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This paper seeks to fill in the gaps of modern relativistic Cosmology by utilizing the total
symmetry between space and time dimensions and re-interpreting the scale factor of the Universe
as a gravitational potential generated by the mass/energy of the entire Universe as a whole. The
gradient of this potential is along the cosmological time dimension through which the Universe is
falling. This gradient gives us an arrow of time, we find explanations for why the Universe began
expanding and why the expansion is accelerating without the need for a Cosmological Constant.
In a finite time, the gradient will point in the opposite direction of time turning the expanding
Universe into a collapsing one where it is shown that when placing the Schwarzschild metric in the
dynamic Cosmological background, gravity becomes repulsive and things like would-be Black Holes
become White Holes. The model naturally describes a Universe and an anti-Universe (consisting of
antimatter) moving in opposite directions of time that collide at the end of collapse, annihilating
and subsequently pair producing two new Universes as the cycle begins again. It is shown that the
model’s Hubble diagram fits the currently available supernova and quasar data. It is found that Dark
Matter can perhaps be understood as ordinary matter that is not connected to us with null geodesics.
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I. MOTIVATION AND ROADMAP

The current model of cosmology is based on the FRW
metric, which, under the flat space assumption, is a flat
space metric in spherical coordinates whose space-like
dimensions are scaled by a time-dependant scale fac-
tor. What is notable here is that for a Universe with
a non-accelerating expansion, the FRW model makes the
same predictions as a spherically symmetric cosmological
model based on Newtonian gravity. But the expansion
of the Universe is now known to be accelerating. To ac-
commodate this acceleration, the cosmological constant
is introduced into the field equations which is assumed
to give empty space a pressure that creates an acceler-
ated expansion. The problem with the cosmological con-
stant is that it is just a measured number whose value is
heretofore unpredictable via any currently existing the-
ory, making the true underlying nature of the accelerated
expansion a mystery.

Another notable feature of the FRW metric is that it
models the Universe as a continuous fluid. While this ap-
proximation might work well in the early Universe where
the matter is more evenly spread, it becomes less ac-
curate over time as concentrated pockets of matter be-
come more dispersed and the continuous fluid assumption
starts to break down, requiring the use of the Cosmolog-
ical Constant to correct for that. It is also curious that
this fluid model curves space via the scale factor, but
leaves the time dimension completely uncurved. This is
curious because we know that for a finite distribution of
matter/energy, both space and time are curved, yet the

FRW metric seems to suggest that the infinite matter and
energy of the Universe has no effect on the curvature of
the time dimension.

The origin of the scale factor in the FRW metric is
also unclear. The metric provides no reasoning for why
the Universe began expanding in the first place. In this
paper, we find that the scale factor can be interpreted as
the gravitational potential of the entire Universe whose
magnitude changes over a spherical timelike dimension
rather than a spacelike dimension. The scale factor im-
pacts both the space and time dimensions analogous to
how the coefficients of the radial and time dimensions of
the external Schwarzschild metric generate the local grav-
itational potential around a spherically symmetric body.
This interpretation of the scale factor gives us an arrow
of time that points forward in time during the expan-
sion phase and backwards in time during the proceeding
collapse phase and is generated by the masses of a Uni-
verse and anti-Universe moving in opposite directions of
time. Details regarding the scale factor as a gravitational
potential is given in section X.

It will be argued in this paper that the metric prop-
erly describing both the space and time curvature (and
therefore the global gravitational potential) of the Uni-
verse is the internal Schwarzschild metric. This metric
is a spherically symmetric vacuum solution. Consider
that the external Schwarzschild metric, which is also a
spherically symmetric vacuum solution, can be used to
describe the worldlines of particles on an infinitely thin
shell collapsing toward a center in space. For the inter-
nal metric, we can imagine that the matter and energy
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in the Universe is isotropically distributed throughout
infinite space (3D space in this case), but exists only at
the present time (time is the radius in this case) where
the past and future are vacuums. If we accept this as-
sumption and that the Universe is spherically symmet-
ric, then according to Birkhoff’s theorem, the internal
metric is the only possible cosmological metric because
the Schwarzschild solution is the only spherically sym-
metric vacuum solution in General Relativity. How the
worldline of a particle can exist in both the internal and
external metric is explained in section XI.

In section V we solve for the unknowns for the inter-
nal Schwarzschild metric, namely our current cosmolog-
ical position in the metric and the counterpart of the
Schwarzschild radius, using existing cosmological data.
The model is then used to calculate relevant cosmolog-
ical parameters and it is found that the model fits the
cosmological data very well.

In section VII, the internal metric is interpreted as
having imaginary (as in complex numbers) cosmological
space and time dimensions where the entire Universe be-
haves like a spherically symmetric distribution of mat-
ter filling infinite space and falling through time. These
imaginary dimensions exist alongside the real dimensions
of the local metrics. The Universe and anti-Universe are
falling through the imaginary time dimension described
in that section. It is shown that the Universe and anti-
Universe undergo an expansion phase followed by a col-
lapse, where they annihilate with each other and pair
production then gives birth to a new pair of Universes as
the cycle repeats.

In section IX, we place the external metric in the back-
ground cosmology of the internal metric and show that a
Black Hole event horizon can never form during the ex-
pansion phase and gravitational potentials reverse their
directions during the collapse phase such that gravity be-
comes repulsive and would-be Black Holes become White
Holes.

In section XV, it is postulated that Dark Matter is or-
dinary matter separated from us in a such a way that
we are not connected with null geodesics. This is pos-
sible due to the form of the internal metric in how it
treats space and time. It is a symmetry of space and
time equivalent to why, in our present moment, we can
only see a given galaxy as it was at a single time in the
past as opposed to seeing many of its past states. We
then discuss the transit of the singularity and address
the fact that proper distances go to infinity there.

In the end we see that the use of the internal
Schwarzschild metric as a model of Cosmology results
in a total and perfect symmetry between space and time,
the principle that lies at the core of relativity theory.

We will begin the argument by examining the
Schwarzschild metric in detail.
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II. THE SCHWARZSCHILD METRIC

The Schwarzschild metric is the simplest non-trivial
solution to Einstein’s field equations. It is a vacuum so-
lution for the spacetime around a spherically-symmetric
distribution of energy. The the external and internal
forms of metric can be expressed as (coordinates in the
external metric are primed to distinguish them from the
internal metric coordinates):

o T =T 2 2 3912
dr'’® = ——dt"” — ﬁdr —r'2dQ (1)
r —Is

ar? = -2 La ¢ T_ar’ — 20> (2)
r u—r
Equation 1 is the external metric with ¢’ being the time-
like coordinate and 7’ being the timelike coordinate. The
Schwarzschild radius of the metric is given by ry = 2GM
in natural units. We use the prime notation for the coor-
dinates here to distinguish the external coordinates from
the internal coordinate. The external metric is the metric
for an eternally spherically-symmetric vacuum centered
in space. This metric is also used to describe the vacuum
outside a spherically symmetric object occupying a finite
amount of space (like a star or planet). This metric as
written in Equation 1 becomes the Minkowski metric as
r’ — oo.

Equation 2 is the internal metric with ¢ being the
spacelike coordinate and r being the timelike coordinate.
This describes the metric for a spherically symmetric vac-
uum centered on a point in time. The constant u is a
time constant that will be later derived from cosmological
data. Analogous to the external case, this metric should
also describe a vacuum of time outside a spherically-
symmetric object spanning infinite space. The center of
the metric is everywhere in space, but at a single point in
time (just like one could say that the vacuum described
in the external case is centered at all times on a single
point in space).

An important observation is that the internal metric
describes a vacuum solution to the field equations. But
the Universe is clearly filled with energy, so how can this
solution be the Cosmological metric? In order to sat-
isfy the requirements of the metric, the Universe must be
“a spherically-symmetric energy distribution occupying
an infinite amount of space for a finite amount of time”.
For this metric to be a cosmological description, it must
be that Universe only truly exists in the present and in
a very real sense moves into the future. The surround-
ing vacuum is the future, and the Universe is freefalling
through time toward the temporal center of the metric.

