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Abstract: At present, indoor localization is one of the core technologies of location-based services
(LBS), and there exist numerous scenario-oriented application solutions. Visual features, as the main
semantic information to help people understand the environment and thus occupy the dominant
part, many techniques about indoor scene recognition are widely adopted. However, the engineer-
ing application problem of cell phone indoor scene recognition and localization has not been well
solved due to insufficient semantic constraint information of building map and the immaturity of
building map location anchors (MLA) matching positioning technology. To address the above prob-
lems, this paper proposes a cell phone indoor scene recognition and localization method with build-
ing map semantic constraints. Firstly, we build a library of geocoded entities for building map loca-
tion anchors (MLA), which can provide users with "immersive" real-world building maps on the
one hand and semantic anchor point constraints for cell phone positioning on the other. Secondly,
using the improved YOLOv5s deep learning model carried on the mobile terminal, we recognize
the universal map location anchors (MLA) elements in building scenes by cell phone camera video
in real-time. Lastly, the spatial location of the scene elements obtained from the cell phone video
recognition is matched with the building MLA to achieve real-time positioning and navigation. The
experimental results show that the model recognition accuracy of this method is above 97.2%, and
the maximum localization error is within the range of 0.775 m, and minimized to 0.5 m after apply-
ing the BIMPN road network walking node constraint, which can effectively achieve high position-
ing accuracy in the building scenes with rich MLA element information. In addition, the building
map location anchors (MLA) has universal characteristics, and the positioning algorithm based on
scene element recognition is compatible with the extension of indoor map data types, so this method
has good prospects for engineering applications.

Keywords: cell phone indoor positioning; scene recognition; building map; map location anchor;
YOLOV5; geocoding matching

1. Introduction

Buildings are the main space for human activities, such as office buildings, libraries,
shopping centers, hospitals, train stations, airports, etc. According to research, humans
spend about 87% of their time in indoor spaces [1,2]. However, the widely used Global
Navigation Satellite System (GNSS) cannot be used indoors or in urban environments,
where GNSS signals are blocked by buildings, trees, or other obstructions. Compared with
outdoor positioning, indoor positioning is more challenging. Because indoor spaces are
more complex than outdoor environments in terms of layout, topology, and spatial con-
straints [3], indoor positioning requires higher accuracy [4]. In recent years, many indoor
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positioning systems have been proposed by researchers, which use different techniques,
such as infrared [5], Wi-Fi [6], Bluetooth [7], optical [8], and inertial sensors [9]. However,
each of these techniques has its application scenarios when considering accuracy, cost,
coverage, complexity, and applicability. On the one hand, a certain number of signal ac-
cess points need to be deployed in advance. On the other hand, the complex indoor space
blocks the effective transmission of some signals, which makes pervasive indoor localiza-
tion services more challenging. The current scene recognition visual localization technol-
ogy incorporating multi-source sensors provides a new way to solve these problems, and
it is quickly becoming one of the important directions in the research field of mobile phone
indoor localization.

The purpose of the scene recognition research is to use recognition algorithms to ef-
fectively process the semantic information contained in the image data, in order to extract
the image features and determine the valid information of the category to which the scene
image belongs. In the face of complex scene recognition problems, traditional scene recog-
nition methods [10] gradually show limitations. Deep neural networks are able to learn
the deep characteristics of images from a large number of sample images and show sig-
nificant advantages in the field of image recognition, which better achieves low cost, high
accuracy, and more stable navigation services [11]. Deep neural networks are network
structures containing multiple hidden layers and multiple perceptrons, which can de-
scribe the properties and features of objects at a more abstract and deeper level [12]. They
are widely used with the advantages of strong feature extraction ability, high recognition
accuracy, and good real-time performance. Deep learning based object detection methods
can be divided into three categories. First, candidate region-based object detection meth-
ods, such as Hybrid Task Cascade[13], CenterMask [14], PolyTransform[15], etc; second,
regression-based object detection methods, such as YOLO [16,17], SSD [18], FPN [19], etc;
third, search-based object detection methods, such as AttentionNet [20] and reinforcement
learning-based object detection algorithms [21]. Many scholars have incorporated deep
learning into the technical solutions for indoor positioning and navigation: A fingerprint
localization algorithm based on Deep Belief Networks (DBN) with noise reduction is used
to achieve target localization in specific indoor environments [22]; using deep learning
methods to automatically encode and extract deep features from Wi-Fi fingerprint data,
and create a deep feature location fingerprint database with one-to-many relationships for
indoor localization [23]; adding the scene recognition classification process to a visual lo-
calization system [24], etc. At present, the image quality, pixel resolution, sensor, and ap-
erture performance of the video frames obtained by the cell phone camera have been sig-
nificantly improved. And with the rapid development of artificial intelligence, the
smartphone camera sensor adds intelligent anti-vibration, super night scene, backlighting,
and other auxiliary functions to make the video image more clearer. The use of more effi-
cient and suitable for scene recognition and geocoding of the semantic constraints of the
building map information to assist, and then achieve cell phone camera scene recognition
and localization is a field with great potential.

