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Abstract: At present, indoor localization is one of the core technologies of location-based services 
(LBS), and there exist numerous scenario-oriented application solutions. Visual features, as the main 
semantic information to help people understand the environment and thus occupy the dominant 
part, many techniques about indoor scene recognition are widely adopted. However, the engineer-
ing application problem of cell phone indoor scene recognition and localization has not been well 
solved due to insufficient semantic constraint information of building map and the immaturity of 
building map location anchors (MLA) matching positioning technology. To address the above prob-
lems, this paper proposes a cell phone indoor scene recognition and localization method with build-
ing map semantic constraints. Firstly, we build a library of geocoded entities for building map loca-
tion anchors (MLA), which can provide users with "immersive" real-world building maps on the 
one hand and semantic anchor point constraints for cell phone positioning on the other. Secondly, 
using the improved YOLOv5s deep learning model carried on the mobile terminal, we recognize 
the universal map location anchors (MLA) elements in building scenes by cell phone camera video 
in real-time. Lastly, the spatial location of the scene elements obtained from the cell phone video 
recognition is matched with the building MLA to achieve real-time positioning and navigation. The 
experimental results show that the model recognition accuracy of this method is above 97.2%, and 
the maximum localization error is within the range of 0.775 m, and minimized to 0.5 m after apply-
ing the BIMPN road network walking node constraint, which can effectively achieve high position-
ing accuracy in the building scenes with rich MLA element information. In addition, the building 
map location anchors (MLA) has universal characteristics, and the positioning algorithm based on 
scene element recognition is compatible with the extension of indoor map data types, so this method 
has good prospects for engineering applications. 

Keywords: cell phone indoor positioning; scene recognition; building map; map location anchor; 
YOLOv5; geocoding matching 
 

1. Introduction 
Buildings are the main space for human activities, such as office buildings, libraries, 

shopping centers, hospitals, train stations, airports, etc. According to research, humans 
spend about 87% of their time in indoor spaces [1,2]. However, the widely used Global 
Navigation Satellite System (GNSS) cannot be used indoors or in urban environments, 
where GNSS signals are blocked by buildings, trees, or other obstructions. Compared with 
outdoor positioning, indoor positioning is more challenging. Because indoor spaces are 
more complex than outdoor environments in terms of layout, topology, and spatial con-
straints [3], indoor positioning requires higher accuracy [4]. In recent years, many indoor 
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positioning systems have been proposed by researchers, which use different techniques, 
such as infrared [5], Wi-Fi [6], Bluetooth [7], optical [8], and inertial sensors [9]. However, 
each of these techniques has its application scenarios when considering accuracy, cost, 
coverage, complexity, and applicability. On the one hand, a certain number of signal ac-
cess points need to be deployed in advance. On the other hand, the complex indoor space 
blocks the effective transmission of some signals, which makes pervasive indoor localiza-
tion services more challenging. The current scene recognition visual localization technol-
ogy incorporating multi-source sensors provides a new way to solve these problems, and 
it is quickly becoming one of the important directions in the research field of mobile phone 
indoor localization. 