Time being the radial dimension of the internal metric
combined with the fact that the solution is a vacuum so-
lution gives a mathematical justification for our intuitive
notions of past, present, and future. The in-homogeneity
along the radial direction gives us an arrow of time that
distinguishes the ‘past’ and ‘future’ analogous to the way
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the external solution gives us an absolute distinction be-
tween ‘up’ and ‘down’. And the vacuum as described
above gives us a boundary between them, that boundary
being the ‘present’ time, when the matter/energy of the
Universe is actually positioned in the spacetime.

It should also be noted that our local motion through
space g:: is measured relative to some local object such as
the earth or the sun whereas our motion through cosmo-
logical space j—i is measured relative to the CMB from the
temperature dipole. The same is true for orbital veloci-
ties. The local orbital velocity 7’ ill?,l is measured relative
to the earth or sun for example, whereas orbital velocity
in cosmological space r% is measured from the observed

movement of the temperature dipole on the CMB and
the object’s radial distance in cosmological time r. This
is discussed further in section XI.

Observation has shown that the Universe is:

e Spherically Symmetric
e Homogeneous in space
e In-homogeneous across time
We will also make one further assumption in this paper:

e The Universe only ever occupies a single instant of
Cosmic time and moves from one moment of cos-
mic time to the next where the time measured by
observers between cosmic times depends on their
respective motions.

Relativity of simultaneity does not prohibit the idea of
the energy existing at a specific Cosmological time be-
cause of the nature of the metric. In Cosmology, we can
determine absolute motion and absolute simultaneity be-
cause we have the Cosmic Microwave Background. For
example, consider two events that are causally discon-
nected. If observers at each event see the CMB tem-
perature to be uniform in all directions (the observers
are co-moving), then if both observers measure the CMB
to have the same temperature at both events, then we
know the events are absolutely simultaneous, even if a
third observer in motion sees them as non-simultaneous.
Any observer in motion through space, inertial or oth-
erwise, will see a dipole on the CMB, and that dipole
will provide all the info about the state of motion of the
observer. Therefore, we can define past, present, future,
and motion in an absolute sense. To put it another way,
the fact that cosmological time is finite into both the
past and future allows us to specify the distance of any
event from either the beginning or end of time absolutely
in terms of the CMB temperature, which relates directly
to the cosmological coordinate time. Different observers
will disagree on how much time has elapsed according
to their local clocks due to the time dilation effects of
their local gravitational fields and peculiar motions, but
everything in the Universe is falling together in the time
dimension
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Let us call events the same distance away from us in
time celestial spheres. We can classify these spheres into
three types:

1. Dynamic Spheres — These are the spheres that
galaxies reside on. Objects on these spheres main-
tain a constant coordinate distance from us and
move forward in time. We are able to move toward
or away from objects on these spheres by moving
through space. If we fix our sights on a particular
galaxy, the light we see from that galaxy is being
emitted later in time as we ourselves move through
time.

2. Static Spheres — These are spheres fixed in time.
The Cosmic Microwave Background is the most ob-
vious example of these spheres. Light from the
CMB sphere is always emitted from the same cos-
mological time, but as we ourselves move through
time, we see light from that time emitted from far-
ther and farther away from us in space, giving the
impression that the CMB sphere is growing. We
cannot move toward or away from any objects on
this sphere because it is frozen in time.

3. The Dark Sphere — The Dark Sphere is the Big
Bang and lies beyond the CMB. It is in principle
unobservable for two reasons. First, the CMB is
opaque so that any light from the Big Bang cannot
penetrate it. Second, even if the CMB was not
blocking our view, any light from that sphere would
be infinitely redshifted in the frame of all future
observers since the scale factor on that sphere is
Zero.

These spheres are shown in terms of the internal
Schwarzschild metric in Figure 1. Figure 1 shows the
Schwarzschild coordinates of the internal metric plotted
on the Kruskal-Szekeres coordinate plane !. In these co-
ordinates, space is the ‘¢’ coordinate emanating from the
center of the diagram (Big Bang) and time is the ‘r’ co-
ordinate depicted as hyperbolas (time is flowing forward
as r goes toward zero). The upper right quadrant of this
diagram represents a single fixed direction (§ = const,
¢ = const). So each bold line representing a sphere
would be a point on each sphere over time. Note that
light on this diagram travels on 45-degree lines.

1 Figures 1, 6, 8, 9, and 10 are modifications of: ’Kruskal
diagram of Schwarzschild chart’ by Dr Greg. Li-
censed under CC BY-SA 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:
Kruskal_diagram_of_Schwarzschild _chart.svg#/media
/File:Kruskal_diagram_of_Schwarzschild_chart.svg
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FIG. 1. Celestial Sphere Types on Kruskal-Szekeres Coordi-
nate Chart

It is also notable from the metric that even though r
is a timelike coordinate in this case, the rd{2 term is still
spacelike, so objects on the celestial spheres at constant
r are spacelike separated, which is what we expect.

III. THE SCALE FACTOR

Expressions for the proper time interval along lines of
constant ¢ and 2 and the proper distance interval along
hyperbolas of constant r and 2 from Equation 2 are:

ds fu—r
dt r “ (3)

dr r 1
- =4+ =+= 4
dr (4)

And the coordinate speed of light is given by:

1
(‘”) —t— (5)
dr light u—r a

Where a is the scale factor. First we should notice that
none of the three equations depend on the ¢ coordinate.
This is good because the ¢ coordinate marks the position
of other galaxies relative to ours. Since all galaxies are
freefalling in time inertially, the particular position of
any one galaxy should not matter. The proper temporal
velocity, proper distance, and coordinate speed of light
only depend on the cosmological time 7.

A plot of the scale factor vs. r (with u = 1) is given in
Figure 2 below:
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FIG. 2. Scale Factor vs. r for u =1

IV. THE CO-MOVING OBSERVER

Let us take a co-moving observer somewhere in the
Universe we label as t = 0 as the origin of an inertial ref-
erence frame. We can draw a line through the center of
the reference frame that extends infinitely in both direc-
tions radially outward. This line will correspond to fixed
angular coordinates (6,¢). There are infinitely many such
lines, but since we have an isotropic, spherically symmet-
ric Universe, we only need to analyze this model along
one of these lines, and the result will be the same for any
line.

The radial distance in this frame is kind of a compound
dimension. It is a distance in space as well as a distance
in time. The farther away a galaxy is from us, the far-
ther back in time the light we currently receive from it
was emitted. Fortunately the internal spacetime of the
Schwarzschild solution (Equation 2) plotted in Kruskal-
Szekeres coordinates provides us with a method to under-
stand this radial direction. Figure 1 showed the internal
solution on a Kruskal-Szekeres coordinate chart where, in
this model, the hyperbolas of constant r represent space-
like slices of constant cosmological time and the rays of ¢
represent spatial distances.

We must determine the paths of co-moving observers
(dt = dQ = 0) in the spacetime. For this we need the
geodesic equations for the internal Schwarzschild metric
[1] given in Equation 2. In these equations u represents
a time constant (in Figure 1, the value of u is 1). The
following equations are the geodesic equations of the in-
ternal metric for ¢ and r (0 < r < w) for dQ = 0:

L%_ u  drdt

dr2  r(u—r)dr dr (6)

27' u
. @

dr2 ~ 2r2
Looking at points 0 < r < u, then by inspection of Equa-
tion 6 it is clear that an inertial observer at rest at ¢ will

remain at rest at t (5—2 =0 if % =0).
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Let us next demonstrate how the internal metric fits
with existing cosmological data and calculate various cos-
mological parameters using that data.

