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In this paper, it is proposed that the correct metric for relativistic cosmology is one which
has not only spatial curvature, but time curvature as well, and that it is the curvature of the
time dimension that is the source of the accelerated expansion. It is argued that the FRW
metric, whose time dimension is uncurved, is effectively a Newtonian approximation to the true
cosmological metric and that the internal Schwarzschild metric is the true cosmological metric
describing the 3D space of the Universe falling through the time dimension. The unknowns in
the internal Schwarzschild metric are solved for using cosmological data and it is shown that the
predictions it gives match observations without the need for a cosmological constant. The entire
Schwarzschild metric in Kruskal-Sezekeres coordinates is examined and we see that it describes
two CPT symmetric Universes moving in opposite directions in the time dimension. One Universe
contains matter while the other contains antimatter. In section VIII, we discuss how the internal
Schwarzschild metric can be understood as being made of imaginary time and space dimensions
and these imaginary dimensions scale the real dimensions of the Universe. The Universe can be
thought of as the imaginary counterpart of a galaxy with swapped space and time-like dimensions.
The singularity is the point in time where the geodesics reverse their direction in time and begin
to re-collapse toward each other. The matter and antimatter Universes annihilate with each other
when they collide at the end of collapse, ultimately decaying into two new matter and antimatter
Universes. The model also predicts that telescopes such as the JWST should find structures in the
early Universe that are much older than expected or predicted by the current ACDM model.
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I. INTRODUCTION AND MOTIVATION If we consider the gravitational field around a spher-
ically symmetric mass, the external Schwarzschild met-
ric provides the complete description of the gravitational
field around this mass. The Newtonian potential is an ap-
proximation to the external Schwarzschild metric in the
limit where objects are moving slowly and the curvature

of space and time are small. This Newtonian approxi-

The current model of cosmology is based on the
FRW metric, which, under the flat space assumption,
is essentially the Minkowski metric in spherical coordi-
nates whose space-like dimensions are scaled by a time-
dependant scale factor. What is notable here is that for

a Universe with a non-accelerating expansion, the FRW
model makes the same predictions as a sperically sym-
metric cosmological model based on Newtonian gravity.
But the expansion of the Universe is now known to be
accelerating. To accommodate this acceleration, the cos-
mological constant is introduced into the field equations
to effectively give empty space a pressure that creates
an accelerated expansion. The problem with the cos-
mological constant is that it is just a measured number
whose value is heretofore unpredictable via any currently
existing theory, making the underlying cause of the ac-
celerated expansion a mystery.

Another notable feature of the FRW metric is that it
models the Universe as a continuous fluid and this fluid
curves space via the scale factor, but leaves the time di-
mension uncurved. This is curious because we know that
for a finite distribution of matter/energy, both space and
time are curved, yet the FRW metric seems to suggest
that the infinite matter and energy of the Universe has
no effect on the curvature of the time dimension.

mation is found in General Relativity by making small
perturbations to the Minkowski metric to get an approx-
imated Schwarzschild solution.

It is proposed here that just as the Newtonian potential
around a spherically symmetric body is an approximation
to the external Schwarzschild metric, the FRW metric
too is effectively a Newtonian approximation of cosmol-
ogy, applicable over only very short durations over which
the change in scale factor is negligible. As mentioned
above, there is no reason to expect that the matter and
energy of the Universe should leave cosmological time un-
curved, and so if we expect that cosmological time should
be curved by the Universe, then we must seek another
metric that can account for that curvature. The cos-
mological constant in the Friedman equations effectively
provides an additional constant amount of curvature that
compensates for the lack of time curvature in the met-
ric, but if the true cosmology has time curvature, then
this constant would not adequately correct for the lack
of curvature over the entire spacetime.
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It will be argued in this paper that the metric prop-
erly describing both the space and time curvature of the
Universe is the internal Schwarzschild metric. This met-
ric is a spherically symmetric vacuum solution. But if
we think of the external Schwarzschild solution, it also
describes the worldlines of the particles on an infinitely
thin shell collapsing toward a center in space. For the
internal metric, we can imagine that the matter and en-
ergy in the Universe is isotropically distributed through-
out infinite space (3D space in this case), but exists only
at the present time (time is the radius in this case). As
will be discussed, if we accept this assumption (moti-
vation to support this assumption is discussed in later
sections) and that the Universe is spherically symmetric,
then according to Birkhoff’s theorem, the internal met-
ric is the only possible cosmological metric because the
Schwarzschild solution is the only spherically symmetric
vacuum solution in General Relativity.

In sections VIII and IX, the internal metric is inter-
preted as having complex space and time dimensions
where the entire Universe behaves like a spherically sym-
metric distribution of matter exploding out of a horizon,
reaching a maximum height, and then re-collapsing to-
ward the horizon. The difference is that for the Universe,
the expansion and collapse are happening through cos-
mological time rather than space. The Universe is the
imaginary counterpart of a galaxy where the Big Bang
horizon is the imaginary counterpart of the event hori-
zon at the center of the galaxy. The imaginary radial
dimension of the internal metric, which is timelike, effec-
tively scales the space of the 3D Universe over time in the
same way that the external metric would scale the space
of a 2D shell of matter expanding or collapsing around
its gravitational center in space.

We will begin the argument by examining the
Schwarzschild metric in detail.

II. THE SCHWARZSCHILD METRIC

The Schwarzschild metric is the simplest non-trivial
solution to Einstein’s field equations. It is a vacuum so-
lution for the spacetime around a spherically-symmetric
distribution of energy. The general form of the metric
can be expressed as:

u

dr? = — dr? — r2dQ? (1)

—-r

dt* +
r _
Depending on the ratio ¥, we get three distinct descrip-
tions of spacetime:

1. w = 0: This gives us the flat Minkowski metric of
Special Relativity.

2. = < 1: This describes the metric for an eternally
spherically-symmetric vacuum centered in space.
This metric is also used to describe the vacuum
outside a spherically symmetric object occupying a
finite amount of space (like a star or planet).
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3. % > 1: This describes the metric for a spher-
ically symmetric vacuum centered on a point in
time. Analogous to the second case, this met-
ric should also describe a vacuum of time out-
side a spherically-symmetric object spanning infi-
nite space. The center of the metric is everywhere
in space, but at a single point in time (just like one
could say that the vacuum described in the second
case is centered at all times on a single point in
space).