The purpose of the scene recognition research is to use recognition algorithms to ef-
fectively process the semantic information contained in the image data, in order to extract 
the image features and determine the valid information of the category to which the scene 
image belongs. In the face of complex scene recognition problems, traditional scene recog-
nition methods [10] gradually show limitations. Deep neural networks are able to learn 
the deep characteristics of images from a large number of sample images and show sig-
nificant advantages in the field of image recognition, which better achieves low cost, high 
accuracy, and more stable navigation services [11]. Deep neural networks are network 
structures containing multiple hidden layers and multiple perceptrons, which can de-
scribe the properties and features of objects at a more abstract and deeper level [12]. They 
are widely used with the advantages of strong feature extraction ability, high recognition 
accuracy, and good real-time performance. Deep learning based object detection methods 
can be divided into three categories. First, candidate region-based object detection meth-
ods, such as Hybrid Task Cascade[13], CenterMask [14], PolyTransform[15], etc; second,  
regression-based object detection methods, such as YOLO [16,17], SSD [18], FPN [19], etc; 
third, search-based object detection methods, such as AttentionNet [20] and reinforcement 
learning-based object detection algorithms [21]. Many scholars have incorporated deep 
learning into the technical solutions for indoor positioning and navigation: A fingerprint 
localization algorithm based on Deep Belief Networks (DBN) with noise reduction is used 
to achieve target localization in specific indoor environments [22]; using deep learning 
methods to automatically encode and extract deep features from Wi-Fi fingerprint data, 
and create a deep feature location fingerprint database with one-to-many relationships for 
indoor localization [23]; adding the scene recognition classification process to a visual lo-
calization system [24], etc. At present, the image quality, pixel resolution, sensor, and ap-
erture performance of the video frames obtained by the cell phone camera have been sig-
nificantly improved. And with the rapid development of artificial intelligence, the 
smartphone camera sensor adds intelligent anti-vibration, super night scene, backlighting, 
and other auxiliary functions to make the video image more clearer. The use of more effi-
cient and suitable for scene recognition and geocoding of the semantic constraints of the 
building map information to assist, and then achieve cell phone camera scene recognition 
and localization is a field with great potential. 

Building maps is an effective type of information representation of interior spatial 
elements, in which semantic information refers to that information that enables cell 
phones to better understand user movement rules, perceive user scenes, plan navigation 
routes, and is covered in multi-level and rich dimensionality in high precision maps of 
buildings [25-27]. Semantic information in building maps can better represent the user's 
scene [28]. Semantically rich indoor maps are an indispensable part of geolocation-based 
indoor services [29]. Markers and contextual information in indoor maps can better un-
derstand user movement rules, perceive user scenarios, correct indoor positioning errors, 
and plan indoor navigation paths [30]. The research on the genealogical semantic features 
of building map models still has much room for development, among which how to ef-
fectively organize the semantic information of building entity elements, and construct and 
improve building map models for cell phone indoor positioning and navigation with uni-
versal applications, which is a key problem that needs to be solved urgently [31,32]. 
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In summary, for the problems of insufficient semantic constraint information of 
building map and matching localization of anchor points of building map, this paper pro-
poses a cell phone indoor scene recognition and localization method with the semantic 
constraint of building map. Through the attribute association relationship of each element 
of building indoor space, the building indoor map location anchor map is constructed 
[32,33]. The map location anchors (MLA) is distributed in the indoor environment of the 
building along with the step nodes on road network [33]. And in the process of user move-
ment, deep learning is used to obtain more accurate underlying features of the scene map, 
to achieve semantic recognition of building scenes, to match the recognition results with 
MLA. At the same time, logical reasoning using scene element matching results realizes 
the deep integration of information from various parts of perception, semantics, localiza-
tion, and element management [34,35]. To further obtain more accurate location coordi-
nate information of instantiated scene elements, and achieve semantically constrained in-
door scene recognition and localization of building maps for cell phones. 

The organization of this paper is as follows. Section 2 describes the construction 
method of indoor scene recognition and localization method for cell phones with semantic 
constraints of building maps in detail. Section 3 presents the experiment and results. Sec-
tion 4 discusses the usability and advantage. Finally, Section 5 concludes this study. 

2. Methods 
In this section, we will illstrate the implementation of cell phone indoor scene recog-

nition and localization, under the semantic constraints of building maps [33]. Firstly, the 
effective information is extracted from the BIM model, and the building map and map 
location anchor points are constructed respectively. The building map model part consists 
of a solid model and a network model, which are mainly used for the visualization of 
building information and the abstract expression of topological relationships. The map 
localization anchor point part consists of two parts: the geometric information location 
anchors MLA (S) that senses each sensor signal in the fused multi-source sensors, and the 
geometric location anchors MLA (C) that is regarded as having recognizable elements in 
scene recognition. Next, the identification method of cell phone indoor scene location an-
chor point class elements in building maps are proposed. Lastly, the semantic constraint 
information of the building map is geocoded to match with the recognition results of mo-
bile phone indoor scene elements, to implement real-time positioning and navigation at 
the cell phone. 