Building maps is an effective type of information representation of interior spatial
elements, in which semantic information refers to that information that enables cell
phones to better understand user movement rules, perceive user scenes, plan navigation
routes, and is covered in multi-level and rich dimensionality in high precision maps of
buildings [25-27]. Semantic information in building maps can better represent the user's
scene [28]. Semantically rich indoor maps are an indispensable part of geolocation-based
indoor services [29]. Markers and contextual information in indoor maps can better un-
derstand user movement rules, perceive user scenarios, correct indoor positioning errors,
and plan indoor navigation paths [30]. The research on the genealogical semantic features
of building map models still has much room for development, among which how to ef-
fectively organize the semantic information of building entity elements, and construct and
improve building map models for cell phone indoor positioning and navigation with uni-
versal applications, which is a key problem that needs to be solved urgently [31,32].
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In summary, for the problems of insufficient semantic constraint information of
building map and matching localization of anchor points of building map, this paper pro-
poses a cell phone indoor scene recognition and localization method with the semantic
constraint of building map. Through the attribute association relationship of each element
of building indoor space, the building indoor map location anchor map is constructed
[32,33]. The map location anchors (MLA) is distributed in the indoor environment of the
building along with the step nodes on road network [33]. And in the process of user move-
ment, deep learning is used to obtain more accurate underlying features of the scene map,
to achieve semantic recognition of building scenes, to match the recognition results with
MLA. At the same time, logical reasoning using scene element matching results realizes
the deep integration of information from various parts of perception, semantics, localiza-
tion, and element management [34,35]. To further obtain more accurate location coordi-
nate information of instantiated scene elements, and achieve semantically constrained in-
door scene recognition and localization of building maps for cell phones.

The organization of this paper is as follows. Section 2 describes the construction
method of indoor scene recognition and localization method for cell phones with semantic
constraints of building maps in detail. Section 3 presents the experiment and results. Sec-
tion 4 discusses the usability and advantage. Finally, Section 5 concludes this study.

2. Methods

In this section, we will illstrate the implementation of cell phone indoor scene recog-
nition and localization, under the semantic constraints of building maps [33]. Firstly, the
effective information is extracted from the BIM model, and the building map and map
location anchor points are constructed respectively. The building map model part consists
of a solid model and a network model, which are mainly used for the visualization of
building information and the abstract expression of topological relationships. The map
localization anchor point part consists of two parts: the geometric information location
anchors MLA (S) that senses each sensor signal in the fused multi-source sensors, and the
geometric location anchors MLA (C) that is regarded as having recognizable elements in
scene recognition. Next, the identification method of cell phone indoor scene location an-
chor point class elements in building maps are proposed. Lastly, the semantic constraint
information of the building map is geocoded to match with the recognition results of mo-
bile phone indoor scene elements, to implement real-time positioning and navigation at

the cell phone.
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Figure 1. Technical flowchart of indoor scene recognition and localization method for cell phones
with semantic constraints of building maps
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2.1. Semantic Constraint Information Construction of Building Maps
2.1.1. Construction method of building map model

Building map model is the prerequisite for building map semantic constraint recog-
nition scene construction. Firstly, based on the existing 3D building solid model, a 3D
building component solid model with the spatial concept is proposed, combined with the
texture information collected by UAV tilt photography technology and cell phone close-
up photography technology, to improve the advantages of 3D building component solid
in the real-world simulation of building map, and at the same time, referring to the spatial
representation in the geometric boundary model, select building components that belong
to a specific space and have a boundary relationship to represent a certain space, so as to
meet the needs of spatial representation of building maps. Secondly, based on the abstract
structure of the "edge-node" relationship, the edge-node elements are further divided and
organized for the inconsistency of spatial topology relationship in different building
scenes. The multi-level organization of main road-secondary road-connection relationship
is adopted for abstract representation, and the spatial relationship description of the grid
model is referred, to abstract mixed open spaces in buildings, to further satisfy the uni-
versality of building maps in spatial topology representation. Lastly, according to the dif-
ference of spatial expression between the network model and the solid model, the spatial
relationship and semantic association of elements in the network model and the solid
model are referred to. Their spatial linkage relationships are formed by a combination of
direct and indirect links, to construct an interactive building map model (BIMPN) based
on the network model and the solid model [33], to create the digital twin of the building
map at the level of refined space and instantiated objects. The construction method of
building map model BIMPN is shown in Figure 2.
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Figure 2. The construction method of building map model BIMPN [33]

