Preprint
Article

A Variable-length Rational Finite Element Based On The Absolute Nodal Coordinate Formulation

Altmetrics

Downloads

187

Views

244

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

26 January 2022

Posted:

27 January 2022

You are already at the latest version

Alerts
Abstract
The variable-length arbitrary Lagrange-Euler (ALE)-ANCF finite element, which employ nonrational interpolating polynomials, cannot exactly describe the rational cubic Bezier curves such as conic and circular curves. The rational absolute nodal coordinate formulation (RANCF) finite element, whose reference length (undeformed length) is constant, can exactly represent the rational cubic Bezier curves. A new variable-length finite element called the ALE-RANCF finite element, which is capable of accurately describe the rational cubic Bezier curves, is proposed by combining the desirable features of the ALE-ANCF and RANCF finite element. In order to control the reference length of ALE-RANCF element within a suitable range, element segmentation and merging schemes are proposed. It is demonstrated that exact geometry and mechanic is maintained after the ALE-RANCF element is divided into two shorter ones, and compared with the ALE-ANCF elements, there are smaller deviations and oscillations after two ALE-RANCF elements are merged into a longer one. Numerical examples are presented and the feasibility and advantages of the ALE-RANCF finite element are demonstrated.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated