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Finite Black Holes Inside an Eternal Black Hole:
Implications for Dark Energy and Dark Matter

Christopher A. Laforet

Windsor, ON, Canada; claforet@gmail.com

Abstract: The Schwarzschild metric encompasses both exterior and interior regions, with a reversal of signature

upon transition from one to the other. Inside the Black Hole, the radial spacelike coordinate transforms into a

timelike radius, introducing a time-dependent scale factor on the interior metric’s angular term. In this work

we consider an infinite, homogeneous distribution of black holes in infinite space. This scenario is a spherically

symmetric vacuum and therefore must be described by the Schwarzschild metric. Though the interior metric’s is

a Kantowski-Sachs type metric, it is shown that the azimuthal scale factor is attributable to Dark Matter effects

rather than spatial anisotropy. When considering a Black Hole in the interior metric, we find that as the interior

metric’s angular basis vector contracts to zero, the inner Black Hole’s surface and gravitational field collapse to

a point at the singularity. Moreover, we propose a cosmological model wherein the intersection of a Universe

and Antiverse spawns FRW Universes, transitioning into Schwarzschild Universes as matter aggregates and

spherically symmetric vacuua emerge.

Keywords: cosmology; black holes; dark energy; Schwarzschild metric

1. Introduction

The Schwarzschild metric seems to describe two spacetimes separated by an event horizon. The
spacetime outside this horizon is well understood and its predictions have been successfully verified
over the past century. The spacetime inside the horizon, commonly treated as the spacetime inside a
black hole, has been believed to be unobservable to anyone outside of a black hole since light is not
able to cross from inside to outside the horizon. As such, it is believed that the predictions associated
with this spacetime are untestable.

When moving from the exterior region to the interior, the signature of the metric is reversed such
that the timelike coordinate of the external region becomes spacelike in the interior region and likewise
for the spacelike coordinate. This means that the radial spacelike coordinate of the exterior region
becomes a timelike radius in the interior. This timelike radius has been interpreted as a time-dependant
scale factor on the angular term of the metric in the interior.

In this paper, we consider an infinite space with an infinite number of black holes distributed
homogeneously throughout space. The vacuum at a location far from any particular black hole will
be a spherically symmetric vacuum and therefore must be described by the Schwarzschild metric. It
is shown that this vacuum can be modelled as a vacuum with the infinite black holes pushed out to
infinity analogous to how we can model the vacuum around a spherically symmetric distribution of
matter by concentrating that matter at the center point of the distribution. The result is an infinite
vacuum surrounded by an event horizon (formed by the combined horizons of all the surrounding
black holes).

We then examine the isotropy of the interior metric and its relationship to Kantowski-Sachs
metrics and find that the azimuthal scale factor describes Dark Matter effects rather than a spacelike
anisotropy. For the special case of circular motion, the azimuthal scale factor is shown to cause objects
with non-zero angular velocity to gain an inertial angular acceleration over time while maintaining its
original path through space.

Next, we place a Black Hole inside the interior metric. The vacuum between the Black Hole and
outer shell in this case is also a spherically symmetric vacuum and therefore must be described by
the Schwarzschild metric. The contraction of the angular term of the interior metric as r → 0 can be
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understood in this case as causing the inner Black Hole, along with its gravitational field, to contract
to a point and vanish at r = 0. When we put multiple Black Holes homogeneously and isotropically
distributed in the interior metric, we can interpret the t coordinate of the interior metric as being the
spherically symmetric space between the Black Holes and their gravitational fields.

We present a model of cosmology where the intersection of a Universe/Antiverse pair generates
an FRW Universe and Antiverse. This FRW Universe subsequently cools and expands, transitioning
into a Schwarzschild Universe as the matter clumps and spherically symmetric vacuua emerge between
the regions of concentrated matter. This model is compared to cosmological data and it is found that
it is capable of accounting for the Dark Energy of the Universe without the need for a cosmological
constant.

2. Anisotropy of the Schwarzschild Metric

The Schwarzschild metric has the following form:

dτ2 = −
(u

r
− 1
)

dt2 +
1

u
r − 1

dr2 − r2dΩ2 (1)

The exterior metric, which describes the spacetime around a spherically symmetric mass is given for
values of r > u where u is the Schwarzschild radius rs related to the mass M of the source given by
rs = 2GM. This metric treats the mass of the source as being concentrated at point at the center of the
spacetime.

So if we have a spherically symmetric distribution of mass in some region, we can model the
vacuum outside that region using the exterior Schwarzschild metric with an rs = 2GM where M is the
total mass contained in the region in question. So the vacuum surrounding any finite, static, spherically
symmetric volume of mass can be described using the exterior Schwarzschild metric, and the mass is
treated as a Black Hole with Schwarzschild radius 2GM. This metric assumes that there is only a single
Black Hole in the spacetime and that the spacetime in which the Black Hole resides is asymptotically
Minkowskian.

Now let’s consider a different scenario. Suppose we have a spacetime which is infinite in space
and has an infinite number of Black Holes homogeneously distributed throughout space. If we take a
small, spherical region of empty space somewhere far from any one of the Black Holes, this region
will be a spherically symmetric vacuum since all the infinite surrounding Black Holes are distributed
homogeneously throughout the surrounding space. This region is therefore a spherically symmetric
vacuum which must be described by the Schwarzschild metric. Furthermore, just like we are able
to model the vacuum around a spherically symmetric distribution of mass by concentrating that
mass at a point in the center of the spacetime, we can likewise model our vacuum surrounded by
homogeneously distributed Black Holes as being a vacuum with infinite spatial expanse, surrounded
by a continuum of Black Holes infinitely far away. We push the infinite number of Black holes out
to spatial infinity and by doing so, their combined event horizons appear as a single event horizon
surrounding the vacuum.

This scenario must be described by the Schwarzschild metric because we are describing a spheri-
cally symmetric vacuum, and the Schwarzschild metric is the only solution to Einstein’s field equation
that describes a spherically symmetric vacuum. We know that it cannot be described by the exterior
metric because that metric has a Black Hole at its center and is asymptotically Minkowskian (i.e., there
are no Black Holes at infinity in the exterior metric). Therefore, this scenario must be described by the
interior Schwarzschild metric, which does indeed describe an infinite, spherically symmetric vacuum
surrounded by an event horizon.