2.1.2. Method for constructing map positioning anchor points in building map model

On the one hand, indoor localization can enhance location estimation by building
maps and indoor features. On the other hand, it can also leverage the potential value of
indoor landmarks, to provide semantic localization capabilities with spatial constraints.
This paper constructs MLA for semantic and geometric information representation in each
scene of the building map, including geometric information location anchors MLA (S)
where the cell phone cooperates with multi-source sensors to sense each sensor’s signal,
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and geometric location anchors MLA (C) which are considered as having identifiable ele-
ments in scene recognition. First, we selectively construct the semantic information of per-
vasive accessory facilities (doors, door signs, fire cabinets, fire alarms, safety exits, cam-
eras, WLAN, electrical boxes, elevators, etc.) within the building map, and then obtain the
starting position of fused multi-source sensors (such as Bluetooth, etc.) for cooperative
positioning through the interface, and associate and record it with the geometric position
of scene recognition elements MLA (C) in the map location anchor points for subsequent
user positioning and navigation movement process using deep learning algorithms to
identify and match the elements of the scene video frame images taken by cell phone cam-
eras. Mathematically we define the map location anchors MLA as shown in (1 and 2):
MLA = {S(x,v,2),C(x,vy,2) | x,y,Zz € R} 1)
C(x,y,2) = {P(,y,2), X R(xy,2) |x,y,2 €R} @
In Equation 1, the localization anchor point MLA consists of two parts, S and C.
S(x,y,z) represents the geocoded information part of the coordinate position (set) corre-
sponding to the built-in sensor signal feature pattern of the cell phone that can be used for
matching localization in the building map, and C(x,y, z) represents the geocoded infor-
mation part of the coordinate position corresponding to the identifiable pervasive ele-
ments in the scene that can be used for matching localization in the building map. In Equa-
tion2, P(x,y,z)denotes the position coordinates of the pervasive element location anchor
points in the building map that can be used as cell phone video image recognition,
YPRi(x,y,z) denotes the sequence of coordinates of the elements acquired by recognition
used in the scene for the matching localization calculation, where R;(x,y,z) denotes the
position coordinates of the ith element acquired by recognition in the scene, n is the
number of elements acquired by recognition, and R denotes the real number field. The
acquisition of coordinates P(x,y,z) of a current location needs to be solved using the aid
of one or more identification elements R;(x,y,z). The construction of a map location an-
chor point map is to provide a service interface to the building map engine for the imple-
mentation of indoor location navigation and location services for cell phones under se-
mantic constraints.
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Figure 3. Outline of map positioning anchor point construction method in the building map model

2.2. Method for identifying indoor scene elements in building map model

Researchers have now widely deployed applied deep learning recognition models
on mobile devices [36,37], and YOLO (You Only Look Once) is one of the SOTA deep
convolutional neural models in the field of target detection. YOLOv1 [16] was proposed
in 2016, and the latest version is currently YOLOv5 (Glenn Jocher, 2020) [38]. This paper
uses the deep learning open source framework Pytorch to model, train, test, validate and
deploy the YOLO v5 algorithm on cell phones to achieve the recognition of localization
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anchor elements in indoor scenes. The YOLOv5 network architecture contains four net-
work models, YOLOV5s [38], YOLOv5m [38], YOLOV5I [38], and YOLOvV5x [38]. The main
difference between them is the different number of feature extraction modules and con-
volution kernels at specific locations for each network model, and the sequential increase
in the size and number of parameters for each network model. There are nine targets to
be recognized for the experiments in this paper, and there are high requirements for the
real-time and lightweight nature of this recognition model. Therefore, this paper compre-
hensively considers the accuracy, efficiency, and size of the recognition model, and ulti-
mately improves the recognition network of building map location anchor elements in
indoor scenes based on the YOLOv5s [38] architecture.
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Figure 4. Adaptation of YOLOV5 network structure for scene localization anchor element recogni-
tion

