe with consideration for both the internal and external metric. Looking at

Equation 10, we see that the ﬁ term is always positive. During the expansion phase, fi? is

negative and therefore 4 d ! will always be in the opposite direction of 4 dt . Therefore, this tells us that
the peculiar velocities of cosmological objects will be reduced over tlme when no forces act upon
them. Equation 10 describes an inertial force acting on all objects, slowing them down during the
expansion phase. If the Universe is far from r; = u and r; = 0, this effect is only noticable at very

large time scales and velocities (because 7) = 2H is very small for human velocity and time scales.

For instance, currently H ~ 71.6 km/s/ ]\/}l pcrlso converting that to 1/s gives a value on the order of
~ 10~18). During collapse, Z—T is positive and now the acceleration acts in the direction of motion of
the object and therefore increases its velocity over time in that phase.

So we can view the expansion phase as a condensation of the Universe. The Universe starts out as
a hot plasma after which it cools and the motions of the particles slow. At the beginning of expansion,
the deceleration is large (infinite at 7; = u), then for a long period the deceleration is small, and on
approach to the signularity it once again goes to infinity. For just a moment at the singularity, all
motion stops completely (as discussed in section 7). The particles stop completely at the singularity

because @i and therefore 4! become infinite there putting an infinite inertial drag force on all
7 (u )’ dt dt

objects. This is true even for objects with a proper acceleration. So the expansion counter-intuitively
effectively stabilizes gravitational structures more and more as time moves forward, promoting this
condensation.

Likewise, the collapse phase can be viewed as an evaporation. After condensation, the Universe
begins the collapse phase. As the Universe emerges from the singularity, the inertial force that now
tends to accelerate is extremely large, but the L of everything is zero, so there is no initial acceleration
at the very beginning of collapse. But any perturbatlon to a particle’s state of rest will induce an
inertial acceleration in the direction of motion. Therefore, particles will naturally gain momentum over
time and the Universe will heat up as gravitationally bound structures begin to break down and the
Universe tends back toward a state of hot plasma as it approaches the annihilation event. Once again
ﬁ ZVT’ and therefore th become infinite at the annihilation event, sending all particles toward
light-like geodesics as though they effectively lose all their mass.

The conclusion we can draw from this is as follows. During expansion, the background of the
Universe glows with decreasing temperature and brightness over time via the CMB as gravitational
structures stabilize and galaxies form. During this phase, some stars will collapse to form what we
presently think of as Black Holes. By the time we reach the singularity, the Universe will be fully
condensed and inert. At the singularity, light from the CMB will be infinitely redshifted such that it is
no longer detectable and the background Universe becomes black (because ag in Equation 12 becomes
infinite there). The observer will see a completely dark Universe at the singularity and over time, the
Black Holes will begin to glow like candles lighting up the darkness as the geodesics of the particles
that were falling toward their centers during expansion reverse and now move outward. Shadow
becomes flame. These former "Black Holes" effectively become "White Holes", with matter radiating
from them, seemingly out of the vacuum, even though the radiation is coming from matter that had
accumulated in that region during expansion. As the collapse proceeds, these White Holes will grow
brighter and shrink as the matter and energy making them up escapes to the external Universe at
higher and higher energies due to the increasing inertial acceleration from Equation 10. The Universe
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effectively evaporates as all gravitational structures break down. By the end of collapse, the Universe
has returned to a state of increasingly dense plasma until it collides with the Antiverse at r; = u.

9. The Antiverse

Figure 14 shows the full Schwarzschild metric in Kruskal-Szekeres coordinates. The diagram
can be split in two along the diagonal where in the top right half, forward time points up in both the
internal and external regions while in the bottom left half, forward in time points down. The direction
of positive space is also swapped when looking at the upper and lower halves. For the external metric,
the radius increases to the right in the upper half and to the left in the lower half. For the internal
metric, the spatial t coordinate goes from —oo to +oco from left to right in the upper half and from right
to left in the lower half.

T
Universe 7 4

|
f

|

( Antiverse )

Figure 14. Universe and Antiverse

We can therefore conjecture that the diagram is describing both a Universe expanding up from
the center and an Antiverse expanding down from the center, each one moving toward a singularity.
We expect that the Antiverse is made of mostly anti-matter because the directions of both time and
space are reversed relative to each other and therefore we expect the particles of the second Universe
to have opposite charges relative to the first. This interpretation provides a resolution to the question
of why we only tend to see matter in our Universe. It is because the equivalent amount of antimatter is
contained in this mirror Universe. The lower hyperboloid sheet in Figure 3 therefore represents a 2D
slice of the Anit-Universe at a given time. Thus, the pair of Universes satisfies CPT symmetry.

Comparing Figures 14 and 13, we see that the T axis of the Kruskal-Szekeres coordinate chart
is analogous to the r; coordinate and the X axis of the Kruskal-Szekeres chart is analogous to the 7,
coordinate of Figure 13. Therefore, we can add the Antiverse to Figure 13 as per Figure 15.