But given the current understanding of the interior metric, this poses a problem. The interior
metric is known as a ’Kantowski-Sachs’ spacetime which has different linear and azimuthal scale
factors. This is understood to mean that the spacetime is anisotropic. But the hypothetical scenario
described above is isotropic since the Black Holes are distributed homogeneously throughout space
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and there is no preferred direction when inside the aforementioned vacuum. To reconcile this isotropy
problem, we must examine at the Schwarzschild metric in Kruskal-Szekeres coordinates.

The well known Kruskal-Szekeres coordinates, defined in terms of Schwarzschild coordinates are
given below. For the exterior metric:

T =

√(
r
rs

− 1
)

e
r
rs sinh

(
t

2rs

)

X =

√(
r
rs

− 1
)

e
r
rs cosh

(
t

2rs

) (2)

And for the interior metric:

T =

√(
1 − r

u

)
e

r
u cosh

(
t

2u

)
X =

√(
1 − r

u

)
e

r
u sinh

(
t

2u

) (3)

We see that we need separate definitions for the exterior and interior metrics, but we can combine
these into a single relationship as follows

X2 − T2 =
( r

u
− 1
)

e
r
u (4)

Equation 4 is applicable to both the interior and exterior solutions. For the exterior metric, X2 − T2 > 0
and for the interior solution, X2 − T2 < 0.

The equation for a 2D hyperboloid surface embedded in three dimensions is given by:

x2

a2 +
y2

b2 − z2

c2 = ±1 (5)

For our purposes, we will be considering the special case where a = b = c, which gives the one and
two sheeted hyperboloids of revolution. Equation 4 appears to be only for one dimension of space, but
if we think of X as a radius, then it can describe 3 sphrically symmetric dimensions of space.

So comparing to Equation 5, if we set a2 = b2 = c2 =
( r

u − 1
)
e

r
u ≡ ρ2 and X2 = R2 = x2 + y2

where R is a radius of a circle in this example, we obtain an equation that matches the form of Equation
5 where :

R2 − T2 = ρ2 (6)

Equation 6 describes 2D hyperboloid surfaces for a given r where the interior metric has negative
ρ2 and the exterior metric has positive ρ2. Let us now visualize a surface of constant r in both the
exterior and interior metrics. For the exterior metric at some r > rs, we get the following hyperbolid of
revolution:

On this hyperboloid, the time coordinate t is marked as circles on the sheet and we have one free
spatial coordinate ϕ on the surface which is the angle of revolution of the surface. This hyperboloid
gives us a clear illustration of anisotropy. Event though we are seeing one dimension of space and one
dimension of time on the surface, we can see that moving in one direction along the surface (up and
down) is different than moving in the perpendicular direction (around the circumference) because one
direction is open and infinite and the other is closed.

This is why it is believed that the interior metric, which has the form of a ’Kntowski-Sachs’
spacetime is anisotropic because for the interior metric, the t coordinate is spacelike and if a 2D
spacelike foliation of the interior metric were represented by Figure 1, than the t direction of space
would be open and infinite, but the perpendicular azimuthal directions would be closed.
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Figure 1. Surface of Constant r > rs for the Exterior Metric in Kruskal-Szekeres Coordinates

However, we need to recall that for the interior metric, the right side of equation 4 is negative,
which gives the following two sheeted hyperboloid surface for some constant 0 < r < u:

We will discuss the two-sheeted nature of the surface in a later section, but for now let us focus on
one of the sheets in terms of spatial isotropy. To help us interpret the surface, it is useful to look at the
2D Kruskal-Szekers coordinate chart:

Let us focus on region II of the chart. Region II is the 1D representation of the upper surface shown
in Figure 2. What is important to note in this case is that t is a hyperbolic angle and ∂t is a Killing
vector. This means that we can hyperbolically rotate the spacetime to put any point in region II of the
spacetime at t = 0 without changing the physics. In other words, any point on a given parabola in
region II of Figure 3 can be made the center of the hyperbola by doing a hyperbolic rotation (i.e. there
is no intrinsic center for points on the hyperbola, the t = 0 point can be any point on the hyperbola).
We can say the same with regard to Figure 2. We can move any point on the hyperbola to the ’apex’ at
t = 0 by hyperbolically rotating the surface. So the t coordinate in the metric is akin to a radius for
the case where there is no intrinsic spatial center (i.e. one can choose anywhere to be t = 0 and then t
increases in all directions away from that point).

Figure 2. Surface of Constant 0 < r < u for the Interior Metric in Kruskal-Szekeres Coordinates
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Figure 3. Kruskal-Szekeres Coordinate Chart

So unlike in Figure 1, where the t coordinate is timelike, in Figure 2, representing the interior
metric, the t coordinate is spacelike and has no intrinsic center. But the point on the surface at t = 0
sees isotropic space since the hyperboloid looks the same in all directions from that point (note that the
same is true in 3 dimensions of space, which cannot be represented here. The only difference in 3D is
that the circles shown on the surface in Figure 2 are spheres). And since any point can be moved to
t = 0 arbitrarily, this implies that the vacuum is indeed spatially isotropic, in contrast to the exterior
metric.

If the interior metric is spatially isotropic as described above, we must now interpret the azimuthal
term of the metric which has a temporal scale factor. As can be seen from the metric in equation 1, as r
goes to zero, the ∂t basis vector becomes infinite while the ∂ϕ and ∂θ basis vectors go to zero. We can
understand this by imagining two circular paths in the interior vacuum passing through the same
point as shown in Figure 4:

Figure 4. Circular Paths in the Interior Metric
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What we see in Figure 4 are two circular paths in the interior metric at some time r centered on
two different points but passing through a common point. The dϕ and dt vectors for each path are
shown (the particles on each path are travelling counter clockwise). If we were in Minkowski space,
the size of these vectors would remain constant over time since the Minkowski metric has no time
dependence. But for the interior Schwarzschild metric, the dt vectors would grow and the dϕ vectors
would shrink over time as a result of the scale factors in front of those terms in the metric.