 
Figure 1. Technical flowchart of indoor scene recognition and localization method for cell phones 
with semantic constraints of building maps 
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2.1. Semantic Constraint Information Construction of Building Maps 
2.1.1. Construction method of building map model 

Building map model is the prerequisite for building map semantic constraint recog-
nition scene construction. Firstly, based on the existing 3D building solid model, a 3D 
building component solid model with the spatial concept is proposed, combined with the 
texture information collected by UAV tilt photography technology and cell phone close-
up photography technology, to improve the advantages of 3D building component solid 
in the real-world simulation of building map, and at the same time, referring to the spatial 
representation in the geometric boundary model, select building components that belong 
to a specific space and have a boundary relationship to represent a certain space, so as to 
meet the needs of spatial representation of building maps. Secondly, based on the abstract 
structure of the "edge-node" relationship, the edge-node elements are further divided and 
organized for the inconsistency of spatial topology relationship in different building 
scenes. The multi-level organization of main road-secondary road-connection relationship 
is adopted for abstract representation, and the spatial relationship description of the grid 
model is referred, to abstract mixed open spaces in buildings, to further satisfy the uni-
versality of building maps in spatial topology representation. Lastly, according to the dif-
ference of spatial expression between the network model and the solid model, the spatial 
relationship and semantic association of elements in the network model and the solid 
model are referred to. Their spatial linkage relationships are formed by a combination of 
direct and indirect links, to construct an interactive building map model (BIMPN) based 
on the network model and the solid model [33], to create the digital twin of the building 
map at the level of refined space and instantiated objects. The construction method of 
building map model BIMPN is shown in Figure 2. 

 
Figure 2. The construction method of building map model BIMPN [33] 

2.1.2. Method for constructing map positioning anchor points in building map model 
On the one hand, indoor localization can enhance location estimation by building 

maps and indoor features. On the other hand, it can also leverage the potential value of 
indoor landmarks, to provide semantic localization capabilities with spatial constraints. 
This paper constructs MLA for semantic and geometric information representation in each 
scene of the building map, including geometric information location anchors MLA (S) 
where the cell phone cooperates with multi-source sensors to sense each sensor‘s signal, 
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and geometric location anchors MLA (C) which are considered as having identifiable ele-
ments in scene recognition. First, we selectively construct the semantic information of per-
vasive accessory facilities (doors, door signs, fire cabinets, fire alarms, safety exits, cam-
eras, WLAN, electrical boxes, elevators, etc.) within the building map, and then obtain the 
starting position of fused multi-source sensors (such as Bluetooth, etc.) for cooperative 
positioning through the interface, and associate and record it with the geometric position 
of scene recognition elements MLA (C) in the map location anchor points for subsequent 
user positioning and navigation movement process using deep learning algorithms to 
identify and match the elements of the scene video frame images taken by cell phone cam-
eras. Mathematically we define the map location anchors MLA as shown in (1 and 2):  

MLA =  { 𝑆(𝑥, 𝑦, 𝑧), 𝐶(𝑥, 𝑦, 𝑧) | 𝑥, 𝑦, 𝑧 ∈ R }                 (1) 
𝐶(𝑥, 𝑦, 𝑧) =  { 𝑃(𝑥, 𝑦, 𝑧) , ෌ 𝑅௜(𝑥, 𝑦, 𝑧) | 𝑥, 𝑦, 𝑧 ∈ 𝑅 }

௡

௜
            (2) 