As shown in Figure 4, the YOLO vb5s [38] architecture mainly consists of four parts:
input side, backbone network, neck network, and prediction network. Mosaic data en-
hancement, adaptive anchor frame calculation, and adaptive image scaling are used on
the input side to optimize the input image and reduce the computation to improve the
target detection speed. The backbone network is a convolutional neural network that ag-
gregates and forms image features at different image granularity, aiming to reduce the
computation of the model and accelerate the training speed. Firstly, using the slice oper-
ation, the input three-channel image (3 x 640 x 640) is segmented into four slices, each of
size 3 x 320 x 320. Secondly, the four sections are connected in depth using the Concat
operation, and the output feature map is of size 12 x 320 x 320. Thirdly, a convolutional
layer consisting of 32 convolutional kernels is used to generate a 32 x 320 x 320 output
feature map. Lastly, the result is output to the next layer through the BN layer (batch nor-
malization) and the Hardswish activation function. The neck network is a series of feature
aggregation layers that mix and combine image features. It is mainly used to generate
FPN (Feature Pyramid Network), and then transmit the output feature maps to the detec-
tion network (Prediction Network). Since the feature extractor of this network adopts a
new PAN structure with enhanced bottom-up paths, improved transmission of low-level
features, and enhanced detection of targets at different scales. As a result, the same target
object of different sizes and scales can be accurately identified. The prediction network is
mainly used for the final prediction of the model, which applies the anchor frame to the
feature map output from the previous layer and outputs a vector with the class probability
of the target object, the target score, and the location of the bounding box around the tar-
get. The prediction network of YOLOV5s [38] architecture consists of three prediction lay-
ers and its input is a feature map of dimensions 80 x 80, 40 x 40, and 20 x 20 for detecting
image objects of different sizes. In our modified version, multiple arrays are used to store
the candidate frame parameters in the post-processing process. We need to remove the
original multi label and add the best class only part, and then generate the predicted
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bounding boxes and target classes in the original image and label them to fit the recogni-
tion task of this paper and achieve the detection of building map location anchor point
element targets in indoor scene images.

2.3. Method for Mobile phone indoor scene recognition and localization under semantic con-
straints of building map

As shown in Figure 5, the cell phone indoor scene recognition and localization
method under the semantic constraints of building maps mainly includes steps of model
quantification, element identification, map matching, and visualization of localization re-

sults.
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Figure 5. Mobile phone indoor scene recognition and localization method under the semantic con-
straints of building map

2.3.1. Quantification

In the mobile indoor positioning and navigation system MINPS 2.0 [39], the
YOLOVS5.pt model is first converted into a tflite model, and the Flatbuffer serialized model
file format is used to make it more suitable for mobile piggybacking. At the same time, in
order to reduce the computational pressure on the mobile terminal, the model is com-
pressed by quantization, and the weight parameters stored in the model file are converted
from Float32 to FP16. The quantization formula is shown below.

Xquantized = Xfloat - Xscale + Xzeropint (3)
xmax _Xmin
X _ float™ “ float 4
scale — xmax _xmin ( )
quantized “quantized
— ymax _ ymax _._
Xzeropint — “quantized float Xscale (5)
Xfloat = Xscale X (Xquantized - Xzeropoint) (6)

Equation (3) is the quantization of the floating-point value to the fixed-point value,
and Equation (6) is the inverse quantization of the fixed point value to the floating-point
value, where Xy;,, denotes the true floating-point value, Xgyantizeq denotes the quan-
tized fixed-point value, X4, denotes the compression ratio of the quantization interval,
Xfioa: denotes the maximum floating-point value, X }%Zt denotes the minimum floating-
point value, X777 izea denotes the maximum fixed-point value, Xgyantizeq denotes the
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minimum fixed-point value, and X,,opin: denotes the quantized fixed-point value corre-
sponding to the zero floating-point value.
2.3.2. Identification

The quantized model file is deployed to the mobile APP MINPS2.0 [39], and the user
takes a video of the scene through the built-in optical camera of the smartphone, as shown
in Figure 6. Each frame of the video is used as the input image for scene element recogni-
tion, and then performs the element extraction and the real-time fast solution of the 3D
coordinates of the elements of the map location anchor points in the scene in the

Figure 6. The recognition effect of each element in different scenes of the building

2.3.3. Matching

The mobile app calculates the exact pose of the positioning image locally by using
the building map location anchors MLA stored locally in SQLite in advance. Then per-
forms the initial positioning result on the cell phone to match the map with the walking
nodes in the building map road network. The initial positioning result point and the build-
ing map positioning anchor point are in the same user coordinate system. The distance
between the map positioning anchor point and the initial positioning point is calculated
based on stereometric and linear algebra, and the unique solution is determined by the
P3P algorithm [40]. Next, the nearest walking node to the positioning result point is de-
termined by the calculation as the positioning matching result in the road network. Ulti-
mately, the position information of the localization image is displayed in the user's
smartphone, thus realizing the self-localization of the instantaneous positional position of
the smartphone camera. The algorithm flow is shown in Figure 7.
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Figure 7. Building map positioning anchor point geocoding matching positioning method

The process of the matching location algorithm is described as follows:

Algorithm 1. Matching location pseudocode for scene element recognition and building map location anchor

point geocoding

Input: Initial Bluetooth location points p0(x0,y0,z0); map location anchor points obtained from scene element

recognition; road network walking node data set

Output: Positioning point matching position pt(xt, yt, zt); distance error D,

Steps:

1) Calculate the distance from the map positioning anchor points (the user must determine that there must be and
not less than 4 in the scene) obtained from the indoor scene element recognition to the initial Bluetooth
positioning point p0(x0,y0,z0). Generally, multiple sets of distance solutions SM; are obtained until all
positioning anchor nodes have been processed and then stop.