The way we can understand this is that if we watch a particle in circular motion in the interior
metric, we would see the angular frequency of its motion increase inertially over time while still
following the same path without any external forces applied to it. This is because as time passes in the
interior metric, r decreases and that causes the ∂ϕ basis vector to decrease over time such that the circle
effectively has a smaller proper circumference over time and therefore it makes a full revolution at a
faster rate over time. But the particle does not get closer to the center of the circle over time. Quite the
opposite, since the ∂t basis vector length goes to infinity as r goes to 0, it gets farther from the center
point over time while still travelling a shorter path through spaceitme.

This behavior is supported by the geodesic equation for angular motion [1] given below (we will
examine the case for planar rotation where θ = π

2 ).

d2ϕ

dλ2 = −2
r

dϕ

dλ

dr
dλ

(7)

If we choose λ to be r in this analysis and assume an initial circular motion, we can integrate to
get the angular velocity ω = dϕ

dr of the geodesic:

ω =
ω0r2

0
r2 (8)

And we see that the angular velocity goes to infinity as r goes to 0. This can be visualized better by
looking at the worldline of a circular orbit in the exterior and interior metrics as shown in Figure 5:

On the left side of the figure, we see the circular orbit (dr = 0) in the exterior metric with time on
the vertical axis and radius on the horizontal axis (a 2D projection of a 3D helix wrapped around the
time axis). This a helix with constant radius r. The pitch of the helix is also a constant which means
that the angular velocity of the worldline is constant over all time. Since the exterior metric is eternal,
this helix can continue as shown for infinite t.

On the right side, we see the same circular orbit (dt = 0) in the interior metric. First we note that
the signature of the interior metric is flipped relative to the exterior metric and so the vertical time axis
is now represented by the r coordinate and the horizontal space axis is represented by the t coordinate.
Unlike in the exterior case, the interior metric is finite in time, so the worldline can not go beyond
r = 0. But we see that the pitch of the helix decreases to 0 as r goes to zero as though the infinite
worldline from the exterior metric has been compressed to fit the finite time of the interior metric. A
smaller pitch leads to an increasing angular velocity since it implies more rotations per unit time as r
goes to zero. Figure 5 therefore shows how the azimuthal scale factor increases the angular velocities
of curved geodesics over time without affecting the spatial size of the orbit. This demonstrates how
the angular velocity of any size orbit will go to infinity at r = 0.
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Figure 5. Worldlines of Circular Orbits in the Exterior and Interior Metrics

Therefore, we can interpret the azimuthal scale factor as telling us not that the interior metric is
anisotropic, but rather that particles on curved trajectories will experience an angular acceleration over
time such that it could take less time to travel on a curved path through space between two points
than it would to travel between the same points in a straight line through space.

We will also see in section 4.4 that lensed light experiences the same effect where it causes light
bent by massive objects to appear more lensed than the mass of the object alone would imply. Therefore,
the Dark Matter effects observed from galaxy rotation curves and excess lensing may be attributable to
the fact that the vacuum of the Universe is described by the interior Schwazschild metric.

We will provide evidence supporting the cosmological interpretation of the interior metric in
section 4, but first let us look at what impact the azimuthal scale factor has on the gravitational field of
a Black Hole.

3. Finite Black Holes Inside an Infinite Black Hole

It is important to remember that when discussing the interior metric, t is the spacelike coordinate
and r is the timelike coordinate.

The interior metric describes the interior of a Black Hole. If we place a Black Hole inside the
interior metric, the vacuum between the Black Hole and the surface of the shell of the interior metric is
also a spherically symmetric vacuum. This can be trivially visualized in Figure 6
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Figure 6. Black Hole inside of a Black Hole

We can see that the vacuum in Figure 6 is spherically symmetric and therefore must also be
described by the Schwarzschild metric.

The radial coordinate r of the interior metric is timelike, so as r goes from u to 0, time moves
forward. So the Black Hole at the center of Figure 6 is at some r > 0 in the interior metric and moves
toward r = 0 in that metric as time passes. A notable feature of the metric in equation 1 is the angular
term dΩ. This term is multiplied by r which goes from u to 0 as time passes. This means that as the
Black Hole falls through time in this metric, it’s surface area will decrease proportionally to r as a
consequence of this angular term. At r = 0, which is the curvature singularity of the metric, the Black
Hole surface area will go to zero, and the Black Hole will no longer exist. It is as though the Black Hole
gets squeezed out of existence at the singularity.

If we now imagine that the Black Hole is being orbited by some material, then the contraction of
the dΩ term will also cause those orbits to be squeezed closer to the surface of the Black Hole as time
passes. Figure 7 depicts the relative scale of the gravitational field around the Black Hole as it moves
through time toward r = 0 in the interior metric.

Figure 7. Contraction of a Spherical Gravitational Field and its Orbits in the Interior Metric
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According to the interior metric, the dt basis vectors get larger as r decreases, becoming infinite at
r = 0. Therefore, the proper distance/time between t coordinates increases as the system falls to r = 0.

Consider Figure 8 which depicts the curvature of the t coordinates in the exterior metric near the
surface of a Black Hole. The t coordinate lines are the curved lines and they come from solving the
metric for rest observers (dr = 0) and integrating to get the following equation:

τ = t
√

1 − rs

r
(9)

Where each line corresponds to a fixed value of t, with t = 0 being the flat line on the r axis. Vertical
worldlines on this coordinate chart are the worldlines of observers at rest and their height is the proper
time elapsed. We can see that for a given ∆t, less proper time passes for rest observers the closer they
are to the horizon. The worldlines of observers falling from two different radii are also shown in Figure
8.

Figure 8. Falling Worldlines on the Modified Schwarzschild Coordinate Chart

We can conceptualize the t coordinate lines as analogous to isocontours on a contour chart, where
t = 0 represents the highest level and t = ∞ represents the lowest level. The trajectory of a falling
observer follows the geodesic of shortest distance from the highest level to the lowest level, ensuring
their worldline remains perpendicular to the t coordinate lines at every point. Consequently, the
worldlines of all falling observers start vertically at t = 0, gradually curving to maintain orthogonality
to the t coordinate lines at each point, and eventually becoming horizontal at t = ∞, r = rs.