In Equation 1, the localization anchor point MLA consists of two parts, S and C. 
𝑆(𝑥, 𝑦, 𝑧) represents the geocoded information part of the coordinate position (set) corre-
sponding to the built-in sensor signal feature pattern of the cell phone that can be used for 
matching localization in the building map, and 𝐶(𝑥, 𝑦, 𝑧) represents the geocoded infor-
mation part of the coordinate position corresponding to the identifiable pervasive ele-
ments in the scene that can be used for matching localization in the building map. In Equa-
tion 2, 𝑃(𝑥, 𝑦, 𝑧)denotes the position coordinates of the pervasive element location anchor 
points in the building map that can be used as cell phone video image recognition, 
∑ 𝑅௜(𝑥, 𝑦, 𝑧)௡

௜  denotes the sequence of coordinates of the elements acquired by recognition 
used in the scene for the matching localization calculation, where 𝑅௜(𝑥, 𝑦, 𝑧) denotes the 
position coordinates of the 𝑖th element acquired by recognition in the scene, 𝑛 is the 
number of elements acquired by recognition, and 𝑅 denotes the real number field. The 
acquisition of coordinates 𝑃(𝑥, 𝑦, 𝑧) of a current location needs to be solved using the aid 
of one or more identification elements 𝑅௜(𝑥, 𝑦, 𝑧). The construction of a map location an-
chor point map is to provide a service interface to the building map engine for the imple-
mentation of indoor location navigation and location services for cell phones under se-
mantic constraints. 

 
Figure 3. Outline of map positioning anchor point construction method in the building map model  

2.2. Method for identifying indoor scene elements in building map model 
Researchers have now widely deployed applied deep learning recognition models 

on mobile devices [36,37], and YOLO (You Only Look Once) is one of the SOTA deep 
convolutional neural models in the field of target detection. YOLOv1 [16] was proposed 
in 2016, and the latest version is currently YOLOv5 (Glenn Jocher, 2020) [38]. This paper 
uses the deep learning open source framework Pytorch to model, train, test, validate and 
deploy the YOLO v5 algorithm on cell phones to achieve the recognition of localization 
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anchor elements in indoor scenes. The YOLOv5 network architecture contains four net-
work models, YOLOv5s [38], YOLOv5m [38], YOLOv5l [38], and YOLOv5x [38]. The main 
difference between them is the different number of feature extraction modules and con-
volution kernels at specific locations for each network model, and the sequential increase 
in the size and number of parameters for each network model. There are nine targets to 
be recognized for the experiments in this paper, and there are high requirements for the 
real-time and lightweight nature of this recognition model. Therefore, this paper compre-
hensively considers the accuracy, efficiency, and size of the recognition model, and ulti-
mately improves the recognition network of building map location anchor elements in 
indoor scenes based on the YOLOv5s [38] architecture. 

 
Figure 4. Adaptation of YOLOv5 network structure for scene localization anchor element recogni-
tion 