V. CALCULATION OF COSMOLOGICAL
PARAMETERS

In order to compare this model to cosmological data,
we must solve for v and find our current position in time
(ro) in the model. Reference [2] gives us transition red-
shift values ranging from z; = 0.337 to z; = 0.89, depend-
ing on the model used. We can use the expression for the
scale factor in Equation 3 to get the expression for cos-
mological redshift from some emitter at r measured by
an observer at ro [1]:

.

Furthermore, the deceleration parameter is given by:

aa  4r
=—==—-3 9
¢=5=" 9)
By setting Equation 9 equal to zero, we find that the scale
factor at the transition from decelerating to accelerating
expansion a; is:

1
— 1=
3 V3
Using Equations 8, 10, and the transition redshift es-
timate, we can get an expression for the present scale
factor:

ay —

(10)

1+Zt

V3

Next, we find expressions for u and our current radius 7q
by noting that the Universe has been found to be roughly
13.8 billion years old. Therefore, we can set a,, = u —
ro = 13.8 and use Equations 3 and 11 to obtain the
following for w and rg:

ap = a(1+2¢) =

(11)

u—To Qg 3ayr,
To CL(Q) a% (1 + Zt)2 ( )

T 1) (13)

t

Next we compute the CMB scale factor (acarp) and co-
ordinate time (rcpp) in this model where the redshift
of the CMB (z¢arp) is currently measured to be 1100:

ag
GeMB = + zocMmB (14)

U
roms 1+ a%MB (15)
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We can next derive the Hubble parameter equation using
the scale factor. The Hubble parameter is given by (in
units of (Gy)™1):
a U
H = —-= —
a 2r(u—r)

(16)
Table I below gives the values of w, rg, Hy, ag, 90, acym B,
roemB, and qopp given the upper and lower bounds of
z; from [2] as well as the average of the upper and lower
bound values and assuming «,, = 13.8. All times are in
Gy and Hy is in (km/s)/Mpc.

Zt Qrg (4 ro Ho ao qgo acmMB TCMB qQCMB
0.337 13.8(|37.0 23.2 56.6 0.77 -0.49 0.0007 36.95 0.99
0.614 13.8(/29.7 15.9 66.2 0.93 -0.86 0.0008 29.65 0.99
0.89 13.8((25.4 11.6 77.6 1.09 -1.17 0.0010 25.35 0.99

TABLE I. Limiting Cosmological Parameter Values Based on
zt Measurement and a 13.8 Gy Age of the Universe

From the results in Table I, we see that the true tran-
sition redshift is likely between 0.614 and 0.89 given the
fact that the current value of the Hubble constant is
known to be in that range. Thus, more accurate mea-
surements of the transition redshift are needed to increase
the confidence of this model, though we do see that it is
able to reproduce measured results.

Table IT has the proper times from r = u to the current
time as well as the CMB for stationary, inertial observers
(dt = rdQ) = 0) by integrating Equation 2. The column
Tior gives the time from 7 = u to r = 0. The expression
for 14o¢ turns out to be quite simple:

T
Tiot = U (17)

In Table IT below, the column Ty¢main gives the time be-
tween r = rg and r = 0.

2t Qpg T0 Ttot Tremain TCMB
0.337 13.8(|42.2 58.1 15.9 8.6
0.614 13.8||37.1 46.7 9.6 2.4
0.89 13.8(|33.7 399 6.2 2.3

TABLE II. Limiting Proper Times Based on z; Measurements
and an age of 13.8 Gy for the Universe (Time is in Gy)

Note that while the coordinate times for the current
age of the Universe (u—r() are close to current estimates
(for high z;), the proper time 7y is actually much larger.
And even though we are presently only about halfway
through the “coordinate life” of the Universe (according
to Table I), the amount of proper time remaining is actu-
ally much less than the amount of proper time that has
already passed (according to Table II). This provides
a measurable prediction from the model: as telescopes
such as the JWST peer farther into the past with greater
accuracy, we should expect to find stars, galaxies, and
structures that are much older than expected because of
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the increased amount of proper time available for such
things to form in the early Universe. Hints of this has
already been found with the star HD 140283, whose age
is estimated to be nearly the age of the Universe itself
[3].

Next we would like to use the v and rg values found to
create an envelope on a Hubble diagram to compare to
measured supernova and quasar data. First we need to
find 7 as a function of redshift. We can do this by solving
for 7 in Equation 8:

_u(l 4 2)?
"= a2+ (1+2)2 (18)

We can derive the expression for ¢ vs. r along a null
geodesic where the geodesic ends at the current time rq
and t = 0 by setting d7 = rdQ2 = 0 in Equation 2 and
integrating:

tz/ " drzuln(u_ro)-l-?“o—?" (19)
o U u—r

Next we substitute Equation 18 into Equation 19 to get
coordinate distance in terms of redshift:

2 1 2
t:ro—|—u[1n<a0+( +2,z) >_
1+aj

(1+2)°
a2 + (1+ z2)?

| e

We need to convert the distance from Equation 20 to the
distance modulus, p, which is defined as:

D
= 5log;o <1é> (21)

Where Dy, in Equation 21 is the luminosity distance. Lu-
minosity distance is inversely proportional to brightness
B via the relationship:

1
B x — 22

5 (22)
The brightness is affected by two things. First, the spa-
tial expansion will effectively increase the distance be-
tween two objects at fixed co-moving distance from each
other. This will reduce the brightness by a factor of
(142)? (because the distance in Equation 22 is squared).
But there is also a brightening effect caused by the ac-
celeration in the time dimension. We define v = 4= = 1
as the temporal velocity of the inertial observer at some
r and the speed of light at that r as v, = % = a% The
ratio of these velocities gives us:
v, dtdr dt a 1
v drdr dr a® a (23)

Equation 23 tells us how far a photon travels over a given
period of time measured by the inertial observer’s clock.
So we see that as light travels from the emitter to the
receiver, this speed decreases. This decrease in the speed
from emitter to receiver will result in an increased photon
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density at the receiver relative to the emitter, increasing
the brightness. Therefore, this effect will increase the
brightness by a factor of:

ao
— =1 24
S =142 (24)

This effect is not accounted for in the current relativistic
cosmological models and therefore gives a second predic-
tion that light from the distant Universe should appear
brighter than expected.

Taking these brightness effects into account, the total
brightness will be reduced by an overall factor of 1+ z
relative to the case of an emitter and receiver at rest
relative to each other in flat spacetime. Equation 22 in
terms of co-moving distance ¢ and redshift z becomes:

1+ 2 1
(t(1+ 2))? T t2(1 + 2)

Giving the luminosity distance as a function of co-moving
distance t and redshift z:

DL =t/1+z (26)

Which gives us the final expression for the distance mod-
ulus as a function of co-moving distance and redshift:

tv1+ z)
10

B (25)

= 5logy, ( (27)

A plot of distance modulus vs. redshift is shown in Figure
3 below plotted over data obtained from the Supernova
Cosmology Project [4]. Curves calculated from all three
values of z; in Table I are plotted, giving an envelope for
the model’s prediction of the true Hubble diagram.
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FIG. 3. Distance Modulus vs. Redshift Plotted with Super-
nova Measurements

Note that the middle curve corresponds to z; = 0.614
and the lower curve corresponds to z; = 0.89. The super-
nova data is better fit by a curve between these values.
The curve halfway between (with z; = 0.75) gives us
Hy=171.6,a9=1.0, ¢qo = —1.0, u = 27.3, and r¢ = 13.5.

In [5], the authors analyze a large sample of quasar
data to obtain distance moduli at higher redshifts than
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is possible with supernova data. Figure 4 shows the same
predicted envelope from Figure 3 for the Hubble diagram
plotted out to higher redshifts with the quasar data from
[5] also shown with error bars. The black diamonds in the
figure are the 18 high-luminosity XMM-Newton quasar
points described in [5].
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FIG. 4. Distance Modulus vs. Redshift Plotted with Quasar
Measurements

Finally, by subtracting r¢ from Equation 18 we can
calculate the lookback time for a given redshift. Figure 5
shows the lookback time vs. redshift for the three tran-
sition redshifts.