But if the Black Hole is in the interior metric, then the proper time between t coordinate lines will
increase as the system falls to r = 0 in the interior metric. This has the effect of shifting the gravitational
field inward toward the horizon over time as depicted in Figure 9

The solid t-coordinate lines are the t coordinate lines at some reference time u > r0 > 0 in the
interior metric. The dotted lines are the t-coordinate lines at some r < r0 such that those lines are
separated by more proper time relative to the solid lines. As shown in Figure 9, this increase in proper
distance between coordinate lines shifts the location of a given dτ

dt closer to the horizon. Since dτ
dt is

related to the acceleration a rest observer feels at a given distance from the horizon, this tells us that
the acceleration field is also squeezed toward the horizon as the Black Hole falls toward r = 0 in the
interior metric.
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Figure 9. The Shifting of the Gravitational Field from the t Coordinate Expansion

So while the dr and dΩ terms of the Black Hole system are contracted to a point, the t coordinate
far from the Black Hole we placed in the interior metric becomes spacelike and its expansion represents
an expansion of space. We can understand this by adding more Black Holes into the shell such that they
are distributed homogeneously and isotropically in the infinite space t inside the shell, but separated
enough that they do not interact with each other gravitationally. The space between those systems is a
vacuum parameterized by the t coordinate of the interior metric.

We will for now focus on region II from Figure 3, where region I captures the external metric and
region II captures the interior metric. If we choose some constant value of r = r0 in the interior metric
and plot Equation 6 for the interior metric, we get the surfaces shown in the two-sheeted hyperboloid
of Figure 2.

Light cones in Figure 2 are oriented vertically and light travels on 45 degree lines. As discussed,
we can move any point to the apex of the surface (at t = 0) by hyperbolically rotating the spacetime
until the point is at the apex. We can do this without changing anything in the spacetime because the
hyperbolic rotation is a translation in t, and ∂t is Killing vector of the manifold. When the point is
rotated to the apex, we see then that the light cone is symmetric relative to the surface left and right
and into and out of the page. This symmetry means the spacelike foliations of the interior metric’s
vacuum are isotropic and homogeneous.

This can be extended to three spatial dimensions by allowing R to be the radius of a 3D sphere. In
this formulation, we put ourselves at R = 0 and the circles on the surfaces in Figure 2 will become
spheres that are isotropic and homogeneous in space and inhomogeneous in time, which is consistent
with the Cosmological Principle.

So the surface of Figure 2 represents the vacuum of the interior metric with nothing (not even
another Black Hole) inside of it. There are no intrinsic spacelike spherical features in this vacuum, and
so on its own, it describes a homogeneous space that expands over time (this will be discussed in more
detail in section 4). But when we place black holes in this spacetime, they create spacelike spherical
regions in the vacuum that contract over time as has been discussed.
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We can depict a Black Hole inside the interior metric and better understand the contraction over
time with Figure 10.

Figure 10. 1-D Visualization of the Distortion of the Interior Vacuum Manifold by a Black Hole

Figure 10 is a modified picture of region II from the Kruskal-Szekeres coordinate chart in Figure 3
with the dark hyperbola representing the singularity at r = 0, the 45 degree dashed lines represent
the surface of the interior metric, and the hyperbolas between those are the interior vacuum at some
u > r > 0. We show the Black hole at two different values of r. The undeformed hyperbolas are shown
as a dotted line for reference.

So we see from the figure that the gravitational well created by Black Hole can be understood as
the spacelike hypersurface r = r0 in the interior spacetime being locally stretched back to the surface of
the interior spacetime. Since ∂t is a Killing vector of the spacetime, we can apply hyperbolic rotations
to the hyperbola to make any of the Black Holes homogeneously distributed in the spacetime centered
on the diagram. Note that the reason the well stretches back to the X = T = 0 point is that at the
event horizon, time dilation is infinite. Since the r coordinate is timelike in the interior metric, the r
coordinate lines become infinitely dense at the horizon so all the spacelike surfaces of r get pinched to
X = T = 0 at the Black Hole’s event horizon.

The wells stretch out to the surface on the interior region because, as shown in Appendix A,
the event horizon of the exterior metric can always be hyperbolically rotated to X = T = 0. So it is
important to keep in mind that the tips of the wells of the Black Holes at X = T = 0 in Figure 10
represent the event horizon of the exterior solution, not the singularity. Furthermore, if we wanted
to move from this Black Hole to a different one, we would hyperbolically rotate the space until the
other Black Hole was centered at t = 0. But that hyperbolic rotation does not move the X = T = 0
point, which means that the event horizons of all the infinite Black Holes homogeneously distributed
throughout the space are all the same spacetime point X = T = 0

Figure10 shows the vacuum a Black Holes at two times (u > r0 > 0 and a later time r < r0). As
the surface moves up toward r = 0, the wells narrow and then close at the singularity. This is the
contraction of the gravitational field discussed earlier. As the surface moves to r = 0, the wells close
completely and the spacelike surface becomes completely flat and empty. So the contraction of the dr
and dΩ terms of the internal metric lead to a contraction of the wells and the expansion of the dt term
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results in the expansion of the space between the different wells as well as an expansion in the depths
of the wells.

A notable point here is that the entire surface, including the wells, represent an interior hypersur-
face at some r. The meaning of this will be expanded on in section 4, but we should note that as we
change the value r of the hypersurface, the relative positions of the wells can change and new wells
can be formed at different times (i.e. the hypersurface at some r0 may have no wells, whereas the same
surface at some later time r < r0 can have a well on it if, for instance, a gravitational collapse occurred
at some time in between). In fact, we can say that two gravitating systems will combine if they move
together more quickly than the t-vacuum between them expands.

Furthermore, we can think of gravitational wells of non-Black Holes, such as a star, as being
indents in the hypersurface that do not reach back to the interior surface at a sharp point, those are just
smooth, shallower dips in the surface.

It is interesting to think about the interplay of space and time from these gravitational wells. The
surface without a Black Hole is perpendicular to the time dimension r in the interior metric. But the
gravitational wells stretch that surface in the r direction. Thus, the r direction of the interior region
gains spacelike characteristics in the gravitational wells because the spacelike surface gets deformed in
the r direction.

We will explore what occurs at the event horizon of the gravitational wells in section 5, but first
we will look at this model in the context of the cosmology of the Universe.

4. The Interior Metric as a Model of Cosmology

The interior metric describes a situation where the volume of the space of the vacuum is zero
when r = u (because the dt term is zero there), expands over time, and becomes infinite at r = 0.
This bears a striking resemblance to the Big Bang model of cosmology where the Universe started
in an infinitely dense state and subsequently expanded and cooled, condensing into galaxies and
gravitational clusters forming a cosmic web surrounding spherically symmetric vacuums of space.