As shown in Figure 4, the YOLO v5s [38] architecture mainly consists of four parts: 
input side, backbone network, neck network, and prediction network. Mosaic data en-
hancement, adaptive anchor frame calculation, and adaptive image scaling are used on 
the input side to optimize the input image and reduce the computation to improve the 
target detection speed. The backbone network is a convolutional neural network that ag-
gregates and forms image features at different image granularity, aiming to reduce the 
computation of the model and accelerate the training speed. Firstly, using the slice oper-
ation, the input three-channel image (3 × 640 × 640) is segmented into four slices, each of 
size 3 × 320 × 320. Secondly, the four sections are connected in depth using the Concat 
operation, and the output feature map is of size 12 × 320 × 320. Thirdly, a convolutional 
layer consisting of 32 convolutional kernels is used to generate a 32 × 320 × 320 output 
feature map. Lastly, the result is output to the next layer through the BN layer (batch nor-
malization) and the Hardswish activation function. The neck network is a series of feature 
aggregation layers that mix and combine image features. It is mainly used to generate 
FPN (Feature Pyramid Network), and then transmit the output feature maps to the detec-
tion network (Prediction Network). Since the feature extractor of this network adopts a 
new PAN structure with enhanced bottom-up paths, improved transmission of low-level 
features, and enhanced detection of targets at different scales. As a result, the same target 
object of different sizes and scales can be accurately identified. The prediction network is 
mainly used for the final prediction of the model, which applies the anchor frame to the 
feature map output from the previous layer and outputs a vector with the class probability 
of the target object, the target score, and the location of the bounding box around the tar-
get. The prediction network of YOLOv5s [38] architecture consists of three prediction lay-
ers and its input is a feature map of dimensions 80 × 80, 40 × 40, and 20 × 20 for detecting 
image objects of different sizes. In our modified version, multiple arrays are used to store 
the candidate frame parameters in the post-processing process. We need to remove the 
original multi label and add the best class only part, and then generate the predicted 
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bounding boxes and target classes in the original image and label them to fit the recogni-
tion task of this paper and achieve the detection of building map location anchor point 
element targets in indoor scene images. 

2.3. Method for Mobile phone indoor scene recognition and localization under semantic con-
straints of building map 

As shown in Figure 5, the cell phone indoor scene recognition and localization 
method under the semantic constraints of building maps mainly includes steps of model 
quantification, element identification, map matching, and visualization of localization re-
sults. 

 
Figure 5. Mobile phone indoor scene recognition and localization method under the semantic con-
straints of building map 

2.3.1. Quantification 
In the mobile indoor positioning and navigation system MINPS 2.0 [39], the 

YOLOv5.pt model is first converted into a tflite model, and the Flatbuffer serialized model 
file format is used to make it more suitable for mobile piggybacking. At the same time, in 
order to reduce the computational pressure on the mobile terminal, the model is com-
pressed by quantization, and the weight parameters stored in the model file are converted 
from Float32 to FP16. The quantization formula is shown below. 

𝑋௤௨௔௡௧௜௭௘ௗ =  𝑋௙௟௢௔௧ ÷ 𝑋௦௖௔௟௘ + 𝑋௭௘௥௢௣௜௡௧                   (3) 

   𝑋௦௖௔௟௘ =  
௑೑೗೚ೌ೟

೘ೌೣ ି௑೑೗೚ೌ೟
೘೔೙

௑೜ೠೌ೙೟೔೥೐೏
೘ೌೣ ି௑೜ೠೌ೙೟೔೥೐೏

೘೔೙                         (4) 

𝑋௭௘௥௢௣௜௡௧ = 𝑋௤௨௔௡௧௜௭௘ௗ
௠௔௫ − 𝑋௙௟௢௔௧

௠௔௫ ÷ 𝑋௦௖௔௟௘                       (5) 
𝑋௙௟௢௔௧ =  𝑋௦௖௔௟௘ × (𝑋௤௨௔௡௧௜௭௘ௗ − 𝑋௭௘௥௢௣௢௜௡௧)                 (6) 

Equation (3) is the quantization of the floating-point value to the fixed-point value, 
and Equation (6) is the inverse quantization of the fixed point value to the floating-point 
value, where 𝑋௙௟௢௔  denotes the true floating-point value, 𝑋௤௨௔௡௧௜௭௘ௗ denotes the quan-
tized fixed-point value, 𝑋௦௖௔௟௘  denotes the compression ratio of the quantization interval, 
 𝑋௙௟௢௔௧

௠௔௫  denotes the maximum floating-point value, 𝑋௙௟௢௔௧
௠௜௡  denotes the minimum floating-

point value, 𝑋௤௨௔௡௧௜௭௘ௗ
௠௔௫  denotes the maximum fixed-point value, 𝑋௤௨௔௡௧௜௭௘ௗ

௠௜௡  denotes the 
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minimum fixed-point value, and 𝑋௭௘௥௢௣௜௡௧  denotes the quantized fixed-point value corre-
sponding to the zero floating-point value. 
2.3.2. Identification 