Lookback Time in Gy (r-r)

o 05 1 15 2 25 3 35 a s s
z

=eeeezt=0.337 2t=0.614 — —zt=0.89

FIG. 5. Lookback Time vs. Redshift

VI. THE ANTI-UNIVERSE

Figure 6 shows the full Schwarzschild metric in
Kruskal-Szekeres coordinates. The diagram can be split
in two along the diagonal where in the top right half,
forward time points up in both the internal and exter-
nal regions while in the bottom right half, forward in
time points down. The direction of positive space is also
swapped when looking at the upper and lower halves.
For the external metric, the radius increases to the right
in the upper half and to the left in the lower half. For the
internal metric, the spatial ¢ coordinate goes from —oo
to oo from left to right in the upper half and from right
to left in the lower half.
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FIG. 6. Universe and Anti-Universe

We can therefore conjecture that the diagram is de-
scribing both a Universe expanding up from the center
and an anti-Universe expanding down from the center,
each one moving toward a singularity. We expect that
the anti-Universe is made of mostly anti-matter because
the directions of both time and space are reversed relative
to each other and therefore we expect the particles of the
second Universe to have opposite charges relative to the
first (more on this in Section XVII). This interpretation
provides a resolution to the question of why we only tend
to see matter in our Universe. It is because the equiva-
lent amount of antimatter is moving away from us as a
mirror Universe in the opposite direction of time. Thus,
the pair of Universes (or 'Duoverse’) satisfies CPT sym-
metry and the Kruskal coordinates 7' and X in Figure 6
represent cardinal directions of space and time.

VII. COMPLEX SPACETIME

Notice that the dr and rdf) terms in Equation 2 have
opposite signs. As is the case in Equation 1, we would
expect the angular and pure radius terms to have the
same sign. We can remedy this by changing Equation 2
to:

YRty — L d () — 1202 (28)

r u—r

dr? =

Equation 28 implies that the imaginary counterpart of
the time coordinate is spacelike and the imaginary coun-
terpart of the spatial (radius) coordinate is timelike. We
can even see how the timelike r coordinate and space-
like t coordinate retain some of the time and spacelike
characteristics of their real counterparts.

To see how the imaginary ¢’ coordinate, which is space-
like in the internal metric retains some timelike prop-
erties, we need to observe a surface of constant r with
changing t. The Cosmic Microwave Background is such
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a surface. If one were to observe a patch of the CMB over
billions of years, one would see it change over time with
a given patch in the sky having slight changes in tem-
perature distribution over time. But the surface is not
actually changing over time because it is by definition a
surface at a fixed time. The changes we would observe
would come from the fact that we are seeing the CMB
in the direction we are observing it at greater distances
from us over time, as if the surface we see is moving
through the Universe itself at that fixed time. So even
though the CMB would appear to change over time, it
isn’t actually changing with time, we are only seeing it at
greater coordinate distances as we move through time.

Even more obvious is how the imaginary r coordinate,
which is timelike, still retains spacelike characteristics.
When we look out at the Universe, it almost seems like
we are looking at galaxies surrounding us in space in the
present time. But it is more useful to measure those dis-
tances in time because the Universe is homogeneous in
space at a given time, so specifying the distance in spa-
tial coordinates is less useful because the differences we
see in the structure of the Universe at different distances
are due to their separation from us in time, not space.
Therefore, it feels like the farther away we look in space
the more different the Universe looks, it is not the dis-
tance in space that is responsible for the differences but
rather the distance in time.

It is notable that the df) term is unchanged in the inter-
nal metric relative to the external metric where surfaces
of constant r are spacelike in both cases. This makes
sense because surfaces of constant r in spherically sym-
metric Universes are at a constant distance in both space
and time in all cases and so the angular dimension of the
metric has no imaginary counterpart.

So if we put the observer at the center of a spheri-
cally symmetric space, we can say that every direction
has both real and imaginary space and time dimensions
associated with it. If we again consider the CMB in a par-
ticular direction, no matter how long we travel in that di-
rection, we will not reach the CMB because it is separated
from us in the imaginary spatial dimension, which is re-
lated to the timelike radius of the internal metric. The
imaginary cosmological metric, whose main attribute is
the scale factor of the Universe, determines the scaling of
the real metrics of the Universe throughout cosmological
time.

Looking at Figure 6, let us imagine a complex plane
perpendicular to the page whose real axis is coincident
with the T axis of Figure 6. Setting u = 1, in Kruskal
coordinates the relationship between T" and r along t = 0
is:

T==+(1—-r)er (29)

r=1+W, (_1:) (30)

Where W is the Lambert W function. Therefore, we can
plot the relationship between T and ir on the aforemen-
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tioned complex plane in Figure 7 for both the matter and
antimatter Universes:

Antimatter

FIG. 7. Imaginary Radius to Real Radius for the Matter
(Right) and Antimatter (Left) Universes

In Figure 7, we see two oblong curves, the right one for
the matter Universe and the left one for the antimatter
Universe with a vector whose projections give the mag-
nitudes of the real and imaginary radii at a given time.
The two Universes are coincident at i, representing the
event horizon/Big Bang era (in the rest of this paper, the
Big Bang will be referred to as Annihilation). Here, we
can say the matter and antimatter Universes have anni-
hilated with each other and new pairs of matter and an-
timatter are created from the annihilation, creating the
two Universes travelling in opposite directions of time.
Over time, the imaginary radii of the Universes decrease
while the real radii increase up to the singularity, where
the imaginary radii are zero and the real radii are 1.

The antimatter Universe moves in the opposite direc-
tion of time relative to the matter Universe, and so we
expect their vectors on this plane to rotate in opposite
directions as shown.

Looking at Figure 7, we can mirror the curves in the
real axis to account for the —ir’ space. Doing so would
indicate that right as the Universes reach maximum ex-
pansion, the geodesics reverse in time and the Universes
begin to re-collapse toward each other.

We can think of the Universe as the imaginary counter-
part of a galaxy. Let’s imagine starting form the center of
a galaxy and moving out through space at the center. At
the center of the galaxy, we have a spherically symmet-
ric event horizon. The ’Dark Sphere’ of Figure 1 is the
imaginary counterpart of the galaxy’s event horizon. As
we move out radially, we first have a dense accretion disk
around the horizon. The CMB is the imaginary coun-
terpart of this disk. As we move out farther and farther
radially, the galaxy becomes less and less dense. The
scale factor of the Universe is the imaginary counterpart
of this reduction in density at greater radii of the galaxy.
Eventually we get to a maximum radius of the galaxy
with minimum density. The singularity is the imaginary
counterpart of the galaxy’s edge. It has been observed
that the size of a galaxy’s black hole is related to the
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overall size of the galaxy itself. This is analogous to the
fact the the radius of the internal solution determines
the timescale of the expansion phase of the Universe and
the maximum size of the observable Universe. Finally,
the many galaxies in our Universe are analogous to the
repeated expansion and collapse cycles of the Universe
where each of the galaxies is an independent cycle of the
Universe. We will discuss observable Universes and the
repeating cycles in later sections.

VIII. NEWTONIAN ANALOG

This entire system is the temporal equivalent of two
masses initially moving apart from one another until they
reach a maximum separation distance u. At that point
they will start falling toward each other again due to
mutual gravitational attraction. When they meet at their
common center, they annihilate, creating new pairs of
matter/antimatter particles and begin moving away from
each other again, as if they’ve bounced off each other.
It is equivalent to the exchange of potential and kinetic
Energy, but in the time dimension.