The FRW metric of cosmology describes a perfect fluid with uniform pressure and matter density
throughout space which expands over time. This is an adequate description of the Universe in early
times when the entire Universe was a hot plasma with uniform density and pressure. But after
recombination, The pressure and density of the Universe was no longer uniform. Matter began to
clump together into structures creating areas of high and low pressure/density.

We can model cosmology as being described by the FRW metric in the pre-recombination era, but
after recombination, the Universe is governed by the Schwarzschild metric. The CMB represents a
surface r just inside the shell of the interior Schwarzschild metric, which is a uniform surface that is
seen as a surface a the same constant time, regardless of the time r from which it is observed. As will be
shown, modelling the Universe in this way will help us resolve the Dark Energy problem without the
need for a cosmological constant. This is because the expansion of the t dimension of the interior metric
follows a pattern of infinite initial expansion, followed by a period of slowing expansion, followed
again by a period of accelerated expansion. This accelerated expansion accounts for the dark energy
without the need for a cosmological constant.

If we consider a filament in the cosmic web, which is where most of the matter is but is still mostly
vacuum, we can think of the filament as a cylinder that will get stretched along its length and squeezed
radially over time. In other words, the cosmic web can be understood as the ongoing ’spagghetification’
of the matter in the Universe as it falls toward the singularity at r = 0. Furthermore, the contraction
of the dΩ term which puts an inward pressure on the gravitating systems may account for the dark
matter observations, but this is left as an area for future research.

It is important to note that this model does not suppose that our Universe exists inside of a Black
Hole. Rather, it proposes that the interior metric is the metric of the vacuum of the Universe and there
is nothing outside it. Recall that the original assumption when we began discussing the interior metric
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was of an infinite Universe with black holes distributed homogeneously. There is no need to assume
that the Universe is inside a black hole which is itself part of some external spacetime.

Let us now compare the Schwarzschild cosmological model to cosmological data to show that the
model is in very good agreement with experiment.

4.1. The Scale Factor

Expressions for the proper time interval along lines of constant t and Ω and the proper distance
interval along hyperbolas of constant r and Ω from Equation 1 are:

ds
dt

= ±
√

u
r
− 1 = ±a (10)

dτ

dr
= ±

√
r

u − r
= ±1

a
(11)

And the coordinate speed of light is given by:(
dt
dr

)
light

= ± r
u − r

= ± 1
a2 (12)

Where a is the scale factor (because t is the spatial coordinate and r is the time coordinate and therefore
Equation 10 describes how the proper distance between two points separated by coordinate distance dt
evolves over time). First we should notice that none of the three equations depend on the t coordinate.
This is good because the t coordinate marks the position of other galaxies relative to ours. Since all
galaxies are freefalling in time inertially, the particular position of any one galaxy should not matter.
The proper temporal velocity, proper distance, and coordinate speed of light only depend on the
cosmological time r.

A plot of the scale factor vs. r (with u = 1) is given in Figure 11 below:

Figure 11. Scale Factor vs. r for u = 1
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4.2. The Co-Moving Observer

Let us take a co-moving observer somewhere in the Universe we label as t = 0 as the origin of an
inertial reference frame. We can draw a line through the center of the reference frame that extends
infinitely in both directions radially outward. This line will correspond to fixed angular coordinates
(Ω). There are infinitely many such lines, but since we have an isotropic, spherically symmetric
Universe, we only need to analyze this model along one of these lines, and the result will be the same
for any line.

We must determine the paths of co-moving observers (dt = dΩ = 0) in the spacetime. For this
we need the geodesic equations for the interior Schwarzschild metric [1] given in Equation 1. In these
equations u represents a time constant (in Figure 3, the value of u is 1). The following equations are the
geodesic equations of the interior metric for t and r (0 ≤ r ≤ u) for dΩ = 0:

d2t
dτ2 =

u
r(u − r)

dr
dτ

dt
dτ

(13)

d2r
dτ2 =

u
2r2 (14)

Looking at points 0 < r < u, then by inspection of Equation 13 it is clear that an inertial observer at
rest at t will remain at rest at t ( d2t

dτ2 = 0 if dt
dτ = 0).

Let us next demonstrate how the interior metric fits with existing cosmological data and calculate
various cosmological parameters using that data.

4.3. Calculation of Cosmological Parameters

In order to compare this model to cosmological data, we must solve for u and find our current
position in time (r0) in the model. Reference [2] gives us transition redshift values ranging from
zt = 0.337 to zt = 0.89, depending on the model used. We can use the expression for the scale factor in
Equation 10 to get the expression for cosmological redshift from some emitter at r measured by an
observer at r0 [1]:

1 + z =
a0

a
=

√
r(u − r0)

r0(u − r)
(15)

Furthermore, the deceleration parameter is given by:

q =
äa
ȧ2 =

4r
u

− 3 (16)

By setting Equation 16 equal to zero, we can solve for u
r . With this and equation 10, we can calculate

the scale factor at the Universe’s transition from decelerating to accelerating expansion at:

at =

√
4
3
− 1 =

1√
3

(17)

Using Equations 15, 17, and the transition redshift estimate, we can get an expression for the present
scale factor:

a0 = at(1 + zt) =
1 + zt√

3
(18)

Next, we find expressions for u and our current radius r0 by noting that light from the CMB has been
travelling for roughly 13.8 billion years of coordinate time r. Therefore, we can set αr0 ≡ u − r0 = 13.8
and use Equations 10 and 18 to obtain the following for u and r0:

r0 =
u − r0

a2
0

=
αr0

a2
0
=

3αr0

(1 + zt)2 (19)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2024                   doi:10.20944/preprints202201.0301.v20

https://doi.org/10.20944/preprints202201.0301.v20


15 of 24

u = r0 + αr0 = αr0

(
3

(1 + zt)2 + 1
)

(20)

Next we compute the CMB scale factor (aCMB) and coordinate time (rCMB) in this model where the
redshift of the CMB (zCMB) is currently measured to be 1100:

aCMB =
a0

1 + zCMB
(21)

rCMB =
u

1 + a2
CMB

(22)

We can next derive the Hubble parameter equation using the scale factor. The Hubble parameter is
given by (in units of (Gy)−1):

H =
ȧ
a
=

u
2r(u − r)

(23)

Table 1 below gives the values of u, r0, H0, a0, q0, aCMB, and qCMB given the upper and lower bounds
of zt from [2] as well as the 0.75 transition redshift value and assuming αr0 = 13.8. All times are in Gy
and H0 is in (km/s)/Mpc.

