At present, indoor localization is one of the core technologies of location-based services (LBS), and there exist numerous scenario-oriented application solutions. Visual features, as the main semantic information to help people understand the environment and thus occupy the dominant part, many techniques about indoor scene recognition are widely adopted. However, the engineering application problem of cell phone indoor scene recognition and localization has not been well solved due to insufficient semantic constraint information of building map and the immaturity of building map location anchors (MLA) matching positioning technology. To address the above problems, this paper proposes a cell phone indoor scene recognition and localization method with building map semantic constraints. Firstly, we build a library of geocoded entities for building map location anchors (MLA), which can provide users with "immersive" real-world building maps on the one hand and semantic anchor point constraints for cell phone positioning on the other. Secondly, using the improved YOLOv5s deep learning model carried on the mobile terminal, we recognize the universal map location anchors (MLA) elements in building scenes by cell phone camera video in real-time. Lastly, the spatial location of the scene elements obtained from the cell phone video recognition is matched with the building MLA to achieve real-time positioning and navigation. The experimental results show that the model recognition accuracy of this method is above 97.2%, and the maximum localization error is within the range of 0.775 m, and minimized to 0.5 m after applying the BIMPN road network walking node constraint, which can effectively achieve high positioning accuracy in the building scenes with rich MLA element information. In addition, the building map location anchors (MLA) has universal characteristics, and the positioning algorithm based on scene element recognition is compatible with the extension of indoor map data types, so this method has good prospects for engineering applications.
Keywords:
Subject:
Environmental and Earth Sciences - Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.