Now consider the Newtonian example of a ball in a
gravitational field rising to a maximum height h and then
falling back to the ground. & Wlll be positive on the way
up, negative on the way down and zero at max height.
But this also means that j—fl will be infinite at the max-
imum height because dh = 0 there. We might think
that when comparing this to the present case, t — 7 and
h — r, but this is incorrect. We know that r is our time
coordinate and 7 is the distance along the geodesic, so
h — 7and t — r. So from Equation 4, we see that,
just like in the Newtonian example, < 9 =0and g—: =00
at the singularity because in this case dr = 0 at the
turnaround.

IX. CONDENSATION AND EVAPORATION

We will now describe in detail the physical meaning
behind the ’Expansion’ and ’Collapse’ phases of the Uni-
verse. Looking at Equation 6, we see that the ﬁ term

dr

is always positive. Durmg the expansion phase, 7~ is

negative and therefore 4 o ! will always be in the opposite
direction of 3—:. Therefore, this tells thus that the pecu-
liar velocities of cosmological objects will be reduced over
time when no forces act upon them. Equation 6 describes
an inertial force acting on all objects, slowing them down
during the expansion phase. If the Universe is far from
r = u and r = 0, it only has noticeable effects at very
large time scales and velocities (because ﬁ =2H is
very small for human velocity and time scales. For in-
stance, currently H = 71.6 km/s/Mpc so converting that
to 1/s gives a value on the order of ~ 107!®). During col-
lapse, dr is positive and now the acceleration acts in the
dlrectlon of motion of the object and therefore increases
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its velocity over time in that phase.

So we can view the expansion phase as a condensa-
tion of the Universe. The Universe starts out as a hot
plasma after the annihilation event, after which it cools
and motion of the particles slow down. At the beginning
of expansion, the deceleration is large (infinite at r = u
allowing null geodesics to become timelike), then for a
long period the deceleration is small, and on approach to
the signularity it once again goes to infinity. For just a
moment at the singularity, all motion stops completely.
The particles stop completely at the singularity because

4 " and therefore 4 &= °t hecome infinite there putting

ru—r
ail mf)imte inertial drag force on all objects. This is true
even for objects with a proper acceleration. So the ex-
pansion counter-intuitively effectively stabilizes gravita-
tional structures more and more as time moves forward,
promoting this condensation.

Likewise, the collapse phase can be viewed as an evap-
oration. After condensation, the Universe begins the col-
lapse phase. As the Universe emerges from the singu-
larity, the inertial force that now tends to accelerate is
extremely large (falling from infinity at the singularity),
but the % of everything is zero, so there is no initial
acceleration at the very beginning of collapse. But any
perturbation to a particle’s state of rest will induce an
inertial acceleration in the direction of motion. There-
fore, particles will naturally gain momentum over time
and the Universe will heat up as gravitationally bound
structures begin to break down and the Universe tends
back toward a state of hot plasma as it approaches the

annihilation event. Once again —%—, 9= and therefore
r(u—r)’ dr

% become infinite at the annihilation event, sending all
particles toward light-like geodesics as though they effec-
tively lose all their mass.

Now let us consider this from the perspective of the
external metric. Consider a star that has collapsed to
form a Black Hole. As will be demonstrated, the star
can never actually form an event horizon, but we can
imagine that the star is massive enough that it becomes
a 'Dark Star’.

The Schwarzschild metric depicted in Figure 6 de-
scribes and ’eternal’ Dark Star. But we could also say
that it describes a Dark Star from the beginning of the
Universe to the end of the Universe, with the beginning
of the Universe being marked by the ¢ = —oo line and
the end being the ¢’ = oo line. The Schwarzschild metric
is asymptotically Minkowskian, so it does not truly rep-
resent the spacetime around a real spherically symmetric
mass since the background Universe has been observed
to be non-Minkowskian, but we can use this metric along
with what has been determined from Equation 6 to ap-
proximate the expected trajectory for a freefalling object
in the field of a Dark Star over the expansion and col-
lapse phases of the Universe. The path & dr’ S of an object
in freefall in the field of a Dark Star as seen by a distant
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is given by [6]:

dr’ . (r’m) ro(rl — ') 31)

Where 7{, is the radius at which the object begins falling
from rest and 74 is the Schwarzschild radius. The focus
here is not on the equation itself, which is a well-known
solution, but at the £ in front of it that comes from
taking the square root. Typically, when doing this calcu-
lation, we would take the negative sign and start falling
from ¢ = 0 just because we expect that gravity is always
attractive and taking the negative sign ensures that dr’
is negative while dt’ increases from zero to infinity. But
given the fact that we now know that our proper motion
through time g—: (where r = ir’) is negative during ex-
pansion and positive during collapse, this suggests that
we should take the negative root when the Universe is ex-
panding and the positive root during collapse. The logic
is straightforward: We assert that the time at which the
Universe changes from expansion to collapse is at ¢’ =0
and therefore the expansion occurs in the ¢’ < 0 region
and collapse occurs in the ¢’ > 0 region. For a worldline
going from t' = —oo to t’ = co, dt’ will always be positive
and dr for the particle is always positive along the line.
Therefore, we take the negative root in the ¢ < 0 region

to account for % < 0 during expansion and the positive

root in the t' > 0 region to account for % > 0 during

dr
collapse.

So during collapse, freefalling objects are ejected sym-
metrically out of the gravitational field of the object rel-
ative to expansion. Referring back to Equation 6, we
see that motion through space becomes more and more
limited as we approach the singularity. So when taking
into account this cosmological drag, we can say that as a
real object approaches t' = 0 in such a field, its worldline
must become tangent to the r’ hyperbola closest to it.
And as collapse begins, it will smoothly and symmetri-
cally curve in the opposite direction.

Furthermore it should be noted that since the expan-
sion phase takes place in the ' < 0 region, an event
horizon can never form because that would require faster
than light motion to achieve.

An approximate example of a real geodesic for an ob-
ject in freefall in such a gravitational field is shown by the
dark black line in Figure 8 through both the expansion
and collapse phases of the Universe.
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FIG. 8. Schwarzschild Freefall in Expanding and Collapsing
Spacetime

The conclusion we can draw from this is as follows.
During expansion, the background of the Universe glows
with decreasing temperature and brightness over time
via the CMB as gravitational structures stabilize and
galaxies form. During this phase, some stars will col-
lapse to form Dark Stars that we presently think of as
Black Holes. By the time we reach the singularity, the
Universe will be fully condensed and inert. At the sin-
gularity, light from the CMB will be infinitely redshifted
such that it is no longer detectable and the background
Universe becomes black (because ag in Equation 8 be-
comes infinite there). The observer will see a completely
dark Universe at the singularity and over time, the Dark
Stars will begin to glow like candles lighting up the dark-
ness as the geodesics of the particles that were falling
toward their centers during expansion reverse and now
move outward. Shadow becomes flame. These former
”Black Holes” effectively become ”White Holes”, with
matter radiating from them, seemingly out of the vac-
uum, even though the radiation is coming from matter
that had accumulated in that region during expansion.
As the collapse proceeds, these White Holes will grow
brighter and shrink as the matter and energy making
them up escapes to the external Universe at higher and
higher energies due to the increasing inertial acceleration
from Equation 6. The Universe effectively evaporates as
all gravitational structures break down. By the end of
collapse, the Universe has returned to a state of increas-
ingly dense plasma until it collides with the anti-Universe
at the annihilation horizon.

X. GLOBAL GRAVITATIONAL POTENTIAL

At this point, we see that the scale factor a is not re-
ally a time-dependant scaling of the spatial metric, as it is
treated in ACDM Cosmology. Rather, it should be seen
as a global gravitational potential. It is the imaginary
counterpart of the Schwarzschild gravitational potential.
Whereas the Schwarzschild potential is constant in time
and varies radially from a point in space, this global po-
tential is constant across space and varies radially from
a point in time. Recall that this discussion began with
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the argument that the entire, spherically symmetric Uni-
verse was falling through the cosmological time dimen-
sion r. The scale factor is the potential driving that
motion through time.