The quantized model file is deployed to the mobile APP MINPS2.0 [39], and the user 
takes a video of the scene through the built-in optical camera of the smartphone, as shown 
in Figure 6. Each frame of the video is used as the input image for scene element recogni-
tion, and then performs the element extraction and the real-time fast solution of the 3D 
coordinates of the elements of the map location anchor points in the scene in the 
smartphone-side APP. As shown in Figure 7. 

 
Figure 6. The recognition effect of each element in different scenes of the building 

2.3.3. Matching 
The mobile app calculates the exact pose of the positioning image locally by using 

the building map location anchors MLA stored locally in SQLite in advance. Then per-
forms the initial positioning result on the cell phone to match the map with the walking 
nodes in the building map road network. The initial positioning result point and the build-
ing map positioning anchor point are in the same user coordinate system. The distance 
between the map positioning anchor point and the initial positioning point is calculated 
based on stereometric and linear algebra, and the unique solution is determined by the 
P3P algorithm [40]. Next, the nearest walking node to the positioning result point is de-
termined by the calculation as the positioning matching result in the road network. Ulti-
mately, the position information of the localization image is displayed in the user's 
smartphone, thus realizing the self-localization of the instantaneous positional position of 
the smartphone camera. The algorithm flow is shown in Figure 7. 
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Figure 7. Building map positioning anchor point geocoding matching positioning method 

The process of the matching location algorithm is described as follows: 

Algorithm 1. Matching location pseudocode for scene element recognition and building map location anchor 
point geocoding 

Input: Initial Bluetooth location points 𝑝0(𝑥0, 𝑦0, 𝑧0) ; map location anchor points obtained from scene element 
recognition; road network walking node data set 
Output: Positioning point matching position 𝑝𝑡(𝑥𝑡, 𝑦𝑡, 𝑧𝑡); distance error 𝐷௘ 
Steps: 
1) Calculate the distance from the map positioning anchor points (the user must determine that there must be and 

not less than 4 in the scene) obtained from the indoor scene element recognition to the initial Bluetooth 
positioning point 𝑝0(𝑥0, 𝑦0, 𝑧0) . Generally, multiple sets of distance solutions 𝑆𝑀௜  are obtained until all 
positioning anchor nodes have been processed and then stop. 

2) After obtaining the map positioning anchor point distance, the 𝑃3𝑃 algorithm is used to determine a unique set 
of solutions, to obtain the distance 𝑆𝑀௧  of the user camera, and to obtain the coordinates 𝑝𝑐(𝑥𝑐, 𝑦𝑐, 𝑧𝑐) 
corresponding to the current walking node 𝑆𝑁௖ corresponding to 𝑆𝑀௧. 

3) Create a buffer centered on the current walking node 𝑝𝑐(𝑥𝑐, 𝑦𝑐, 𝑧𝑐) coordinates, the radius of this buffer is the 
maximum error range 𝐸௠௔௫  plus the step size 𝑆௟. Use equation (2-7) to obtain the walking node 𝑆𝑁௡ in the 
buffer. 

𝑆𝑁௡ = 𝐵𝑢𝑓𝑓𝑒𝑟 ( 𝑝0 , 𝑟𝑎𝑑𝑖𝑢𝑠 )                           (2-7) 
In the equation, 𝑟𝑎𝑑𝑖𝑢𝑠 is the buffer radius, 𝑟𝑎𝑑𝑖𝑢𝑠 =  𝐸௠௔௫ +  𝑆௟. 
4) Calculate the location 𝑝𝑡(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) of the matching locus: the distance from each 𝑆𝑀௡ to the coordinates, 𝑝𝑐 of 

the walking node in the current road network will be calculated, and then the minimum value 𝐷௠௜௡ will be 
obtained from it, and the walking node 𝑝𝑡(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) corresponding to 𝐷௠௜௡ will be obtained. 