An important observation is that the internal metric de-
scribes a vacuum solution to the field equations. But the
Universe is clearly filled with energy, so how can this so-
lution apply? In order to satisfy the requirements of the
metric, the Universe must be “a spherically-symmetric
energy distribution occupying an infinite amount of space
for a finite amount of time”. For this metric to be a cos-
mological description, it must be that Universe only truly
exists in the present and in a very real sense moves into
the future. The surrounding vacuum is the future, and
the Universe is freefalling through time toward the tem-
poral center of the metric. The vacuum will be discussed
further in section V.

Time being the radial dimension of the metric com-
bined with the fact that the solution is a vacuum solu-
tion gives a mathematical justification for our intuitive
notions of past, present, and future. The in-homogeneity
along the radial direction gives us an arrow of time that
distinguishes the ‘past’ and ‘future’ analogous to the way
the external solution gives us an absolute distinction be-
tween ‘up’ and ‘down’. And the vacuum as described
above gives us a boundary between them, that boundary
being the ‘present’ time, when the matter/energy of the
Universe is actually positioned in the spacetime.

Observation has shown that the Universe is:

e Spherically Symmetric
e Homogeneous in space
e In-homogeneous across time
We will also make one further assumption in this paper:

e The Universe only ever occupies a single instant of
Cosmic time and moves from one moment of cos-
mic time to the next where the time measured by
observers between cosmic times depends on their
respective motions.

Relativity of simultaneity does not prohibit the idea of
the energy existing at a specific Cosmological time be-
cause of the nature of the metric. In Cosmology, we can
determine absolute motion and absolute simultaneity be-
cause we have the Cosmic Microwave Background. For
example, consider two events that are causally discon-
nected. If observers at each event see the CMB tem-
perature to be uniform in all directions (the observers
are co-moving), then if both observers measure the CMB
to have the same temperature at both events, then we
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know the events are absolutely simultaneous, even if a
third observer in motion sees them as non-simultaneous.
Any observer in motion through space, inertial or oth-
erwise, will see a dipole on the CMB, and that dipole
will provide all the info about the state of motion of the
observer. Therefore, we can define past, present, future,
and motion in an absolute sense. To put it another way,
the fact that cosmological time is finite into both the past
and future allows us to specify the distance of any event
from either the beginning or end of time absolutely.

Let us call events the same distance away from us in
time celestial spheres. We can classify these spheres into
three types:

1. Dynamic Spheres — These are the spheres that
galaxies reside on. Objects on these spheres main-
tain a constant coordinate distance from us and
move forward in time. We are able to move toward
or away from objects on these spheres by moving
through space. If we fix our sights on a particular
galaxy, the light we see from that galaxy is being
emitted later in time as we ourselves move through
time.

2. Static Spheres — These are spheres fixed in time.
The Cosmic Microwave Background is the most ob-
vious example of these spheres. Light from the
CMB sphere is always emitted from the same cos-
mological time, but as we ourselves move through
time, we see light from that time emitted from far-
ther and farther away from us in space, giving the
impression that the CMB sphere is growing. We
cannot move toward or away from any objects on
this sphere because it is frozen in time.

3. The Dark Sphere — The Dark Sphere is the Big
Bang and lies beyond the CMB. It is in principle
unobservable for two reasons. First, the CMB is
opaque so that any light from the Big Bang cannot
penetrate it. Second, even if the CMB was not
blocking our view, any light from that sphere would
be infinitely redshifted in the frame of all future
observers since the scale factor on that sphere is
Zero.

These spheres are shown in terms of the internal
Schwarzschild metric in Figure 1. Figure 1 shows the
Schwarzschild coordinates of the internal metric plotted
on the Kruskal-Szekeres coordinate plane [1]. In these co-
ordinates, space is the ‘¢’ coordinate emanating from the
center of the diagram (Big Bang) and time is the ‘r’ co-
ordinate depicted as hyperbolas (time is flowing forward
as r goes toward zero). The upper right quadrant of this
diagram represents a single fixed direction (f = const,
¢ = const). So each bold line representing a sphere
would be a point on each sphere over time. Note that
light on this diagram travels on 45-degree lines.
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FIG. 1. Celestial Sphere Types on Kruskal-Szekeres Coordi-
nate Chart

It is also notable from the metric that even though r
is a timelike coordinate in this case, the rd{2 term is still
spacelike, so objects on the celestial spheres at constant
r are spacelike separated, which is what we expect.

III. THE SCALE FACTOR

Expressions for the proper time interval along lines of
constant ¢ and 2 and the proper distance interval along
hyperbolas of constant r and 2 from Equation 1 are:

ds Ju—r
— =4+ =+ 2
dt T “ (2)

dr r 1
24 — 4=
dr (3)

And the coordinate speed of light is given by:

1
(dt) SO (4)
dr light u—r a

Where a is the scale factor. First we should notice that
none of the three equations depend on the ¢ coordinate.
This is good because the t coordinate marks the position
of other galaxies relative to ours. Since all galaxies are
freefalling in time inertially, the particular position of
any one galaxy should not matter. The proper temporal
velocity, proper distance, and coordinate speed of light
only depend on the cosmological time 7.

A plot of the scale factor vs. r (with u = 1) is given in
Figure 2 below:
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FIG. 2. Scale Factor vs. r for u =1

IV. THE CO-MOVING OBSERVER

Let us take the center of our galaxy as the origin of
an inertial reference frame. We can draw a line through
the center of the reference frame that extends infinitely
in both directions radially outward. This line will corre-
spond to fixed angular coordinates (6,¢). There are in-
finitely many such lines, but since we have an isotropic,
spherically symmetric Universe, we only need to analyze
this model along one of these lines, and the result will be
the same for any line.