Table 1. Limiting Cosmological Parameter Values Based on zt Measurement and a 13.8 Gy Age of the
Universe

zt αr0 u r0 H0 a0 q0 aCMB qCMB
0.337 13.8 37.0 23.2 56.6 0.77 -0.49 0.0007 0.99
0.75 13.8 27.3 13.5 71.6 1.01 -1.02 0.0009 0.99
0.89 13.8 25.4 11.6 77.6 1.09 -1.17 0.0010 0.99

From the results in Table 1, we see that the true transition redshift is likely close to 0.75 given
the fact that the current value of the Hubble constant is known to be near 71.6. Thus, more accurate
measurements of the transition redshift are needed to increase the confidence of this model, but the
0.75 transition redshift is in fact a prediction of the model and we will see this when it is compared to
astronomical data later in this section.

Table 2 has the proper times from r = u to the current time for co-moving observers (dt = rdΩ = 0)
by integrating Equation 1. The column τtot gives the time from r = u to r = 0. The expression for τtot

turns out to be quite simple:

τtot =
π

2
u (24)

In Table 2 below, the column τremain gives the time between r = r0 and r = 0.

Table 2. Limiting Proper Times Based on zt Measurements and an age of 13.8 Gy for the Universe
(Time is in Gy)

zt αr0 τ0 τtot τremain
0.337 13.8 42.2 58.1 15.9
0.75 13.8 35.2 42.9 7.7
0.89 13.8 33.7 39.9 6.2

Note that the proper time τ0 of the current age of the Universe is actually much larger than the
coordinate time u − r0. And even though we are presently only about halfway through the “coordinate
life” of the Universe (according to Table 1), the amount of proper time remaining is actually much
less than the amount of proper time that has already passed (according to Table 2). This provides a
measurable prediction from the model: as telescopes such as the JWST peer farther into the past with
greater accuracy, we should expect to find stars, galaxies, and structures that are much older than
expected because of the increased amount of proper time available for such things to form in the early
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Universe. Hints of this has already been found with the star HD 140283, whose age is estimated to be
nearly the age of the Universe itself [3].

Next we would like to use the u and r0 values found to compare the model to measured supernova
and quasar data. First we need to find r as a function of redshift. We can do this by solving for r in
Equation 15:

r =
u(1 + z)2

a2
0 + (1 + z)2

(25)

We can derive the expression for t vs. r along a null geodesic where the geodesic ends at the current
time r0 and t = 0 by setting dτ = rdΩ = 0 in Equation 1 and integrating:

t =
∫ r

r0

r
u − r

dr = u ln
(

u − r0

u − r

)
+ r0 − r (26)

Next we substitute Equation 25 into Equation 26 to get coordinate distance in terms of redshift:

t = r0 + u

[
ln

(
a2

0 + (1 + z)2

1 + a2
0

)
− (1 + z)2

a2
0 + (1 + z)2

]
(27)

We need to convert the distance from Equation 27 to the distance modulus, µ, which is defined as:

µ = 5 log10

(
DL
10

)
(28)

Where DL in Equation 28 is the luminosity distance. Luminosity distance is inversely proportional to
brightness B via the relationship:

B ∝
1

D2
L

(29)

The brightness is affected by two things. First, the spatial expansion will effectively increase the
distance between two objects at fixed co-moving distance from each other. This will reduce the
brightness by a factor of (1 + z)2 (because the distance in Equation 29 is squared). But there is also
a brightening effect caused by the acceleration in the time dimension. We define ν ≡ dτ

dr = 1
a as the

temporal velocity of the inertial observer at some r and the speed of light at that r as νc ≡ dt
dr = 1

a2 . The
ratio of these velocities gives us:

νc

ν
=

dt
dr

dr
dτ

=
dt
dτ

=
a
a2 =

1
a

(30)

Equation 30 tells us how far a photon travels over a given period of time measured by the inertial
observer’s clock. So we see that as light travels from the emitter to the receiver, this speed decreases.
This decrease in the speed from emitter to receiver will result in an increased photon density at
the receiver relative to the emitter, increasing the brightness. Therefore, this effect will increase the
brightness by a factor of:

a0

a
= 1 + z (31)

This effect is not accounted for in the current relativistic cosmological models and therefore gives a
second prediction that light from the distant Universe should appear brighter than expected.

Taking these brightness effects into account, the total brightness will be reduced by an overall
factor of 1+ z relative to the case of an emitter and receiver at rest relative to each other in flat spacetime.
Equation 29 in terms of co-moving distance t and redshift z becomes:

B ∝
1 + z

(t(1 + z))2 → B ∝
1

t2(1 + z)
(32)
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Giving the luminosity distance as a function of co-moving distance t and redshift z:

DL = t
√

1 + z (33)

Which gives us the final expression for the distance modulus as a function of co-moving distance and
redshift:

µ = 5 log10

(
t
√

1 + z
10

)
(34)

A plot of distance modulus vs. redshift is shown in Figure 12 below plotted over data obtained from
the Supernova Cosmology Project [4]. A Curve calculated from the zt = 0.75 row in Table 1 is plotted
as this value provides the best fit for the data.

Figure 12. Distance Modulus vs. Redshift Plotted with Supernova Measurements

Figure 13 shows the same curve from Figure 12 for the Hubble diagram plotted out to higher
redshifts with the quasar data from [5] also shown with error bars.
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Figure 13. Distance Modulus vs. Redshift Plotted with Quasar Measurements

Figure 14 is a comparison of the ΛCDM model with the Schwarzschild model with the zt = 0.75
transition redshift. As can be seen in this figure, both models are in very close agreement for the range
of data available.