5) Save 𝐷௠௜௡  as distance error 𝐷௘  , count the distance error 𝐷௘   obtained from each calculation and obtain the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2022                   doi:10.20944/preprints202201.0431.v1

https://doi.org/10.20944/preprints202201.0431.v1


 10 of 21 
 

 

maximum error range 𝐸௠௔௫  after adaptive correction, and output 𝐷௘  and 𝑝𝑡(𝑥𝑡, 𝑦𝑡, 𝑧𝑡). 

3. Experiment 

3.1. Data 
3.1.1. Building map data 

The building spatial geometric model is the expression of 3D data to the real world, 
and also the basis for indoor location-oriented service applications. In this paper, the 
building F (longitude 116.29606E, latitude 39.751892N) of the School of Geomatics and 
Urban Spatial Informatics of Beijing University of Civil Engineering and Architecture is 
used as the experimental area, with an area of about 2800 square meters. The object of the 
experimental study is a composite solid building, consisting of six floors, five above 
ground and one underground. The outdoor structure consists mainly of side and top ele-
vations. The interior space distribution includes rich geometric structures such as lobbies, 
atriums, corridors, elevators, stairs, and rooms, as well as universal signs such as doors, 
door signs, fire cabinets, fire alarms, safety exits, cameras, WLAN, electrical boxes and 
elevators. Figure 8(a) shows the construction process and results of the network model, 
including the construction of the single-level horizontal network and the connection be-
tween the horizontal network and the vertical transportation mode. Figure 8(b) shows the 
construction process and results of the physical model, including the construction of basic 
elements, marking elements, and thematic elements in the physical model. The construc-
tion result of the data of the building map hybrid model BIMPN [33] example is shown in 
Figure 8(c), while the local situation of the visualization of the building map elements is 
shown in Figure 8(c). The visualization of building maps and other related data in this 
paper can be accessed via the Internet [41]. 
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Figure 8. Building map of Building F of the School of Geomatics and Urban Spatial 
Informatics of Beijing University of Civil Engineering and Architecture [33] 

3.1.2. Anchor Point Data 
The extraction of map positioning anchor point (semantic) coordinate information 

required in the building map is processed by Blender software [42], which is an open-
source cross-platform 3D production software toolkit that supports a series of operations 
such as modeling, animation, materials, rendering, node capture, etc., as shown in Figure 
3-1-2. At present, Blender does not support the IFC format, so it needs to export the BIM 
model built by Revit to the universal 3D format FBX and import it into Blender V2.78 for 
capturing the map positioning anchor points. The map positioning anchor points to be 
captured in this paper mainly include the geometric centers of universal building compo-
nents such as doors, door signs, fire cabinets, fire alarms, security exits, cameras, WLANs, 
electrical boxes, elevators, etc. The capture is processed automatically by the Python script 
developed in this paper. 
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Figure 9. Extraction of coordinate information of map positioning anchor points (semantic) in the 
building map 

3.1.3. Element sample dataset 
For the current study, a dataset of building indoor scene elements that can be used 

for YOLOV5 model training is needed. We consider geometric location points with certain 
identifiable elements in scene recognition as map localization anchor points. However, the 
public datasets are not suitable for the objectives of this study. Therefore, it is necessary 
to customize and build pervasive accessory facility datasets within the building map to 
continue this research. We have selected nine types of building indoor scene pervasive 
elements as the identification targets for this project. The building map localization anchor 
elements are doors, door signs, fire cabinets, fire alarms, security exits, cameras, WLAN, 
electrical boxes, and elevators. Pictures with universal elements in the building scenes 
need to be taken and collected, with different angles and distances according to the user's 
pose requirements during recognition, in order to build the element information required 
by the recognition algorithm. The dataset has a total of 2832 images and 7610 element 
target samples, as shown in Table 1. 