The radial distance in this frame is kind of a compound
dimension. It is a distance in space as well as a distance
in time. The farther away a galaxy is from us, the far-
ther back in time the light we currently receive from it
was emitted. Fortunately the u/r > 1 spacetime of the
Schwarzschild solution plotted in Kruskal-Szekeres coor-
dinates provides us with a method to understand this ra-
dial direction. Figure 1 showed the u/r > 1 solution on a
Kruskal-Szekeres coordinate chart where, in this model,
the hyperbolas of constant r represent spacelike slices of
constant cosmological time and the rays of ¢ represent
spatial distances. We will focus on the upper half where
the half represents an observer pointed in a particular
direction and the positive t’s represent the coordinate
distance from the observer in that particular direction
while the negative t’s represent coordinate distance in
the opposite direction.

We must determine the paths of co-moving observers
(dt = dQ = 0) in the spacetime. For this we need the
geodesic equations for the internal Schwarzschild metric
[2] given in Equation 1. In these equations u represents
a time constant (in Figure 1, the value of u is 1). The
following equations are the geodesic equations for ¢ and
r (0 <r <w) for d2 = 0:

P drd_deidd
dr? r(u—r)drdr T a2r drdr
d2r u a?+1

ety (6)
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Looking at points 0 < r < u, then by inspection of Equa-
tion 5 it is clear that an inertial observer at rest at ¢ will
remain at rest at ¢ (573 = 0if j—i = 0). Also, we see
that if an observer is moving inertially with some initial
%, then if g—: < 0, the coordinate speed of the observer
will be reduced over time (the coordinates are expanding
beneath her) and if g—: > (, the coordinate speed will be
increased over time (the coordinates are collapsing be-
neath her).

V. THE VACUUM SOLUTION

As has been mentioned, in order for the Schwarzschild
solution to represent the Cosmological spacetime, it is re-
quired that we do not exist in a block Universe, but rather
one in which only matter and energy in the present truly
exist. As mentioned in section II, relativity of simultane-
ity does not pose a problem here because absolute time
and motion can be defined due to the fact that we can
use the Cosmic Microwave Background mono-pole tem-
perature to determine an exact time across the Universe.
In other words, non-local clocks can be synchronized by
all observers starting their clocks when the CMB reaches
an agreed upon temperature. Likewise, if we are moving
in any particular direction, the dipole temperatures of
the CMB provides a way to determine absolute motion.
We can think of each direction in the spherical spacetime
as having a timelike and a spacelike character. When we
move in a particular direction, we change our position
in space, but our clocks are also dilated relative to co-
moving observers. So the time dilation effectively means
that the time an observer measures locally between in-
crements of the CMB temperature is less than that of a
co-moving observer, but all observers truly only exist at
the same cosmological time.

The fact that there must be a vacuum in time follows
from the symmetry of space and time in relativity. If
a vacuum can exist in space, then there must also be a
vacuum in time. In Figure 3 below, there are four points
all representing the same observer (two in the external
metric, two in the internal metric):

FIG. 3. Vacuum Coordinate Symmetry
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Looking first at the external metric, an observer cannot
exist at both of those points on the X axis. We know
this because that would imply the observer is at both
locations at the same time, which is not possible. And
because of the symmetry of space and time in relativity,
we can say the same is true for the internal metric where
we have two points along the T axis. The argument here
is that for the external case, we say that the observer
can either be at one point or the other, but not both. In
the internal case we simply enforce the same rule, that
the observer can either be at one point or the other, but
not both (the observer can move from one point to the
other, but when it moves to the second point, it no longer
exists at the first point). So in the external method,
we're saying the observer cannot be at different locations
at the same time, whereas for the internal metric, by
symmetry, the observer cannot be at the same location
at two different times. To put it generally, we say that an
observer is at one place and time, and then at a different
place and time where the ”and then” is in reference to
the observer’s proper time.

This implies that we move through time just like we
move through space. An observer does not exist at all
parts of its worldline, only at the present. We know that
everything in the Universe started together at the same
point in time in the past and has been moving together
through time since then. Different observers will disagree
on how much time has elapsed due to the time dilation
of the local gravitational fields and peculiar motion, but
everything is falling together in the time dimension. As
we will show, using the internal Schwarzschild solution as
a model for Cosmology implies that while the universe is
currently in the expansion phase, it will later recollapse
over the same space and time coordinates. Thus, if this is
the correct cosmological soultion, the matter and energy
cannot exist at all times together because that would
mean the Universe would collide with past events during
the collapse.

Furthermore, if we accept that time is a vacuum and
that the Universe is spherically symmetric, then the in-
ternal Schwarschild solution is the only possible cos-
mological solution. This is because Birckhoff’s the-
orem states that the Schwarzschild metric is the only
spherically symmetric vacuum solution in General Rel-
ativity and so that is the only spacetime a spherically
symmetric Universe can fall in. It is notable, however,
that the mathematics of General Relativity does not al-
low us to solve for a geometry where there is a vacuum
in time, but not space. So what then is the meaning of
all the non-vacuum solutions to GR? These must all be
approximations that are only applicable for times over
which the change in the curvature of the time dimen-
sion is negligible. These solutions do not account for the
underlying cosmological changes to the spacetime over
time. This includes the FRW metric, which, as has been
discussed, cannot account for the accelerated expansion
without the need for a mysterious 'Dark Energy’ that
is accounted for in the internal Schwarzschild metric by
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curvature of the time dimension.

In order to account for cosmology in non-vacuum met-
rics, one may need to reformulate the theory of Gen-
eral Relativity with complex numbers where the complex
counterparts to the spacelike dimensions are timelike and
vice versa. This will be elaborated on in section VIII.

We will discuss the worldlines in the Schwarzschild
metric in section XI, but first we will compare cosmo-
logical data to the model and discuss the nature of the
expansion.

VI. CALCULATION OF COSMOLOGICAL
PARAMETERS

In order to compare this model to cosmological data,
we must solve for v and find our current position in time
(ro) in the model. Reference [3] gives us transition red-
shift values ranging from z; = 0.337 to z; = 0.89, depend-
ing on the model used. We can use the expression for the
scale factor in Equation 2 to get the expression for cos-
mological redshift from some emitter at r measured by
an observer at 7o [2]:

.