2) After obtaining the map positioning anchor point distance, the P3P algorithm is used to determine a unique set
of solutions, to obtain the distance SM, of the user camera, and to obtain the coordinates pc(xc,yc,zc)
corresponding to the current walking node SN, corresponding to SM;.

3) Create a buffer centered on the current walking node pc(xc,yc,zc) coordinates, the radius of this buffer is the
maximum error range Ej,, plus the step size S;. Use equation (2-7) to obtain the walking node SN, in the
buffer.

SN,, = Buffer (p0,radius) (2-7)

In the equation, radius is the buffer radius, radius = Ej;;, + S;.

4) Calculate the location pt(xt,yt,zt) of the matching locus: the distance from each SM,, to the coordinates, pc of
the walking node in the current road network will be calculated, and then the minimum value D,,;, will be

obtained from it, and the walking node pt(xt,yt,zt) correspondingto D,,;, will be obtained.

5) Save D, as distance error D,, count the distance error D, obtained from each calculation and obtain the
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maximum error range E,,, after adaptive correction, and output D, and pt(xt,yt, zt).

3. Experiment

3.1. Data
3.1.1. Building map data

The building spatial geometric model is the expression of 3D data to the real world,
and also the basis for indoor location-oriented service applications. In this paper, the
building F (longitude 116.29606E, latitude 39.751892N) of the School of Geomatics and
Urban Spatial Informatics of Beijing University of Civil Engineering and Architecture is
used as the experimental area, with an area of about 2800 square meters. The object of the
experimental study is a composite solid building, consisting of six floors, five above
ground and one underground. The outdoor structure consists mainly of side and top ele-
vations. The interior space distribution includes rich geometric structures such as lobbies,
atriums, corridors, elevators, stairs, and rooms, as well as universal signs such as doors,
door signs, fire cabinets, fire alarms, safety exits, cameras, WLAN, electrical boxes and
elevators. Figure 8(a) shows the construction process and results of the network model,
including the construction of the single-level horizontal network and the connection be-
tween the horizontal network and the vertical transportation mode. Figure 8(b) shows the
construction process and results of the physical model, including the construction of basic
elements, marking elements, and thematic elements in the physical model. The construc-
tion result of the data of the building map hybrid model BIMPN [33] example is shown in
Figure 8(c), while the local situation of the visualization of the building map elements is
shown in Figure 8(c). The visualization of building maps and other related data in this
paper can be accessed via the Internet [41].
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(c)

Figure 8. Building map of Building F of the School of Geomatics and Urban Spatial
Informatics of Beijing University of Civil Engineering and Architecture [33]

3.1.2. Anchor Point Data

The extraction of map positioning anchor point (semantic) coordinate information
required in the building map is processed by Blender software [42], which is an open-
source cross-platform 3D production software toolkit that supports a series of operations
such as modeling, animation, materials, rendering, node capture, etc., as shown in Figure
3-1-2. At present, Blender does not support the IFC format, so it needs to export the BIM
model built by Revit to the universal 3D format FBX and import it into Blender V2.78 for
capturing the map positioning anchor points. The map positioning anchor points to be
captured in this paper mainly include the geometric centers of universal building compo-
nents such as doors, door signs, fire cabinets, fire alarms, security exits, cameras, WLANSs,
electrical boxes, elevators, etc. The capture is processed automatically by the Python script
developed in this paper.
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Figure 9. Extraction of coordinate information of map positioning anchor points (semantic) in the
building map

3.1.3. Element sample dataset

For the current study, a dataset of building indoor scene elements that can be used
for YOLOV5 model training is needed. We consider geometric location points with certain
identifiable elements in scene recognition as map localization anchor points. However, the
public datasets are not suitable for the objectives of this study. Therefore, it is necessary
to customize and build pervasive accessory facility datasets within the building map to
continue this research. We have selected nine types of building indoor scene pervasive
elements as the identification targets for this project. The building map localization anchor
elements are doors, door signs, fire cabinets, fire alarms, security exits, cameras, WLAN,
electrical boxes, and elevators. Pictures with universal elements in the building scenes
need to be taken and collected, with different angles and distances according to the user's
pose requirements during recognition, in order to build the element information required
by the recognition algorithm. The dataset has a total of 2832 images and 7610 element
target samples, as shown in Table 1.