Space is not expanding the way we currently think
about it in terms of a stretching of space. What is chang-
ing is how quickly different points in space are able to
communicate with each other. The image of space itself
compressing to a point or ripping itself apart is mislead-
ing. At the beginning of expansion, we have a normal 3D
space of particles that can communicate instantly with
all other particles regardless of distance. This communi-
cation speed drops as expansion proceeds and local grav-
itational structures are able to form. As will be shown in
section XV, when reaching the singularity where the scale
factor is infinite, space is not ripped apart but rather the
light cone angles have closed completely such that ad-
jacent regions of space are unable to communicate with
each other which manifests as infinite proper distances.

The scale factor being a gravitational potential is why
the FRW metric fails to account for the accelerated ex-
pansion of the Universe without needing to invoke the
ethereal Cosmological Constant. The Friedman equa-
tions in the absence of the Cosmological Constant can
in fact be derived from Newtonian mechanics. Thus, the
Friedman model is to cosmology as Newtonian gravity
is to the external Schwarzschild solution. Whereas New-
tonian gravity completely ignores the warping of space
around a gravitating object, the FRW model completely
ignores the warping of time around the present Universe.
When Newtonian gravity failed to predict the precession
in Mercury’s orbit, it was initially presumed that an un-
known planet must exerting a force on Mercury. The so-
lution turned out to be a correction to the gravitational
potential of the sun via the advent of General Relativity
and the external Schwarzschild metric. Likewise, the ac-
celeration of the expansion of the Universe is currently
being attributed to the existence of some vague notion of
'Dark Energy’, thought to be the energy of empty space.
This problem is similarly resolved in this paper using
General Relativity and its internal Schwarzschild metric
to correct the gravitational potential of the Universe as
a whole.

The temporal direction in which we move in this po-
tential then determines whether the local potentials point
inward toward massive objects or outward from them. So
during expansion, the local gravitational potential gra-
dient around a body points inward toward the body.
During collapse, the gradient flips direction, pointing
away from the body. Thus we see yet another symmetry
emerge: while gravity is attractive during the expansion
phase, it is repulsive during collapse, which is what we
expect from a time-reversed Universe.
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XI. UNDERSTANDING COSMOLOGICAL
MOTION: A THOUGHT EXPERIMENT

The conventional use of the Schwarzschild metric is of
a single spacetime with admittedly odd properties that
produce Black Hole horizons that swallow up informa-
tion, but that interpretation at least uses a single set
of coordinates and a single worldline for the particle. In
this paper, it is argued that these metrics are related, but
their coordinates do not quite describe the same things
and, as will be shown in section XIII, they have different
worldlines describing the same particle. This demands
an explanation and we can understand the relationship
better with a thought experiment.

Imagine a Universe full of Dark Stars, each one with
a particle moving in the star’s gravitational potential in
arbitrary ways. We will focus in on one such system.
Let’s surround our Dark Star and particle system with a
larger sphere containing both of them (call it a Cosmo-
sphere) centered on the Dark Star and large enough that
the path of the particle always remains inside it. The
orientation of the system is locked to the Cosmosphere
so that if the Cosmosphere moves or rotates, the system
as a whole moves and rotates with it.

We already know that Equation 1 describes the path
of the particle relative to the Dark Star and the r’ and €’
coordinates are measured relative to the Dark Star. But
the time coordinates of Equations 1 and 2 must be related
because in section IX, we tied ¥ = 0 to the singularity,
which is the cosmological time. So we therefore need first
to define the cosmological time.

The CMB shines on the Cosmosphere, and the tem-
perature monopole of that light is directly related to the
cosmological time r and therefore local time ¢’. When
the temperature monopole is zero, we are at r =t/ = 0.
So the monopole temperature tells us the time and the
sign of its gradient tells us whether the Universe is in the
expansion or contraction phase.

This leaves us with cosmological linear and angular

motion % and 42, We can figure out our cosmological
dr dr

velocity j—i by observing the magnitude and orientation

of the temperature dipole cast on the Cosmosphere from
the CMB. If the system is moving through ¢, one side of
the sphere will be more blue than the monopole and the
polar opposite side will be more red than the monopole.
The Dark Star, which is at rest relative to the Cosmo-
sphere can figure out how fast and in which cosmological
direction the Cosmosphere is moving in by observing the
magnitude of the dipole as well as the relative orientation
of it. If the Dark Star sees the dipole move around on
the Cosmosphere, then it knows that the Cosmosphere
is changing its cosmological direction and therefore has a
cosmological angular velocity % proportional to the rate
at which the dipole moves across the sphere.

For pure angular motion with no change in ¢, there
would only be a temperature monopole on the Cosmo-
sphere, no dipole. The angular motion would be de-
duced by looking at the patterns of the hot and cold
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spot fluctuations in the monopole. These patterns would
be observed to rotate over the Cosmosphere during pure
angular motion. To the Dark Star, it would appear as
though the Cosmosphere is rotating about the Dark Star.
We discuss this in more detail in section XV.

If the Cosmosphere is co-moving, then the Dark Star
will not see any temperature dipole, only a monopole.
And if the Cosmosphere is co-moving and spinning, then
the Dark Star will see a quadrupole where the poles of
the axis of rotation are at the monopole temperature and
the Cosmosphere gets more red as you look towards the
equator. The spin axis and magnitude can therefore be
deduced from that quadrupole’s orientation and redness.

So we see that the spatial coordinates in the local met-
ric are just measurements of the particle’s position rela-
tive to the Dark Star, but the cosmological spatial coor-
dinates are measurements of the temperature poles cast
by the CMB on the Cosmosphere. So even if the parti-
cle has very high local speed and rotation relative to the
Dark Star, if the dipoles and quadrupoles observed on
the Cosmosphere by the Dark Star are unchanging, then
the particle’s cosmological dt and df2 are negligible in the
external metric.

Thus, we see that Equation 1 describes the motion
of the particle relative to the Dark Star while Equation
2 describes the motion of the Cosmosphere relative to
the CMB. As the Universe approaches the singularity,
the Cosmosphere approaches the temporal center of the
external metric. The light shining on it dims to noth-
ing and the particle’s motion also stops completely as
has been previously discussed. The Cosmosphere moves
through the origin of the temporal sphere and begins
moving backwards in time (increasing r) in a direction
oriented 180° to the direction it entered the center. As
the collapse progresses, the Cosmosphere gets lit up hot-
ter and hotter over time, the particle moves faster and
faster, eventually escaping the Dark Star and the Dark
Star itself evaporates as described in section IX. This
happens across the infinite Universe until it returns to
the hot dense state in which it began and annihilates
with the anti-Universe hurdling toward it.

In the next section, we will see how to combine the
proper times of both metrics to get the total proper time
of the particle.

XII. TOTAL PROPER TIME

The proper time in Equation 1 implicitly assumes the
local gravitational field is in a co-moving cosmological
frame. This is because t' is a function of cosmological
time 7. In fact, we know that as v’ — oo the proper time
interval of the co-moving observer dr has to be equal to
the ¢’ interval, we can choose dt’ to be dt’ = dTeo—moving-
But there is no reference to the spacelike ¢ and 2 cosmo-
logical dimensions in the internal metric. If the gravita-
tional field has cosmological motion, the true proper time
will be dilated relative to Equation 1. The total proper
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time interval is found by multiplying d7’ by the ratio of
% for the actual cosmological motion of the frame (Cos-

mosphere motion) and Z—: of a co-moving frame:

dr (dr
thOt = dTlf () (32)
dr dr co—moving

Which becomes:

2 2
Q
dTior = dT'\/l — (a2 5i> — (arflr> (33)

Recognizing that —5 is the linear cosmological speed of

a?
light (Equation 5), we can define % = v and the cos-
mological linear speed of light -5 = v.. We also define
the angular speed % = w and the cosmological angular
null geodesic as ﬁ = w, (by solving for % in Equation
2 with dr = dt = 0), then we can write Equation 33 as:

N e

2
If we multiply =~ by =, and recognize that (Ui) +

2
(:50) = V2 is the total cosmological velocity (because
rw is the tangential velocity which is perpendicular to the
linear velocity), then we recover the Minkowski form of
the length contraction equation where the speed of light
(and therefore the speed of the object in motion) varies

over cosmological time:

thot = dT/ V 1— V2 (35)

This is telling us that the worldlines in the local metrics
are contracted by the system’s cosmological motion. So
we see that the cosmological model is essentially a collec-
tion of local systems described by real metrics (like the
external Schwarzschild metric) in a background that is a
quasi-Minkowski metric with a time dependant speed of
light.