Furthermore, the decelration parameter is given by:

g=2 2y (8)

By setting Equation 8 equal to zero, we find that the scale
factor at the transition from decelerating to accelerating
expansion a; is:

4 1 1

ar = 1= —

t 3 \/3

Using Equations 7, 9, and the transition redshift esti-

mate, we can get an expression for the present scale fac-
tor:

9)

1+Zt
V3

Next, we find expressions for u and our current radius rg
by noting that the Universe has been found to be roughly
13.8 billion years old. Therefore, we can set a,, = u —
ro = 13.8 and use Equations 2 and 10 to obtain the
following for v and rq:

ap = a(l+2) =

(10)

U—To Qg 3aur,
"o a? a? (14 2)? (11)

. 1) (12)

e (e
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Next we compute the CMB scale factor (acarp) and co-
ordinate time (r¢prp) in this model where the redshift
of the CMB (z¢ap) is currently measured to be 1100:

ao

= 13

aoMBb 1+ z2cmB (13)
U

= 14

roms 1+ a%‘MB 14)

We can next derive the Hubble parameter equation using
the scale factor. The Hubble parameter is given by (in
units of (Gy)~!):

H = ae___ v (15)

a  2r(u—r)

Table I below gives the values of u, rg, Ho, ag, qo, oM B,
roemB, and gopp given the upper and lower bounds of
z¢ from [3] as well as the average of the upper and lower
bound values and assuming «,, = 13.8. All times are in
Gy and Hy is in (km/s)/Mpc.

Zt Qrg (Y ro Ho ao qgo acmMB TCMB qQCMB
0.337 13.8(|37.0 23.2 56.6 0.77 -0.49 0.0007 36.95 0.99
0.614 13.8(|29.7 15.9 66.2 0.93 -0.86 0.0008 29.65 0.99
0.89 13.8((25.4 11.6 77.6 1.09 -1.17 0.0010 25.35 0.99

TABLE I. Limiting Cosmological Parameter Values Based on
zt Measurement and a 13.8 Gy Age of the Universe

From the results in Table I, we see that the true tran-
sition redshift is likely between 0.614 and 0.89 given the
fact that the current value of the Hubble constant is
known to be in that range. Thus, more accurate mea-
surements of the transition redshift are needed to increase
the confidence of this model, though we do see that it is
able to reproduce measured results.

Table IT has the proper times from r = u to the current
time as well as the CMB for stationary, inertial observers
(dt = rdQ2 = 0) by integrating Equation 1. The column
Tior gives the time from 7 = u to r = 0. The expression
for 74o¢ turns out to be quite simple:

™
Tiot = U (16)

In Table II below, the column 7,¢mqin gives the time be-
tween r = rg and r = 0.

Zt Qrq T0 Ttot Tremain TCMB
0.337 13.8]{42.2 58.1 15.9 8.6
0.614 13.8{|37.1 46.7 9.6 2.4
0.89 13.8{|33.7 39.9 6.2 2.3

TABLE II. Limiting Proper Times Based on z: Measurements
and an age of 13.8 Gy for the Universe (Time is in Gy)

Note that while the coordinate times for the current
age of the Universe (u—rg) are close to current estimates
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(for high z;), the proper time 7y is actually much larger.
And even though we are presently only about halfway
through the “coordinate life” of the Universe (according
to Table I), the amount of proper time remaining is actu-
ally much less than the amount of proper time that has
already passed (according to Table II). This provides
a measurable prediction from the model: as telescopes
such as the JWST peer farther into the past with greater
accuracy, we should expect to find stars, galaxies, and
structures that are much older than expected because of
the increased amount of proper time available for such
things to form in the early Universe. Hints of this has
already been found with the star HD 140283, whose age
is estimated to be nearly the age of the Universe itself
[4].

Next we would like to use the v and ry values found to
create an envelope on a Hubble diagram to compare to
measured supernova and quasar data. First we need to
find r as a function of redshift. We can do this by solving
for r in Equation 7:

w14 2)?
"T 2+ 1+ 22 )

We can derive the expression for ¢ vs. r along a null
geodesic where the geodesic ends at the current time 7q
and ¢t = 0 by setting dr = rd{2 = 0 in Equation 1 and
integrating:

"oy
t:
o U—T

Next we substitute Equation 17 into Equation 18 to get
coordinate distance in terms of redshift:

2 1 2
t:r0+u[ln<a0+( +22) )_
1+ag

dr:uln(u_m)—l—ro—r (18)
u—r

(1+ 2)?
ag + (1 +z2)?

| a9

We need to convert the distance from Equation 19 to the
distance modulus, u, which is defined as:

D
= 5logyg (5) (20)

Where Dy, in Equation 20 is the luminosity distance. Lu-
minosity distance is inversely proportional to brightness
via the relationship:

1

The brightness is affected by two things. First, the spa-

tial expansion will effectively increase the distance be-

tween two objects at fixed co-moving distance from each

other. This will reduce the brightness by a factor of

(142)? (because the distance in Equation 21 is squared).

But there is also a brightening effect caused by zhe acl—
J— T

celeration in the time dimension. We define V = o=

as the temporal velocity of the inertial observer at some
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r and the speed of light at that r as V., = % = ?12 The
ratio of these velocities gives us:

Ve _dtdr _dt _a 1 (22)

V. drdr dr a® a
Equation 22 tells us how far a photon travels over a given
period of time measured by the inertial observer’s clock.
So we see that as light travels from the emitter to the
receiver, this speed decreases. This decrease in the speed
from emitter to receiver will result in an increased photon
density at the receiver relative to the emitter, increasing
the brightness. Therefore, this effect will increase the
brightness by a factor of:

ao
— =1 23
=142 (23)

Taking these brightness effects into account, the total
brightness will be reduced by an overall factor of 1+ z
relative to the case of an emitter and receiver at rest
relative to each other in flat spacetime. Equation 21 in
terms of co-moving distance ¢ and redshift z becomes:

1+2 1
B gasoye 7 P eata (24)

Giving the luminosity distance as a function of co-moving
distance t and redshift z:

DL:t\/1+Z (25)

Which gives us the final expression for the distance mod-
ulus as a function of co-moving distance and redshift:

tv1l+z
p=>5logyo (| —5—

A plot of distance modulus vs. redshift is shown in Figure
4 below plotted over data obtained from the Supernova
Cosmology Project [5]. Curves calculated from all three
values of z; in Table I are plotted, giving an envelope for
the model’s prediction of the true Hubble diagram.