Table 1. Sample subset of building interior scene features.

Categories Number of elemental samples Percentage
Doors 2460 32.33%
Door Signs 1200 15.77%
Fire Cabinets 450 5.91%
Fire Alarms 540 7.10%
Exits 1380 18.14%
Cameras 320 4.20%
WLANSs 440 5.78%
Electrical Boxes 660 8.67%
Elevators 160 2.10%
Total 7610 100%

3.2. Experimental results
3.2.1. Building map and map location anchor point construction results

In this paper, the semantic information of map localization anchor points required in
the building map is extracted based on the FBX format data of the target building (F build-
ing of the School of Geomatics and Urban Spatial Informatics, Beijing University of Civil
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Engineering and Architecture), which is obtained by using Python scripting tool in
Blender [42] software environment, stored as CSV format data and then imported into
PostgreSQL database, and the data statistics are shown in Table 2, with a total of 586 ele-
ment semantic constraints for building map positioning anchor points.

Table 2. Statistics of Map Location Anchor s for semantic constraints of building maps.

F-building Doors Door Fire Fire Exits Cameras WLANSs Electrical Elevators Total
Signs Cabinets Alarms Boxes
B1 39 11 6 4 14 5 1 8 1 89
F1 36 11 4 4 14 5 4 3 1 82
F2 37 11 3 5 16 4 6 3 1 86
F3 46 1 4 4 14 4 7 4 1 85
F4 50 19 4 5 15 4 7 5 1 110
F5 47 33 4 7 18 6 7 11 1 134
Total 255 86 25 29 91 28 32 34 6 586

3.2.2. Recognition results of indoor scene elements of cell phones

In the experiments of cell phone video frame recognition of building indoor scene
elements, the improved YOLOv5s model is used for the recognition of building indoor
elements. All experiments in this study are implemented in the framework of Torch 1.7.0,
driven by CUDA, running on a single NVIDIA GeForce RTX 3070 GPU, with the specific
hyperparameter information shown in Table 3.

Table 3. Hyperparameters information.

Hyperparameters Values
GPU_COUNT 1
CFG Yolov5s.yaml
Data Scence.yaml
Weights Yolov5s.pt
Unm-Classes 9
Epochs 1000
Batch Size 32
Img Size 6407640
Evolve true
Cache images true
Single cls false

The experiments use 2256 images (video frames) from a sample set of 2832 images
for training and 288 images for validation and testing in the field. Experiment 1 uses the
YOLOv5s model for training and takes 63 hours 3 minutes and 20 seconds to complete
1000 epochs. Experiment 2 uses the improved YOLOv5s model for training and takes 64
hours and 10 minutes to complete 1000 epochs. The quantitative comparison of the models
in terms of precision, recall, mAP@0.5, and mAP@0.5:0.95 is shown in Figure 10. The blue
corresponds to the YOLOv5s model, and the orange corresponds to the improved
YOLOv5s model.
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Figure 10. Comparison of performance metrics between YOLOv5s and modified
YOLOV5s during training

As shown in Figure 10, in terms of the speed of recognition performed by the scene
video, the total duration of a video 758 frames is about 25s, the recognition time of the
YOLOv5s model is 23.793s (31.858 frames/s), and the recognition time of the improved
YOLOV5s model is 22.818s (33.219 frames/s), the results show that in terms of recognition
speed the improved model can achieve the effect of real-time availability. In terms of ac-
curacy, the improved YOLOv5s model is slightly better than the original model overall,
and it is obvious that the improved model is better than the original model in 500 to 720
epochs. The result shows that the improved model recognition effect is more suitable for
the application of such scenes mainly due to the influence of the type (single door, double
door, glass door, fire door, etc.) and complexity of the door. The learning performance of
the model gradually improves with iterations, and the convergence speed is very fast, and
the curve has stabilized by 1000 epochs. The experiments in this paper use the training
results of 1000 epochs to demonstrate, and the actual production and engineering appli-
cations can be adjusted and optimized based on the actual situation.