XIII. INTERNAL METRIC WORLDLINES

We will now examine the worldlines of a particle in the
Universe from its creation at the beginning of expansion
to the end of collapse. We know from Equation 6 that
the worldline becomes null at the end of collapse, so by
symmetry, it will begin the expansion as a null geodesic
as well at £ = —oo on the upper left to lower right Pair
Production/Annihilation line in Figure 9. It enters the
singularity parallel to the ¢ coordinate per Equation 6 (it
is shown in Figure 9 entering ¢ = 0, but it could be any
t). At the singularity, it is at the center of the spherical
time metric. It will pass through the center and begin
to move from r = 0 to increasing r during the collapse.
However, since it has passed through the center of the
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metric, it is now moving in a direction oriented 180° from
the direction it was falling in during the collapse, again
parallel to the t coordinate. It is then accelerated to
become a null geodesic as it approaches the annihilation
event at the end of collapse. This is depicted in Figure 9
below for both the Universe and anti-Universe (the solid
lines are Universe worldlines and the dotted lines are anti-
Universe worldlines):

Worldlines enter » ( Worldlinesexit singularity
singularity parallel parallel to ¢ co-ordinate
to f co-ordinate (180¢ rotation in time)

‘Worldlinesend
collapse as null
geodesics

Worldlines begin
expansion as null
geodesics

FIG. 9. Example Internal Worldline

We can now put everything together showing the mat-
ter and antimatter worldlines in the Universe and anti-
Universe for both the internal and external metrics on a
single diagram to show the full symmetry of space and
time in this model.

\4———( Pair Production/Annihilation Lines )\L”

’

P

a

N
N
N
( Condensation ]‘\
N
N

’..)-'}.:( Evaporation ]
2

FIG. 10. Full Symmetry of the Schwarzschild Metric

All points on the pair production and annihilation lines
are coincident because they are all at the same r coor-
dinate and the proper distance and time separating the
points on the lines are zero since they are null geodesics.
Note that the worldlines of the external metric approach
the pair production and annihilation lines asymptotically,
becoming light-like in both cases. So in the upper left and
lower right quadrants we see the condensation (or expan-
sion) phase for the matter and antimatter worldlines in
both the internal and external spacetimes. Likewise, the
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upper right and lower left quadrants show the same for
the evaporation (or collapse) phase.

XIV. RELATIVISTIC ENERGY AND INERTIA

The relativistic total energy equation for a particle in
Minkowski space is given as:

E? = (mc®)? + (pc)” (36)

It is important to note here that c is really just a unit
conversion constant that determines how the time and
space units are scaled relative to each other, which is
different than the physical speed of light from Equation 5,
which we will call v.. Therefore, we can think of Equation
5 as being unitless and multiplying it by the constant ¢
just gives it the desired units for space and time.

As we have seen in section XIII, all matter starts
expansion on lightlike trajectories, as though they are
massless and end expansion fixed to a t coordinate as
if their mass has become infinite at the singularity. So
E = mc?, which quantifies the energy of a body at rest
in Minkowski spacetime, can be more generally written
as B = mq(v.c)? for a co-moving observer in the actual
Universe where my is a constant representing the mass of
the particle in empty space when a = v, = 1. Therefore,
we can rewrite Equation 36 more generally as:

E? = (movZc?)? + (pc)? (37)

Noting that Ey = mgc? (the particle’s rest energy when
a = v, = 1), we can define the dynamic inertia m of the
particle as:

Eqy

m= = Mo _ moa® (38)

(vec)? w2

What we see from this section and section IX is that
gravitational mass and inertia are in fact not equivalent.
The gravitational mass depends only on the amount of
material in the body (mg) whereas the inertia depends on
the Universe’s position in cosmological time in addition
to the gravitational mass.

It is also interesting, though perhaps not significant, to
note that a o TCLB (where To g is the measured CMB
temperature at a given cosmological time) and therefore
the specific rest energy of particles is proportional to the
temperature of the Universe by mio = a% o Té MB SO
with ¢ = 1 we get:

£ - (TCMB>4 (39)

Mo TcmBo

XV. DARK MATTER, THE FERMI PARADOX,
'SPAGHETTIFICATION’, AND A SELF
PORTRAIT OF THE UNIVERSE

We will now take a closer look at the meaning of the
angular term of the internal metric d2 as well as what
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actually happens at the singularity in the cosmological
context. When approaching the singularity, the d) term
vanishes and proper distances go to infinity. This is of-
ten referred to as ’spaghettification’. In the conventional
context of falling into a Black Hole, this is interpreted as
an observer approaching the singularity getting both in-
finitely stretched and squeezed and then they just cease
to exist at the singularity. But when we interpret the
internal metric as the cosmological solution, we find that
the true nature of the metric behavior at the singularity
is in fact much more mundane, yet incredibly revealing.

We’ve established that our galaxy is currently at some
temporal radius r, position ¢ and angle ) in the metric.
For simplicity in the following discussion, we will assume
all objects in the Universe are co-moving, though in real-
ity that is not the case. This assumption is only needed
to make the argument clear in this case. We will define
the location t = § = ¢ = 0 and r = rg as the position
of the center of our Cosmosphere (6 and ¢ are the an-
gular components of ). Now consider two very distant
Cosmospheres we observe in the sky that are equidistant
from us in polar opposite directions at temporal radius
r > ro. We label one Cosmosphere "Front’ and the other
'Back’. Figure 11 shows a diagram of ¢ vs. r. The ¢
axis runs from —oo to oo and the r axis goes from 0
to u. Because r is a radius, the r axis to the right of
the t axis points in the direction § = ¢ = 0 and to the
left axis it points in the direction ¢ = 0 and 6 = 180°.
The dashed lines are null geodesics that the light travels
from the Front and Back Cosmospheres to reach us. The
geodesics are drawn as straight lines here, but in real-
ity, they would have some curvature to them due to the
scale factor a. Our position is the point at 9. The Front
and Back Cosmospheres are represented with their own
ovals. The upper point in the Front Cosmosphere and
lower point in the Back Cosmosphere represent matter
or 'Dark Galaxies’ that are at the same r and ) as the
center points, but shifted in ¢.

~
~
SO
e
3
=8

r=u, 0=180° r{

FIG. 11. t vs. r

Since we are the point at r = rg, we can see the two
points closest to us in the Front and Back Cosmospheres
because we are connected to them with null geodesics,
but all the other points are invisible to us at the current
time and location. Thus, we cannot see the more distant
matter at those points because of that non-null spacetime
separation. Nonetheless, their gravitational influence on
the visible matter in the Front and Back Cosmospheres is
apparent to all points. Note that in this special scenario
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where we are assuming everything is co-moving, there can
be no matter between 0 and ¢ or 0 and —t at r because if
there were any matter there, we would see those points
instead of the ones we see in Figure 11, but we would see
them not at r but at some time between r and rg. This
is perhaps the nature of Dark Matter. It may simply
ordinary matter that we cannot see from our vantage
point because of our relative location in spacetime. So
matter that is not visible to us would be visible from
other locations and times in the Universe and vice versa.