(26)

FIG. 4. Distance Modulus vs. Redshift Plotted with Super-

nova Measurements
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Note that the middle curve corresponds to z; = 0.614
and the lower curve corresponds to z; = 0.89. The super-
nova data is better fit by a curve between these values.
The curve halfway between (with z; = 0.75) gives us
Hy =716, a9 =1.0, g9 = —1.0, v = 27.3, and rg = 13.5.

In [6], the authors analyze a large sample of quasar
data to obtain distance moduli at higher redshifts than
is possible with supernova data. Figure 5 shows the same
predicted envelope from Figure 4 for the Hubble diagram
plotted out to higher redshifts with the quasar data from
[6] also shown with error bars. The black diamonds in the
figure are the 18 high-luminosity XMM-Newton quasar
points described in [6].
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FIG. 5. Distance Modulus vs. Redshift Plotted with Quasar
Measurements

Finally, by subtracting ro from Equation 17 we can
calculate the lookback time for a given redshift. Figure 6
shows the lookback time vs. redshift for the three tran-
sition redshifts.

Lookback Time in Gy (r-r)

FIG. 6. Lookback Time vs. Redshift

VII. THE ANTIMATTER UNIVERSE

Figure 7 shows the full Schwarzschild metric in
Kruskal-Sezekeres coordinates. The diagram can be split
in two along the diagonal where in the top right half,
forward time points up while in the bottom right half,
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forward in time points down. Left and right are also
swapped when looking at the upper and lower halves.
We can therefore conjecture that the diagram is de-
scribing both a matter Universe expanding up from the
center and an antimatter Universe expanding down from
the center, each one moving toward a singularity. The
reason we expect an antimatter Universe is because the
directions of both time and space are reversed relative to
each other and therefore, we expect the particles of the
second Universe to have opposite charges relative to the
first. Thus, the pair of Universes (or 'Duoverse’) satisfies
CPT symmetry and the Kruskal coordinates 7" and X
represent cardinal directions of space and time.

L

FIG. 7. Matter and Antimatter Universes

VIII. COMPLEX SPACETIME

Notice that the dr and rd) terms in Equation 1
have opposite signs. As is the case in the external
Schwarzschild and FRW metrics, we would expect the
angular and pure radius terms to have the same sign.
We can remedy this by changing Equation 1 to:

u—r .

d(it)? — ——d(ir)? —r2dQ%  (27)

r u—r

dr? =

Equation 27 implies that the imaginary counterpart of
the time coordinate is spacelike and the imaginary coun-
terpart of the spatial (radius) coordinate is timelike. We
can even see how the timelike r coordinate and space-
like ¢ coordinate retain some of the time and spacelike
characteristics of their real counterparts.

To see how the imaginary ¢ coordinate, which is space-
like in the internal metric retains some timelike prop-
erties, we need to observe a surface of constant r with
changing ¢. The Cosmic Microwave Background is such
a surface. If one were to observe a patch of the CMB over
billions of years, one would see it change over time with
a given patch in the sky having slight changes in tem-
perature distribution over time. But the surface is not
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actually changing over time because it is by definition a
surface at a fixed time. The changes we would observe
would come from the fact that we are seeing the CMB in
the direction we are observing it at greater distances from
us over time, as if the surface we see is moving through
the Universe itself at that fixed time. So even though the
CMB would appear to change over time, it isn’t actually
changing with time, we are only seeing it at greater coor-
dinate distances as we move through time. There is even
an ’arrow of time’ characteristic to the ¢ coordinate when
observing the CMB. If we look at the CMB in one direc-
tion, we see it change from time A to time B (our time
A and time B, the CMB time does not change) because
we're seeing it at a greater distance from us at time B
than we did at time A. We might initially think that if
we move in the opposite direction, we should eventually
be able to observe the CMB the way it was at our time
A since the differences we see in the CMB at times A
and B are not changes in the CMB over time, but rather
we are observing different locations of the CMB at the
same time. But in order to see the CMB at the location
we saw it at time A, we would need to move faster than
the speed of light in the opposite direction. Whether we
remain co-moving or move with arbitrary peculiar veloc-
ity, we will always see the CMB change in the same way.
The only difference our peculiar motion will make is how
quickly we see it change. This can be seen by looking
at the ’Static sphere’ hyperbola in Figure 1 and imag-
ining an observer moving along ¢t = 0. If you draw a
45 degree line from the hyperbola to ¢ = 0 (the hyper-
bola will represent the CMB), you can see that once the
observer at t = 0 has moved forward in time (up the dia-
gram), that 45 degree line is outside the future light cone
of the observer for the rest of the expansion, no matter
which direction the observer moves in. Thus, our obser-
vations of the CMB over time are not reversible during
expansion. We cannot move in a way to go back and
see previously observed states of the CMB even though
the different states are due to changes in space, not time.
This is analagous to the arrow of time, but in a spacelike
dimension.

Even more obvious is how the imaginary r coordinate,
which is timelike, still retains spacelike characteristics.
When we look out at the Universe, it almost seems like
we are looking at galaxies surrounding us in space in the
present time. But it is more useful to measure those dis-
tances in time because the Universe is homogenous in
space at a given time, so specifying the distance in spa-
tial coordinates is less useful because the differences we
see in the structure of the Universe at different distances
are due to their separation from us in time, not space.
Therefore, it feels like the farther away we look in space
the more different the Universe looks, it is not the dis-
tance in space that is responsible for the differences but
rather the distance in time.

It is notable that the df2 term is unchanged in the inter-
nal metric relative to the external metric where surfaces
of constant r are spacelike in both cases. This makes
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sense because surfaces of constant r in spherically sym-
metric Universes are at a constant distance in both space
and time in all cases and so the angular dimension of the
metric has no imaginary counterpart.

Finally, even the proper time and space quantities dr,
ds have dual characteristics in the internal metric. In sec-
tion IX we will discuss how the proper time of the world-
line in the internal metric behaves more like a height in
the internal metric as opposed to a time. We can also
say that the proper distance ds has a timelike quality in
the internal metric in that the change in proper distance
between distant regions of the Universe over time gives
us the scale factor, which is the main indicator what time
in the Universe we are observing.