Figure 14. Distance Modulus vs. Redshift Comparison with ΛCDM

Finally, by subtracting r0 from Equation 25 we can calculate the lookback time for a given redshift.
Figure 15 shows the lookback time vs. redshift for the three transition redshifts from table 1.
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Figure 15. Lookback Time vs. Redshift

4.4. Behavior of Light in the Interior Metric

The path of light should also be affected by the angular term of the interior metric. When light is
gravitationally lensed, its momentum vector changes direction, meaning it gains a non-zero dΩ. We
can see the precise behaviour of lensed light by looking at the geodesic equation for angular motion
[1] (we will examine the case for planar rotation where θ = π

2 ).

d2ϕ

dλ2 = −2
r

dϕ

dλ

dr
dλ

(35)

For light, we will use λ = r. If we consider light lensed by a galaxy, as the light passes the galaxy
at some coordinate time r0, it will have some angular velocity ϕ̇0 and initial angle ϕ0 as it leaves
the galaxy. It is currently assumed that the light then continues along a straight line as it leaves the
gravitational field, but as we shall see, this is not the case. The ϕ0 would be the angle caused only by
the gravitational lensing, without any additional effects from the cosmological model (i.e. the angle
we would expect when only taking into account the mass of the galaxy). Given these initial conditions,
the solution to Equation 35 is:

ϕ(r) = ϕ0 + ϕ̇0r0

(
1 − r0

r

)
(36)

Both the bracketed expression and ϕ̇0 will always be negative (because dr is negative and r0 > r) such
that the second term is always positive. Therefore, the observed lensing angle will be increased by
the amount ϕ̇0r0

(
1 − r0

r
)

as a result of this effect (where r is the coordinate time at which the light is
observed). Furthermore, since dϕ

dr for the light increases over time, the dt
dr will correspondingly decrease

as well and the result of this is that the increase in lensing angle over time will also result in a redshift
of the light relative to unlensed light.

We see that the ’excess angle’ is dependant on the lensing rate ϕ̇0. So if we consider two cases
where in one case, the light is gently lensed over a large distance/time by some angle ϕ0 and in the
other case, light is lensed by a more dense mass the same ϕ0, the lensing rate ϕ̇0 would be higher in the
second case relative to the first. So even though the pure gravitational lensing angle ϕ0 would be the
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same in both cases, the observed angle would be greater in the second case because the lensing rate ϕ̇0

would be greater in that case.

5. The Antiverse at the Beginning of Time

We have to this point shown that the cosmological model of the Universe can be described as
an FRW Universe which subsequently condenses into a Schwarzschild spacetime as described in the
current work. But we must now consider the source of the initial FRW Universe.

Figure 16 shows the full Schwarzschild metric in Kruskal-Szekeres coordinates. The diagram
can be split in two along the diagonal where in the top right half, forward time points up in both the
interior and external regions while in the bottom left half, forward in time points down. The direction
of positive space is also swapped when looking at the upper and lower halves. For the external metric,
the radius increases to the right in the upper half and to the left in the lower half. For the interior
metric, the spatial t coordinate goes from −∞ to +∞ from left to right in the upper half and from right
to left in the lower half.

Figure 16. Universe and Antiverse

We can therefore conjecture that the diagram is describing both a Universe expanding up from
the center and an Antiverse expanding down from the center, each one moving toward a singularity.
We expect that the Antiverse is made of mostly anti-matter because the directions of both time and
space are reversed relative to each other and therefore we expect the particles of the second Universe
to have opposite charges relative to the first. This interpretation provides a resolution to the question
of why we only tend to see matter in our Universe. It is because the equivalent amount of antimatter is
contained in this mirror Universe. The lower hyperboloid sheet in Figure 2 therefore represents a 2D
slice of the Anitverse at a given time. Thus, the pair of Universes satisfies CPT symmetry.

So we can think of the source of the Universe as being the intersection of the Universe and
Anitverse. This intersection represents a pair production of Universe and Antiverse moving in positive
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and negative time. The intersection is a point of infinite energy and temperature, like an engine
generating the FRW Universe and Antiverse which each condense into their respective Schwarzschild
Universe and Antiverse. This intersection would be represented by the T = X = 0 point in Figure 16.

In Figure 10, we showed the gravitational wells of Black Holes stretching back to this intersection
point. We can imagine an identical picture mirrored in the horizontal axis representing the same
situation in the Antiverse. Therefore, when a particle reaches an event horizon, it meets its antiparticle
and annihilates with it. The light from this annihilation would then decompose back into matter and
anti-matter particles that would begin falling again from r = u into their respective Universe and
Antiverse.

Putting all this together, we can think of the surface of the interior metric as a source of infinite
energy at infinite temperature where the Universe and Antiverse intersect. Matter ’evaporates’ from
this surface, creating a fog we know as an FRW Universe. This fog subsequently cools and condenses
into stars and galaxies analogous to clouds. In some regions, the matter in these clouds become so
dense, the matter there falls back to the surface via the gravitational wells analogous to rain falling
from the clouds. The matter then evaporates once again, starting the process over. So we can think of
the Universe as a heat engine operating within an infinite temperature differential powered by the
intersection of the Universe and Antiverse.

Appendix A Length Contraction in Kruskal-Szekeres Coordinates

The Kruskal-Szekeres coordinates are the maximally extended coordinates for the Schwarzschild
metric. The coordinate definitions and metric in Kruskal-Szekeres coordinates are given below (deriva-
tion of the coordinate definitions and metric can be found in reference [1] where v = T and u = X).

T =

√(
r
rs

− 1
)

e
r
rs sinh

(
t

2rs

)

X =

√(
r
rs

− 1
)

e
r
rs cosh

(
t

2rs

) (A1)

With the full metric in Kruskal-Szekeres coordinates given by:

dτ2 =
4r3

s
r

e−
r
rs

(
dT2 − dX2

)
− r2dΩ2 (A2)

The coordinate chart for this metric is given in Figure 3. Light-like geodesics are 45 degree lines on this
diagram. Let us take the differentials of T and X in equations A1:

dX =
∂X
∂r

dr +
∂X
∂t

dt

dT =
∂T
∂r

dr +
∂T
∂t

dt
(A3)

Calculating the partial derivatives, rearranging and defining R ≡ re
r
rs

2r2
s

√
( r

rs −1)e
r
rs

we get:

dX
dt

= R
[

dr
dt

cosh
(

t
2rs

)
+
(

1 − rs

r

)
sinh

(
t

2rs

)]
dT
dt

= R
[

dr
dt

sinh
(

t
2rs

)
+
(

1 − rs

r

)
cosh

(
t

2rs

)] (A4)
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Next, we need to calculate dX
dT from equations A4 by factoring out

(
1 − rs

r
)

cosh
(

t
2rs

)
from each

equation and dividing:

dX
dT

=
dX
dt

dt
dT

=

dr
dt
(
1 − rs

r
)−1

+ tanh
(

t
2rs

)
dr
dt
(
1 − rs

r
)−1 tanh

(
t

2rs

)
+ 1

(A5)

Next, we make the following definition:(
dX
dT

)
0
≡ tanh

(
t

2rs

)
(A6)

This is the derivative of the rest frame at t since plugging dr
dt = 0 into equation A5, we get dX

dT =

tanh
(

t
2rs

)
.