All other observers at r = rg and ¢t = 0 but differing
¢ and 6 see all the same galaxies that we do, but they
seem them from different angles. So if we are looking at a
particular galaxy, our polar opposite observer at r = rq,
t =0, ¢ =0, and § = 180° will see the same galaxy,
but they will see the opposite side of it relative to us.
It’s difficult to see that on a plot like Figure 11, but we
can deduce it because in Figure 11, the light rays reach-
ing us can only come from one side of the Cosmosphere.
But the Cosmosphere radiates in all directions, and all
those rays must move toward r = ry because r is the
time dimension (i.e. the light moves into the future in all
directions). So if for instance the ray coming to us from
the Front Cosmosphere has a complimentary ray that ra-
diates in the opposite direction, it must also reach t = 0
and r = 7o symmetrically and the only observer fitting
that symmetry is our polar opposite. It is an interest-
ing fact of the geometry that at the singularity, we will
become coincident with observers that naively seem to
be on the other side of galaxies that are expanding away
from us. As will be shown, however, even when we are
coincident at r = 0, we will not ’collide’ with these ob-
servers because the speed of light is zero there and thus
there are no interactions at that point.

Suppose we wanted to travel to our polar opposite ob-
server. If we tried travelling directly toward the Front
or Back Cosmospheres to get there, we would not reach
our polar opposite because we would be changing our
position in ¢ in that case (and both we and our polar
opposite are at t = 0). We would instead need to take
a path where dt = 0 and df = 180°. What would the
Universe look like along that path? First, let’s point
ourselves toward the Front Cosmosphere and take the
path. In the first scenario, we would be moving along
the path as well as spinning because we are keeping our
orientation fixed toward the Front Cosmosphere during
the transit. What we would see in this case would be all
all the Cosmospheres in the Universe spin 180° in place
about the rotation axis of the path so that we see them
all from the opposite angle when we reach the polar op-
posite observer. At the end of the path, we would be at
the same position as our polar opposite. We would also
see a quadrupole on the CMB due to our spinning dur-
ing transit as described in section XI. If we didn’t spin
during the transit, but instead kept our orientation fixed
as we travelled along the angular path, we would again
see the Cosmospheres rotating as before, but we would
also see the entire Universe revolve 180° around us. So in
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this case, when we reach our polar opposite, we would be
facing the Back Cosmosphere instead of the Front Cos-
mosphere that we were facing at the beginning of the
transit. We would not see a quadrupole on the CMB in
this case since we were not spinning during transit. The
proper distance separating us would be s = 7ry (which
would be approximately 42.4 billion light years at our
current cosmological time). So a pure displacement in
changes the angle from which we see all the visible mat-
ter in the Universe and a pure displacement in ¢ changes
which matter is visible and which is dark to us.

This model of Dark Matter may even go as far as re-
solving the Fermi paradox since there could very well be
abundant life not only in our galaxy, but spread across
the Universe that is simply undetectable to us because
any signals they emit would be invisible to us.

But now we move on to the singularity. Figure 12
shows the light cone angle v as function of r as we move
along the r axis with decreasing r along the direction
# = 0, through the singularity, and then in increasing r
along the direction 6 = 180°.
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FIG. 12. Local light cone angles over time

We begin expansion at the right side of the diagram
where the light cone is totally open (¢» = m), because
Equation 5 goes to oo there. As we move through time,
the angle closes until at the singularity, light no longer
travels through ¢ (¢p = 0), which is why Equation 5 goes
to zero there. At the singularity, light no longer travels
through space and everything becomes spacelike. But
also recall that motion has stopped at this point and
all light is infinitely redshifted, so there isn’t really a
physical stretch happening, its only that adjacent points
in space are unable to communicate with each other at
that instant. Also note that if there are different galax-
ies approaching the singularity at ¢ = 0 from different
directions, they would only affect us gravitationally (i.e.
we would not suddenly ’collide’ with them) because they
would be spacelike to us. Then as we pass the singu-
larity and continue moving now with increasing r in the
f# = 180° direction during collapse, the light cone will
start opening in a symmetric way to how it closed during
expansion.

Finally, let us return to Equation 3 and track the
proper distance of a point a fixed coordinate distance
t away from us for the duration of the expansion and col-
lapse. If we plot this proper distance vs the imaginary
version of 7 = ir’ similar to what was done in Figure 7,
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we get a clean picture of how the expansion and collapse
of the Universe would appear to a co-moving observer
(expansion and collapse proceeds from top to bottom).
The reader’s current position is marked with 'x’:
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FIG. 13. Self Portrait of the Expansion and Collapse of the
Universe with the Reader’s Current Position Marked with ’x’

Note that this is not the Universe and anti-Universe.
When the Universe is at 7 = ir’ = u, that is where the
Duoverse collides.

XVI. THE MANY WORLDS

The Duoverse described thus far contains all the events
in the Universe and anti-Universe for a single expansion
from beginning to end. However, the Duoverse then re-
collapses, annihilates, and pair produces a brand new
Duoverse. Therefore, we can think of each successive ex-
pansion and contraction of the Duoverse as happening
along another dimension which is discrete. This dimen-
sion essentially labels the different countably infinite ran-
dom set of Duoverses.

Since each Duoverse begins with annihilation, this
means each Duoverse begins with a random configuration
after annihilation. Therefore, there is no cause and effect
relationship between Duoverses from cycle to cycle. This
means the cycles cannot be ordered sequentially because
there is no way to know which cycle preceded or will fol-
low the current cycle. If we cannot order the cycles in a
sequence, then we can think of them all as being parallel
to each other. While events within a cycle can have cause
and effect relationships (i.e. the events happen’ at given
times), the various cycles themselves do not ’happen’,
they just exist along side all other cycles. Thus we can
think of the annihilation events as being a single event
from which infinite Duoverses emerge and to which they
return. This implies that finding ourselves in a particular
Duoverse is completely probabilistic where the probabil-
ity that we find ourselves in a Duoverse with a particular
configuration depends on how likely that configuration
is across all possible configurations. This gives us the
many worlds that have been invoked to explain quantum
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probability in the Everett many worlds interpretation of

QM.

XVII. THE CHARGE AND SPIN HYPOTHESIS

Given that the matter and antimatter Universes are
moving in opposite directions in time, we can hypothesize
that the relative electric charges of matter and antimatter
particles are related to the orientation of the particle’s
temporal velocity vector along r. This could perhaps be
understood as differences in the directions of group and
phase velocities of the wave function in time:

1. Matter particles in matter Universe: Group and
phase velocities pointed in the same direction to-
ward positive time.

2. Antiparticles in matter Universe: Group velocity
pointed in positive time direction, phase velocity
pointed in negative time direction.

3. Antimatter particles in antimatter Universe:
Group and phase velocities pointed in the same di-
rection toward negative time.
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4. Maitter particles in antimatter Universe: Group ve-
locity pointed in negative time direction, phase ve-
locity pointed in positive time direction.

We can extend this hypothesis further by considering
quantum spin. Electron spin, for example, can be mea-
sured to be either spin up or spin down. We could in-
terpret the spin to be a physical spin about r with, for
instance, spin up indicating the spin vector is parallel to
the time radius of the matter Universe, and spin down
indicating the spin vector is anti-parallel to the time ra-
dius of the matter Universe. Treating Quantum spin as
a rotation about the time axis could be seen as a nec-
essary consequence of relativity: if space and time are
truly equivalent, then the possibility of rotations about
an axis in space implies that it is also possible to rotate
about an axis of time.

More generally, we can posit that the imaginary parts
of the quantum wave functions are vibrations of the wave
function in the r and ¢ (i.e. i’ and it’) dimensions of the
internal metric.
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