In the Antiverse, r, — —r, and r; — —r;. It is important to note that the angles d() and d(); are
constant on this chart. So —r, does not mean that we have rotated 180 degrees in space. The —7;
is indicating a parity flip and the —r; is indicating a flip in the direction of time. This is why it is
important that these are radii. If these directions were rectangular directions X and T, then —X would
indeed be a 180 degree rotation in space. But in standard geometry, a negative radius is nonsensical. A
radius of zero is a center point, and if we are at the center point, then anywhere we move will be in the
direction of increasing radius, Since the Schwarzschild metric is intrinsically spherical and quadratic,
it is able to describe space and time using radii such that the sign of the radii can be used to specify the
spatial and temporal parity of spacetime.
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Figure 15. Universe and Antiverse on the Combined Metric Chart

So in the Antiverse, matter moves through time in the —r; direction. And we can see from Figure
15 that from the perspective of the Universe, that matter is moving backward in time. We also see the
parity flip of the Antiverse and it is that parity flip that physically separates the Universe from the
Antiverse.

The Antiverse in Figure 15 can be thought of as a 180 degree rotation of the Universe around an
axis perpendicular to the page, which effectively flips the directions of both space and time. But in the
next section, we will look at cases where only one direction (either space or time) is flipped.

10. Matter, Anti-Matter, Spin, and Charge

Before we proceed, we need to clarify some nomenclature for reasons that will become clear. We
need to be able to talk about matter, anti-matter, spin, and charge in the context of both the Universe
and Antiverse. For the basis of discussion, we define the following:

¢ Electron - Negatively charged matter particle in the Universe

* Proton - Positively charged matter particle in the Universe

¢ Positron - Positively charged anti-matter particle in the Universe

¢ Negatron - Negatively charged anti-matter particle in the Universe

¢ Anti-Electron - Negatively charged matter particle in the Antiverse

¢ Anti-Proton - Positively charged matter particle in the Antiverse

¢ Anti-Positron - Positively charged anti-matter particle in the Antiverse

¢ Anti-Negatron - Negatively charged anti-matter particle in the Antiverse

We know that, aside from mass, particles can be classified by their spin and their charge. Spin is
thought of as an intrinsic angular momentum and is analogous to the spin of the reference frame
discussed in this paper. As described in section 7, the reference frame spin can be thought of being
rotation around r,. We propose here that quantum spin can be analogously understood as pointing in
some real 7, direction such that the reference frame spin described in this paper is the classical analog
to quantum spin.
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Furthermore, it is now proposed that charge is spin about the r; dimension. In this way, both
quantum spin and charge can be thought of spins about real space and imaginary space (i.e. time)
respectively. So if we look at the electron and proton, which have opposite charges, we can say that the
electron is ‘charge spin down’ relative to the +r; dimension and the proton is ‘charge spin up’ relative
to the +r; dimension. By ’charge spin up’ we mean the charge spin vector points in the direction of
+r; and by ‘charge spin down’ we mean that the charge spin vector points in the opposite direction of
the +r; direction. Since both the electron and proton are in the Universe, they both have positive spin
up or down (spin in this context refers to the usual definition of quantum spin not "charge spin’).

For the positron and negatron, these also have positive quantum spin up/down because these
particles are found in the Universe. But the positron is ‘charge spin down’ relative to the —r; dimension
and the negatron is ‘charge spin up’ relative to the —r; dimension. The anti-particles are similarly
defined, but they have negative quantum spin. The symmetry is shown in Figure 16 below.

Negative Spin Up/Down | Positive Spin Up/Down
* >

+r;

I

Anti-Positron Electron
1 Charge spin down l Charge spin down
relative to +#; relative to ++,
Anti-Negatron Proton
T Charge spin up relative T Charge spin up relative
to +#; to +r;

Anti-Electron Positron
T Charge spin down T Charge spin down
relative to -r; relative to -r;

Anti-Proton Negatron
l Charge spin up relative l Charge spin up relative
o -r; to -r;

Figure 16. Map of Spin and 'Charge Spin’
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The reason we observe particles like positrons and negatrons in our Universe can be deduced from
Figure 15. If we only flip +7; to —r; in the Universe, the spacetime still overlaps with our Universe, but
now the direction of time is reversed. Therefore, particles with that flip are moving backward in time in
their frame. This is why the mathematics of QFT suggests that antimatter can be interpreted as matter
moving backward in time. These particles move forward in time in our Universe, but because the
direction of time is flipped in their reference frame, from their perspective they are moving backward
in time.

But if we flip the parity of quantum spin of a particle from +r, to —#,, we do not observe these
particles. This is because when we move from r, to —r; in Figure 15, the resulting spacetime does not
overlap with our Universe, it overlaps with the Antiverse with time reversed relative to the Antiverse.
Therefore, if we have a positively charged particle in our Universe and change its quantum spin from
positive to negative, it becomes an antimatter particle in the Antiverse.