Now consider the hyperbolas of constant r in region I of Figure 3 which represent the worldlines of
rest observers in Kruskal-Szekeres coordinates. In these coordinates, rest observers accelerate over time
as evidenced by the fact that their worldlines are hyperbolas in these coordinates. If we consider the X
position of a rest observer at some t > 0, we see that its X-coordinate is given by X = X0 cosh

(
t

2rs

)
where X0 is the X coordinate of the rest observer at r when t = 0

(
X0 =

√(
r
rs
− 1
)

e
r
rs

)
. At t > 0, the

rest observer is moving with some velocity relative to itself at t = 0 on this coordinate chart. Therefore,
we should expect that the X coordinate will be length contracted as t increases in the rest frame in
Kruskal-Szekeres coordinates. The length contracted value of X in the rest frame at r and t > 0 is given
by:

X′ = X

√
1 −

(
dX
dT

)2

0

= X0 cosh
(

t
2rs

)√
1 − tanh2

(
t

2rs

)
= X0 cosh

(
t

2rs

)
1

cosh
(

t
2rs

)
= X0

(A7)

Where
(

dX
dT

)
0

is the effective velocity of the rest observer in Kruskal-Szekeres coordinates as defined
in equation A6.

So even though the X coordinate grows for an observer at rest in the Kruskal-Szekeres coordinate
chart, when we shift to the frame of the rest observer by taking into account the length contraction of
the Kruskal-Szekeres coordinates in that frame, we see that we end up back at t = 0. This means that
the surface of the event horizon of a Black Hole can always be shifted to X = T = 0 on the Kruskal-
Szekeres coordinate chart by taking length contraction into account. This amounts to hyperbolically
rotating the spacetime such that the ’present’ is always at t = 0 on the coordinate chart.

Appendix B CMB Temperature and Absolute Simultaneity

The Minkowski spacetime of Special Relativity has no intrinsic geometric features that can be
used for reference. Since it is everywhere and at all times uniform, one cannot define a universal
’present’ in Special Relativity, leading to the relativity of simultaneity. To put it more precisely, it is not
possible for causally disconnected observers in Special Relativity to synchronize their clocks.

But the Schwarzschild geometry does have intrinsic geometrical features. Importantly, the
intrinsically spherical nature of time in the interior metric provides causally disconnected observers
the ability to synchronize their clocks by agreeing ahead of time to start their clocks when they are
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at a specific r (in the interior metric). This allows us to order events absolutely regardless of their
spacetime separation because each event occurs at a specific r and the r of different events can be used
to objectively order the events in time.

In our Universe, this amounts to agreeing to start the clocks when the CMB monopole is at a
specific temperature. This works because the CMB temperature is related to the scale factor a of the
Universe, which itself is a function of r.

Since r is not itself directly measurable, it is more useful in a practical sense to use the temperature
of the Universe as a measure of cosmological time. The CMB is a perfect black body and its temperature
is inversely proportional to the scale factor a. We can relate them precisely with:

T
T0

=
a0

a
(A8)

Where T and a are the CMB monopole temperature and scale factor at any time r and T0 and a0 are the
temperature and scale factor at some reference time r0. To keep the equations simple, we can choose
the reference scale factor to be 1 and use a temperature scale such that the CMB monopole temperature
at that time is also 1. In section 4, it was shown that the current scale factor is very close to 1 and
the current CMB monopole temperature is 2.725K. Therefore, if we measure temperature in units of
Kelvin divided by 2.725, we get a unitless temperature scale and the relationship between T and r
becomes

T =
1
a
=

1√
u
r − 1

(A9)

and
r =

u
T2 + 1

(A10)

Furthermore, we have an estimate for u from section 4 of 27.3Gy. If we work in units of time where
u = 1 (such that one of these units of time equals 27.3Gy), then we can also drop the u from the
equations (so we are working with a unitless timescale).

Taking the derivative of equation A10, we obtain:

dr =
2T

(T2 + 1)2 dT (A11)

Substituting equations A9 and A11 into equation 1 we get the metric as a function of CMB monopole
temperature T:

dτ2 =
4T4

(T2 + 1)4 dT2 − 1
T2 dt2 − T4

(T2 + 1)2 dΩ2 (A12)

In these coordinates, r → 0 as T → 0 and r → u as T → ∞. So by using the CMB monopole
temperature as a measure of cosmological time, we get a clearer understanding of time dilation. We
can establish a universal rest frame in the Schwarzschild metric (the co-moving observer for whom the
CMB has only a monopole), against which we can measure all motion. The velocity of a frame relative
to the co-moving frame can be determined by the CMB dipole observable in that frame. Therefore,
the CMB dipole seen in a given frame tells that frame its absolute velocity. This absolute velocity
is not only increased motion through space relative to the co-moving observer, but also increased
motion through time. A reference frame with a non-zero velocity will see the CMB monopole cool
more quickly according to their clock relative to the co-moving observer as a result of the time dilation.
So we can describe time dilation between two frames in our Universe as the difference in the rate at
which the CMB monopole cools (or heats up in the collapsing Universe) according to the clock in each
frame. A moving frame is not only moving faster through space than the co-moving observer, but also
faster through cosmological time measured using the CMB monopole temperature.
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Therefore, time dilation is better thought of as one frame moving faster through cosmological
time than another, rather than one frame’s clock ’ticking more slowly’ than the other. And, in the
author’s opinion, using the CMB monopole temperature as the measure of cosmological time allows
for a more intuitive description of the time dilation.
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