The loss function describes the performance of a given predictor in classifying the
input data points in a dataset. The smaller the loss, the better the classifier is at modeling
the representation of the relationship between the input data and the output target. Figure
11 plots the effect of two different types of losses, which represent losses related to the
predicted bounding box and losses associated with a given cell containing objects during
training. ValBox and valObjectness plots represent their validation scores, with training
losses measured in the middle of each stage and validation losses measured after each
stage. The results show that the improved YOLOv5s model loss function is smoother and
converges faster than the original model loss function, which is more suitable for the ap-
plication in the scenario of this paper.
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Figure 11. Comparison of performance metrics between YOLOv5s and improved YOLOv5s
during training

Figure 12 gives an example of some of the results of element recognition for indoor
scenes of buildings under different lighting and angle conditions. The proposed model in
this paper is not only applicable to detecting the elements of interest captured in each
frame of the scene video when the line of sight is in frontal view but also to localize the
anchor elements captured under the condition that the line of sight is shifted by a certain
angle during walking. In addition, using the proposed model, the localization anchor el-
ements can also be well-identified under the conditions of sunny daytime, dusk, and in-
door lighting at night.
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Figure 12. Recognition results of building interior elements using the improved YOLOv5s network
in different time series

3.2.3. Localization results of indoor scene recognition for cell phones

The goal of the experiment is to verify that this method has good localization results
under the constraints of map localization anchor point information and in buildings with
rich spatial structure semantic information. The system focuses on indoor scene localiza-
tion under the condition of the known motion starting point. The user starting position is
obtained by Bluetooth and fused multi-source sensor localization, which is input to this
method as a known condition. Figure 13 shows the visualization effect of real-time posi-
tioning starting from a certain starting position in the building area. Yellow is the trajec-
tory of the user walking along the corridor path, and blue is the trajectory depicted after
the video scene element identification localization anchor point and the building map
road network node (corridor centerline) for map matching. When the input video data
can be solved in real-time to output accurate positioning coordinates, it will be matched
with the road network walking nodes to obtain the fusion results of positioning points
and road network and draw the segment trajectory map. The experimental results show
that the richer the semantic constraint information in the building map scene and the
richer the element information obtained from the element recognition in the field video,
the more information that can be matched between the identifiable elements of the build-
ing space scene and the anchor points of the building map positioning, and the higher the
accuracy of the completed positioning in the scene walking will be.
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Figure 13. Localization results of indoor scene recognition for cell phones with semantic con-
straints of building maps

In order to analyze the effectiveness of this method quantitatively, a total of 103 co-
ordinate points were collected during the experimental matching positioning process, and
the deviations from the x and y directions of the matching coordinates of the road network
are shown in Figure 14. The deviation points are mainly concentrated in the x negative
half-axis. Since the user will face the camera toward the semantic information-rich wall in
the corridor scene during the recognition process through the cell phone camera, and thus
will be closer to the opposite semantic information-less wall, resulting in the x direction
deviation is mostly negative. Because the corner direction is the direction where the y-axis
is located and the user will temporarily miss the semantic information constraint points
in the building during the cornering process, the y-direction deviation is larger than the
x-direction deviation. The experiments do not measure the deviations in the z-direction.
The z value of the final positioning point coordinates is the z value of the matching walk-
ing node SN (Step Node), and the 10 pairs of point coordinates with the largest deviations
in the x and y directions of the path coordinates are selected from them for typicality anal-

ysis.
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Figure 14. Coordinate deviation statistics of pedestrian walking trajectory and map matching tra-
jectory

As shown in Tables 4, the quantified analysis of the x and y coordinate deviations of
the coordinate point pairs shows that the maximum interval of deviation variation is
Ax € [—0.231,0.644 ], Ay € [-0.415,0.775]. The analysis shows that the large deviation is
a result of less information of identifiable elements within the field of view of pedestrians
at the corner. Since the span of accuracy unit scale (m VS cm) between the arbitrary oscil-
lation of pedestrians during walking (meter level) and the deviation of recognition algo-
rithm (centimeter-level) is large, the error range of this method is controlled in the maxi-
mum range which is acceptable in practice. Therefore, the visualization of the guidance
information in the form of matching scene recognition positioning anchor points with
road network nodes does not cause any disturbance to the user's positioning and naviga-
tion process. The method has good feasibility and engineering application value.

Table 4. Statistics of coordinate deviation between pedestrian walking trajectory and map-matched trajectory (partial).

Track point number  Coordinates of pedestrian walk-  Map Matching Track Point Coor- Deviation values
ing track points dinates (Ax,Ay)

Starting Point (-12.145,21.343) (-12.0,21.2,17.550) (-0.145,0.143)
1 (-3.231,21.975) (-3.0,21.2,17.550) (-0.231,0.775)

2 (29.401,21.474) (29.5,20.7,17.550) (-0.099,0.774)

3 (7.950,18.903) (8.0,18.2,17.550) (-0.050,0.703)

4 (39.931,21.868) (40.0,21.2,17.550) (-0.069,0.668)

5 (31.915,21.867) (32.0,21.2,17.550) (-0.085,0.667)

6 (38.941,21.860) (39.0,21.2,17.550) (-0.059,0.660)

7 (-0.858,21.681) (-1.5,21.2,17.550) (0.642,0.481)