Given that we know that electrons and positrons annihilate each other to create photons, it is clear
that the temporal phase of the positron is shifted 180 degrees relative to the electron and when the
particles collide, the temporal phases cancel such that the photons have no spin in the £7; dimension,
which is in agreement with the fact that photons are chargeless and would be found on the r; axis of
Figure 16.

In contrast, the temporal phases of the electron and proton are aligned so there is no equivalent
annihilation between them. But if an electron and anti-electron (or equivalent particles) come together,
then both the temporal and spatial phases will cancel and we end up at the center of Figure 16, which
is the surface of a Black Hole. This is a place where even light has no momentum and all the particle
energy is converted to mass.

Finally, uncharged particles such as photons and neutrons lie on the horizontal axis of Figure 16
whereas spinless charged particles such as pions lie on the vertical axis. The Higgs boson, which is
both chargeless and spinless, would be located at the center of the diagram.

We can summarize the relationships between classical and quantum spins as follows:

Classical Orbit - Particle revolves around a center in real space

Classical Spin - Particle’s reference frame precesses in real space. This amounts to the particle
revolving around a center in imaginary space (time)

Quantum Spin - Particle is intrinsically spinning about a real axis (space)

Electric Charge - Particle is intrinsically spinning about an imaginary axis (time)

11. CMB Temperature and Absolute Simultaneity

The Minkowski spacetime of Special Relativity has no intrinsic geometric features that can be
used for reference. Since it is everywhere and at all times uniform, one cannot define a universal
"present’ in Special Relativity, leading to the relativity of simultaneity. To put it more precisely, it is not
possible for causally disconnected observers in Special Relativity to synchronize their clocks.

But the Schwarzschild geometry does have intrinsic geometrical features. Importantly, the
intrinsically spherical nature of time in the internal metric provides causally disconnected observers
the ability to synchronize their clocks by agreeing ahead of time to start their clocks when they are at a
specific r;. This allows us to order events absolutely regardless of their spacetime separation because
each event occurs at a specific 7; and the r; of different events can be used to objectively order the
events in time.

In our Universe, this amounts to agreeing to start the clocks when the CMB monopole is at a
specific temperature. This works because the CMB temperature is related to the scale factor a of the
Universe, which itself is a function of ;.
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Since r; is not itself directly measurable, it is more useful in a practical sense to use the temperature
of the Universe as a measure of cosmological time. The CMB is a perfect black body and its temperature
is inversely proportional to the scale factor a. We can relate them precisely with:

T ap

T a (48)
Where T and a are the CMB monopole temperature and scale factor at any time #; and Ty and a¢ are
the temperature and scale factor at some reference time r; . To keep the equations simple, we can
choose the reference scale factor to be 1 and use a temperature scale such that the CMB monopole
temperature at that time is also 1. In section 3, it was shown that the current scale factor is very close
to 1 and the current CMB monopole temperature is 2.725K. Therefore, if we measure temperature in
units of Kelvin divided by 2.725, we get a unitless temperature scale and the relationship between T
and r; becomes

- (49)

and

= (50)

Furthermore, we have an estimate for u from section 3 of 27.3Gy. If we work in units of time where
u = 1 (such that one of these units of time equals 27.3Gy), then we can also drop the u from the
equations (so we are working with a unitless timescale).

Taking the derivative of equation 50, we obtain:

2T
ari = ———5dT 51
T TR G
Substituting equations 49 and 51 into equation 43 we get the metric as a function of CMB monopole
temperature T:

4T* r 1/ 1
drzzw@—:)dﬂ—p(l_,;)dr% (52)
In these coordinates, r; -+ 0as T — Oand r; - u as T — co. So by using the CMB monopole
temperature as a measure of cosmological time, we get a clearer understanding of time dilation. We
can establish a universal rest frame in the Schwarzschild metric (the co-moving observer for whom the
CMB has only a monopole), against which we can measure all motion. The velocity of a frame relative
to the co-moving frame can be determined by the CMB dipole observable in that frame. Therefore,
the CMB dipole seen in a given frame tells that frame its absolute velocity. This absolute velocity
is not only increased motion through space relative to the co-moving observer, but also increased
motion through time. A reference frame with a non-zero velocity will see the CMB monopole cool
more quickly according to their clock relative to the co-moving observer as a result of the time dilation.
So we can describe time dilation between two frames in our Universe as the difference in the rate at
which the CMB monopole cools (or heats up in the collapsing Universe) according to the clock in each
frame. A moving frame is not only moving faster through space than the co-moving observer, but also
faster through cosmological time measured using the CMB monopole temperature.

Therefore, time dilation is better thought of as one frame moving faster through cosmological
time than another, rather than one frame’s clock "ticking more slowly’ than the other. And, in the
author’s opinion, using the CMB monopole temperature as the measure of cosmological time allows
for a more intuitive description of the time dilation.

Data Availability Statement: All data generated or analysed during this study are included in this published
article [and its Supplementary Information files].
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