So if we put the observer at the center of a spheri-
cally symmetric space, we can say that every direction
has both real and imaginary space and time dimensions
associated with it. If we again consider the CMB in a
particular direction, no matter how long we travel in
that direction, we will not reach the CMB because it
is separated from us in the imaginary spatial dimension,
which is related to the timelike radius of the internal
metric. The imaginary cosmological metric, whose main
attribute is the scale factor of the Universe, determines
the scaling of the real metric of the Universe (the FRW
metric) throughout cosmological time.

Looking at Figure 7, let us imagine a complex plane
perpendicular to the page whose real axis is coincident
with the T axis of Figure 7. Setting v = 1, in Kruskal
coordinates the relationship between T" and r along ¢t = 0
is:

T==(1-r)e" (28)

r=1+W, <7;2) (29)

Where W is the Lambert W function. Therefore, we can
plot the relationship between T and ir on the aforemen-
tioned complex plane in Figure 10 for both the matter
and antimatter Universes:

Matter

Antimatter

FIG. 8. Imaginary Radius to Real Radius for the Matter
(Right) and Antimatter (Left) Universes

d0i:10.20944/preprints202201.0301.v4

In Figure 10, we see two oblong curves, the right one for
the matter Universe and the left one for the antimatter
Universe with a vector whose projections give the mag-
nitudes of the real and imaginary radii at a given time.
The two Universes are coincident at i, representing the
event horizon/Big Bang era (in the rest of this paper, the
Big Bang will be referred to as Annihilation). Here, we
can say the matter and antimatter Universes have anni-
hilated with each other and new pairs of matter and an-
timatter are created from the annihilation, creating the
two Universes travelling in opposite directions of time.
Over time, the imaginary radii of the Universes decrease
while the real radii increase up to the singularity, where
the imaginary radii are zero and the real radii are 1.

The antimatter Universe moves in the opposite direc-
tion of time relative to the matter Universe, and so we
expect their vectors on this plane to rotate in opposite
directions as shown.

But looking at Figure 10, one can’t help but be
tempted to complete the curves by mirroring them in the
real axis. Doing so would indicate that right as the Uni-
verses reach maximum expansion, the geodesics reverse
in time and the Universes begin to re-collapse toward
each other. This creates a discontinuity in the geodesics,
resulting in the singular nature of » = 0, which we will
dissect further in the next section.

We can think of the Universe as the imaginary counter-
part of a galaxy. Let’s imagine starting form the center of
a galaxy and moving out through space at the center. At
the center of the galaxy, we have a spherically symmet-
ric event horizon. The ’Dark Sphere’ of Figure 1 is the
imaginary counterpart of the galaxy’s event horizon. As
we move out radially, we first have a dense accretion disk
around the horizon. The CMB is the imaginary coun-
terpart of this disk. As we move out farther and farther
radially, the galaxy becomes less and less dense. The
scale factor of the Universe is the imaginary counterpart
of this reduction in density at greater radii of the galaxy.
Eventually we get to a maximum radius of the galaxy
with minimum density. The singularity is the imaginary
counterpart of the galaxy’s edge. It has been observed
that the size of a galaxy’s black hole is related to the
overall size of the galaxy itself. This is analogous to the
fact the the radius of the internal solution determines
the timescale of the expansion phase of the Universe and
the maximum size of the observable Universe. Finally,
the many galaxies in our Universe are analogous to the
repeated expansion and collapse cycles of the Universe
where each of the galaxies is an independent cycle of the
Universe. We will discuss observable Universes and the
repeating cycles in later sections.

IX. NEWTONIAN ANALOG

This entire system is the temporal equivalent of two
masses initially moving apart from one another until they
reach a maximum separation distance u. At that point
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they will start falling toward each other again due to mu-
tual gravitational attraction. When they meet at their
common center, they annihilate, creating new pairs of
matter/antimatter particles and begin moving away from
each other again, as if they’ve bounced off each other. It
is equivalent to the exchange of potential and kinetic En-
ergy, but in the time dimension. Looking at the equation
E? = m? + p?, we can say that this process conserves
E by converting p into m during expansion (cosmologi-
cal redshift is a consequence of the loss of momentum)
and vice versa during the collapse. This will be further
explored in section XI.

Now consider the Newtonian example of a ball in a
gravitational field rising to a maximum height i and then
falling back to the ground. % will be positive on the way
up, negative on the way down and zero at max height.
But this also means that g—fl will be infinite at the max-
imum height because dh = 0 there. We might think
that when comparing this to the present case, t — 7 and
h — r, but this is incorrect. We know that r is our time
coordinate and 7 is the distance along the geodesic, so
h — 7 and t — r. So from Equation 3, we see that,
just like in the Newtonian example, Z—: =0 and g—: =00
at the singularity because in this case dr = 0 at the
turnaround.

When the Newtonian ball falls back to the ground, if
the ball and ground were perfectly rigid and the colli-
sion perfectly elastic, there would be an infinite impulse
during the collision where the ball would shatter and the
fragments would once again start rising up into the air.
This is analogous to the matter and antimatter Universes
annihilating after the collapse and then re-expanding.

Referring back to section VIII, we can also think of
the collapse phase of the Universe as being analogous to
a spherically symmetric shell of matter starting from rest
(at the singularity) and collapsing through space toward
an event horizon, but in this case, it is the 3D spherically
symmetric Universe falling through time toward the hori-
zon where it annihilates with the antimatter Universe.
The expansion phase is simply the time-reversed version
of this.