8 (4.077,19.333) (3.5,19.7,17.550) (0.577,-0.367)

9 (21.017,17.828) (20.5,18.2,17.550) (0.517,-0.372)

10 (0.144,20.785) (-0.5,21.2,17.550) (0.644,-0.415)

End Point (41.661,21.507) (41.5,21.2,17.550) (0.161,0.307)

4. Discussion

In this paper, a building map semantic constrained cell phone indoor scene recogni-
tion and localization method is proposed. The scene element recognition method is based
on the improved YOLOvV5 model, where the element information in the building scene is
recognized in real-time through the cell phone camera, and then the map location anchor
points with geographic coordinates are matched. This paper constructs MLA with univer-
sal scene elements in building interior, so the scene element recognition model does not
need to manually research a lot of element information of other building interior scenes,
and it does not need to maintain or update the scene element recognition information for
a long time, therefore this method is less dependent and more universal in multi-applica-
tion scenes. The comparison experiments show that the improved YOLOv5s network
model outperforms the YOLOv5s model in identifying nine different types of pervasive
element anchors in building scenes, and the recall rate in the test set is consistently above
97.2%, indicating that the method is suitable for indoor scenes of buildings with rich scene
element information.

This paper constructs map location anchors based on the geometric and semantic
information of building spatial elements to provide spatial semantic constraints for scene
element recognition results. The elements of building map location anchor points are all
types of elements with universal characteristics, and these elements generally have a long
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life cycle after the building is put into use, and thus have the advantages of stability and
long-term availability. At the same time, the location anchor point of the building map
proposed in this paper contains not only the geometric location anchors MLA(C), which
is considered as a recognizable element in scene recognition, but also the geometric infor-
mation location anchors MLA(S), which is used by the cell phone to sense the signal of
each sensor in cooperation with multi-source sensors and can be applied to assist the co-
operative localization method of other built-in sensors of the cell phone, so as to achieve
the effect of cooperative localization application for complex multi-scene. The experi-
mental results show that map location anchor points can provide very effective reference
coordinate location information in the process of cell phone video recognition localization.
In addition, the data sample collection scheme is oriented to the geometric and semantic
constraint process of building map model, so the method in this paper can easily imple-
ment a crowdsourcing-based approach to aggregate building location anchor data, and
efficiently integrate indoor scene data from different buildings to form a shared building
map sample library.

The experiments match the element information obtained by recognition with the
map location anchors MLA in the SQLite database to locate the position of the constrained
user in the road network. The maximum interval of the deviation change of the scene
element recognition matching localization method is Ax €[-0.231,0.644], Ay €
[-0.415,0.775], which is within the acceptable range of the arbitrary oscillation (meter
level) error during the pedestrian walking process, and the real-time matching process of
this method can eliminate the error in the early pedestrian movement without cumulative
error generation, which significantly enhances the robustness of the method calculation
process. In addition, the building indoor scene recognition model on the cell phone not
only provides input video data but also can quickly retrieve the building map data source
locally on the mobile side, which is a significant advantage of offline recognition and map
matching quickly on the mobile side. This method not only allows real-time browsing of
realistic holographic maps of buildings with real feelings on the cell phone but also facil-
itates the further enhancement of related applications utilizing AR-enhanced semantic el-
ement information in building maps, etc.

5. Conclusions and Future Work

In this paper, we propose an indoor scene recognition and localization method for
cell phones with semantic constraints of building maps. This paper provides semantic
constraint information for indoor positioning by constructing a geocoded entity library of
building map location anchor points (MLA), and then identifies the semantic constraint
element information in the scene based on the improved YOLOv5s model, and matches
the identified element information with the database map location anchor points MLA,
and lastly constrains the location of the user in the road network corresponding to the
location information from the scene element feature points, thus Realize real-time posi-
tioning and navigation. The experimental results show that the improved YOLOv5s
model network model can identify 9 different types of pervasive element anchors in build-
ing scenes by comparison, and the recall rate is consistently above 97.2% in the test set,
and the method can be extended and applied to other building map models, and the max-
imum localization error is within the range of 0.775 m, and up to about 0.5 m after apply-
ing the BIMPN road network walking node constraint, which can effectively achieve high
positioning accuracy in the building scenes with rich MLA element information.

The solution proposed in this paper is not a solution that particularly requires indoor
environmental data. The video for scene element recognition is obtained through cell
phone camera shooting, and the key to cell phone scene element recognition is an efficient
lightweight network model. In the future, it is necessary to consider a more efficient and
robust generalized training element anchor model, and apply it to more complex and
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large-scale environments. The main goal is to interact building maps with augmented re-
ality and to visually represent the semantic information in building maps, thus providing
more accurate and richer services to users for real-time location navigation.
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