X. THE NATURE OF EXPANSION

From Equation 4 we can calculate the angle of the cos-
mological light cone as § = arctan a% At the beginning,
when ¢ = 7, the speed of light is infinite which means
all fractions of the speed of light are infinite, and that
manifests itself as space having zero size. As time pro-
gresses, the light cone closes. The closing of the light
cone manifests as an expansion of space since this means
the cosmological speed of light is getting smaller, so all
fractions of it also get proportionally smaller. The cosmo-
logical redshift and dimming come from the fact that the
present Universe is accelerating away from past events
through time. So if you set off to another galaxy at some
time with a constant velocity, over time that velocity will
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effectively slow as the light cone closes even though no
forces have acted on the observer. Since the observer
does not feel any change in their velocity, they will de-
scribe this as an expansion of space since it will take them
longer to reach their destination. As 6 goes to zero, the
light cone closes completely meaning nothing can move
in space, manifesting itself as an infinite scale factor. The
Universe has lost all momentum and the momentum has
been converted into inertia and this increase in inertia
manifests as spatial expansion.

XI. SCHWARZSCHILD WORLDLINES

We have so far focused on co-moving worldlines when
analyzing the internal metric. Let us now consider what
the worldlines of general inertial particles might look like
on the spacetime diagram.

Let’s first consider an inertial observer moving with

some non zero 2 as it approaches, and then leaves, the

dr

singularity. From Equation 5, we see that as r — 0, 5—2
goes to infinity. This means that j—i will be forced to zero
as the observer approaches the singularity since, during
expansion, the acceleration is opposite in direction to the
velocity. This means that the worldline will be parallel
to whichever ¢ coordinate the observer is at as they reach
the singularity. This also means that the worldline will
be parallel to the ¢ coordinate as it leaves the singularity
at the beginning of collapse.

But during the.collapse phase, j—jg and % are in the
same direction, so even though the worldline begins par-
allel to the t coordinate at the beginning of collapse, this
position is unstable because if the particle is perturbed
at all, giving it some non-zero velocity, Equation 5 shows
that the acceleration, and therefore the velocity, will be
increased over time by the collapse of the ¢ coordinates.
This acceleration also goes to infinity as the worldline
approaches r = u, meaning the worldline becomes a null
geodesic perpendicular to the horizon at the annihila-
tion event. By symmetry, we can likewise say that the
worldline emerging from the annihilation event at the be-
ginning of expansion will also be null and perpendicular
to the horizon.

The slopes of the worldlines at the annihilation event
and singularity support the idea that the energy of the
Universe is pure momentum at the annihilation event and
pure inertia at the singularity. An example worldline on
the spacetime diagram is given in Figure 9:
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Worldline enters and
leaves singularity parallel
to # co-ordinate

Worldline ends ‘

/, Worldline begins
collapse as null expansion as null
geodesic geodesic

FIG. 9. Example Internal Worldline

Next, we consider the external solution under the same
conditions. In this case, the ¢ < 0 coordinates of the
external solution cover the expansion phase, while the
t > 0 coordinates are for the collapsing phase:

b .
. 3
%
N
Y

Worldline is
parallel to radial

Worldline ends
collapse as nuit.—\—l I{ypelrlbo!:is at the
geodesic i\ smgulanty

I11

Worldlinebegins
expansion as null
geodesic

FIG. 10. Example External Worldline

For this, we will assume the Universe has a quasi black
hole that the observer falls towards. Just as with the
internal solution, the worldline will start out null as it
emerges from annihilation. During expansion, it will
gravitate toward the black hole, but because of the cos-
mological effects, the line will curve to be parallel to the
tangent of the closest r hyperbola at ¢t = 0. This corre-
sponds to the singularity when the Universe begins col-
lapse. After the singularity, it will continue to fall until
it reaches the horizon at the next annihilation event.

It is also notable that at according to the external met-
ric, all worldlines that intersect the horizon will do so si-
multaneously. This is because all worldline that intersect
r = 1 are at the same location with proper distance/time
between them equal to zero (because the line r = 1 is a
null geodesic). So no matter when different observers
start falling toward the horizon, even if they start at the
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same location at different times, they will all reach the
horizon simultaneously. This is consistent with the col-
lapsing Universe where the horizon represents the end of
collapse where the Universe becomes infinitely dense (the
same is true at the beginning of expansion).

And for an observer at constant r, remaining at the
constant r will become more and more difficult as the
Universe collapses because of equation 5. Once stable
orbits will become less and less stable as the Universe
collapses and at some point during the collapse, it will
become practically impossible to maintain a stable orbit
and they too will fall to the horizon. Therefore, we con-
clude that the black hole will never form because the mat-
ter will not reach the event horizon radius until the entire
Universe has re-collapsed to the Annihilation event, at
which point all matter in both Universes will meet at the
event horizon and annihilate. So in a sense, the whole
Universe will 'fall into a black hole’, where once the mat-
ter in it reaches the Annihilation event after the Universe
collapses (which corresponds to the event horizon), it re-
emerges into a new expanding spacetime that is the next
cycle of the expanding Universe. All gravitational event
horizons are surfaces of future time that all matter will
fall to at the end of re-collapse as it is destroyed and
remade in an effectively new, expanding Universe.

The expansion and contraction of the spatial coordi-
nates also demonstrates a counter-intuitive fact. Dur-
ing expansion, gravitational systems become increasingly
stable because as the singularity is approached, it be-
comes increasingly difficult to change coordinate posi-
tions in space until at the instant of the singularity, all
spatial positions become fixed. Orbits will also become
more and more circular as the singularity is approached
since objects in circular orbits remain at fixed spatial
coordinates. Then during collapse, as the spatial coordi-
nates contract, orbits become less stable over time due to
equation 5 leading to a more chaotic Universe toward the
end of the collapse phase. This makes sense however if
we consider that the collapse is the time reversed expan-
sion. We know the early Universe was chaotic and dis-
organized and as the expansion progressed, stable stars,
galaxies, and gravitating structures in general formed. So
the collapse will essentially undo the order gained from
the expansion, returning the Universe to the same kind
of state it was in at the beginning of expansion when it
reaches the end of the collapse.

XII. THE MANY WORLDS

To this point we have described the spacetime dynam-
ically, but there is still an open issue regarding the an-
gle in the internal Schwarzschild metric at which a given
event takes place. As we will see, the answer to this ques-
tion is that it depends on from which location it is being
measured from.

Let’s consider the Universe at » = 0, the singularity.
Imagine a 3D flat space where every point in this space
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is an observer in the Universe at r = 0. If we pick out
one such observer, when they look out at the Universe
(we will ignore the redshift for this argument and assume
the entire past light cone for the observer is visible), this
observer will see the Universe much like we see it today:
a dense plasma at the farthest distance followed by stars
and galaxies with decreasing densities as the radius gets
smaller. A 2D representation of this is shown in Figure
11 below where the observer is at the center of the circle.

FIG. 11. Observable Universe at r =0

So each observer in the 3D flat space has a sphere like
this mapped to it. We will refer to these spheres as ob-
servable Universes. But the radius of the sphere is not
in the 3D space but is instead the 4th dimension. There
is also an antimatter sphere at each point that inter-
sects the matter radius at the » = 0 points and extend
into the negative direction of this 4th dimension. This
is a static picture, but dynamically, we can imagine the
spheres growing out from the r = 0 points in the 3D
space as time progresses. Thus, the r in Figure 11 is the
real radius from Figure 10 which grows as the imaginary
radius becomes real. So this model can be said to have
3 flat dimensions of space and 3 spherical dimensions of
time (though the 3 dimensions of space and two angu-
lar dimensions of time are dependant, so this can still
be reduced to a 4D spacetime). Furthermore, all light
beams in a given observable Universe converge at the cen-
ter of the time sphere, meaning that every point in the
3D space has null geodesics converging to them from all
directions as the geodesics approach r = 0, which satis-
fies the singularity theorem. We would normally imagine
light converging to the center of a volume, but that is
not the case here. In this scenario, every single point in
the volume has its own set of geodesics converging to it
from all directions.

Let us consider our current position in the Universe
where we sit at some r = rg. Imagine we send out light
from our current location in all directions. Assuming
none of the light is absorbed in transit, the light will
reach a spherical surface around us in the 3D space as the
light beams reach » = 0. Therefore, the angle at which
we reside in the internal Schwarzschild metric depends on
which observable Universe we are measuring our position
from because we will be visible to all the observable Uni-
verses that lie on that aforementioned 2D shell in the 3D
space. Each of those observable Universes see us from a
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different direction, and the direction from which a given
observable Universe sees us determines our angle in the
internal Schwarzschild metric. Another way to put it is
that each of the infinite observable Universes at r = 0
corresponds to a unique infinite set of null geodesics (one
geodesic for each direction) that converge at a given ob-
servable Universe’s t at r = 0.

These quasi 343 dimensional matter and antimatter
Universes contain all the events for a single expansion
from beginning to end (these dimensions are smooth and
continuous). However, the matter and antimatter Uni-
verses then re-collapse and eventually result in new ex-
pansions. Therefore, we can think of each successive ex-
pansion and contraction of the Universes as happening
along another dimension which is discrete. This dimen-
sion essentially labels the different countably infinite ran-
dom Universes.

Since each Duoverse begins with annihilation, this
means each Duoverse begins with a random configuration
after annihilation. Therefore, there is no cause and effect
relationship between Duoverses from cycle to cycle. This
means the cycles cannot be ordered sequentially because
there is no way to know which cycle preceded or will fol-
low the current cycle. If we cannot order the cycles in a
sequence, then we can think of them all as being parallel
to each other. While events within a cycle can have cause
and effect relationships (i.e. the events "happen’ at given
times), the various cycles themselves do not ’happen’,
they just exist along side all other cycles. Thus we can
think of the annihilation events as being a single event
from which infinite Duoverses emerge and to which they
return. This implies that finding ourselves in a particular
Duoverse is completely probabilistic where the probabil-
ity that we find ourselves in a Duoverse with a particular
configuration depends on how likely that configuration is
across all possible configurations (where many configura-
tions are similar enough to be effectively indistinguish-
able from each other). This gives us the many worlds
that have been invoked to explain quantum probability
in the Everett many worlds interpretation of QM.

XIII. THE CHARGE AND SPIN HYPOTHESIS

Given that the matter and antimatter Universes are
moving in opposite directions in time, we can hypoth-
esize that the electric charge of a particle is related to
the orientation of the particle’s velocity vector in time.
The sign of the charges of matter particles would indicate
that the temporal velocities of these particles are oriented
parallel to the time radius of the matter Universe. The
antimatter particles have opposite sign and so their vec-
tors are oriented anti-parallel to the time radius of the
matter Universe (or parallel to the time radius of the an-
timatter Universe). This could be perhaps understood as
differences in the directions of group and phase velocities
of the wave function in time:

1. Matter particles in matter Universe: Group and
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phase velocities pointed in the same direction to-
ward positive time.

2. Antiparticles in matter Universe: Group velocity
pointed in positive time direction, phase velocity
pointed in negative time direction.

3. Antimatter particles in antimatter Universe:
Group and phase velocities pointed in the same di-
rection toward negative time.

4. Matter particles in antimatter Universe: Group ve-
locity pointed in negative time direction, phase ve-
locity pointed in positive time direction.

Consider the turnaround point at the singularity as the
Universe transitions from expansion to collapse. On the
way into the singularity, the phase and group velocity
vectors of matter particles are pointing toward the singu-
larity. At the singularity, the velocity vectors disappear
because of the turnaround and all matter becomes in-
stantaneously chargeless. Photons also converge at every
point in space at the singularity as discussed in the pre-
vious section. Once the collapse starts, the photons re-
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emerge from every point in space and the matter group
and phase velocity vectors are pointed away from the
singularity, flipping the charges of all charged particles.
Therefore, relative to the expanding Universe, the col-
lapsing Universe is an antimatter Universe moving back-
wards in time (and this is mirrored in the other antimat-
ter Universe).

We can extend this hypothesis further by considering
the spin of Fermions. Fermions can be measured to be
spin up or spin down. We could interpret the spin to be
a physical spin about the time radius with, for instance,
spin up indicating the spin vector is parallel to the time
radius of the matter Universe, and spin down indicating
the spin vector is anti-parallel to the time radius of the
matter Universe. Treating Quantum spin as a rotation
about the time axis could be seen as a necessary con-
sequence of relativity: if space and time are equivalent,
then the possibility of rotations about an axis in space
implies that it is also possible to rotate about an axis of
time.

More generally, we can posit that the imaginary parts
of the quantum wave functions are vibrations of the wave
function along the radial time dimension.
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