Table 1. Sample subset of building interior scene features. 

Categories Number of elemental samples Percentage 
Doors 2460 32.33% 

Door Signs 1200 15.77% 
Fire Cabinets 450 5.91% 
Fire Alarms 540 7.10% 

Exits 1380 18.14% 
Cameras 320 4.20% 
WLANs 440 5.78% 

Electrical Boxes 660 8.67% 
Elevators 160 2.10% 

Total 7610 100% 

3.2. Experimental results 
3.2.1. Building map and map location anchor point construction results 

In this paper, the semantic information of map localization anchor points required in 
the building map is extracted based on the FBX format data of the target building (F build-
ing of the School of Geomatics and Urban Spatial Informatics, Beijing University of Civil 
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Engineering and Architecture), which is obtained by using Python scripting tool in 
Blender [42] software environment, stored as CSV format data and then imported into 
PostgreSQL database, and the data statistics are shown in Table 2, with a total of 586 ele-
ment semantic constraints for building map positioning anchor points. 

Table 2. Statistics of Map Location Anchor s for semantic constraints of building maps. 

F-building Doors Door 

Signs 

Fire 

Cabinets 

Fire 

Alarms 

Exits Cameras WLANs Electrical 

Boxes 

Elevators Total 

B1 39 11 6 4 14 5 1 8 1 89 

F1 36 11 4 4 14 5 4 3 1 82 

F2 37 11 3 5 16 4 6 3 1 86 

F3 46 1 4 4 14 4 7 4 1 85 

F4 50 19 4 5 15 4 7 5 1 110 

F5 47 33 4 7 18 6 7 11 1 134 

Total 255 86 25 29 91 28 32 34 6 586 

3.2.2. Recognition results of indoor scene elements of cell phones 
In the experiments of cell phone video frame recognition of building indoor scene 

elements, the improved YOLOv5s model is used for the recognition of building indoor 
elements. All experiments in this study are implemented in the framework of Torch 1.7.0, 
driven by CUDA, running on a single NVIDIA GeForce RTX 3070 GPU, with the specific 
hyperparameter information shown in Table 3. 

Table 3. Hyperparameters information. 

Hyperparameters Values 
GPU_COUNT 1 

CFG Yolov5s.yaml 
Data Scence.yaml 

Weights Yolov5s.pt 
Unm-Classes 9 

Epochs 1000 
Batch Size 32 
Img Size 640*640 
Evolve true 

Cache images true 
Single cls false 

The experiments use 2256 images (video frames) from a sample set of 2832 images 
for training and 288 images for validation and testing in the field. Experiment 1 uses the 
YOLOv5s model for training and takes 63 hours 3 minutes and 20 seconds to complete 
1000 epochs. Experiment 2 uses the improved YOLOv5s model for training and takes 64 
hours and 10 minutes to complete 1000 epochs. The quantitative comparison of the models 
in terms of precision, recall, mAP@0.5, and mAP@0.5:0.95 is shown in Figure 10. The blue 
corresponds to the YOLOv5s model, and the orange corresponds to the improved 
YOLOv5s model. 
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Figure 10. Comparison of performance metrics between YOLOv5s and modified 
YOLOv5s during training 

As shown in Figure 10, in terms of the speed of recognition performed by the scene 
video, the total duration of a video 758 frames is about 25s, the recognition time of the 
YOLOv5s model is 23.793s (31.858 frames/s), and the recognition time of the improved 
YOLOv5s model is 22.818s (33.219 frames/s), the results show that in terms of recognition 
speed the improved model can achieve the effect of real-time availability. In terms of ac-
curacy, the improved YOLOv5s model is slightly better than the original model overall, 
and it is obvious that the improved model is better than the original model in 500 to 720 
epochs. The result shows that the improved model recognition effect is more suitable for 
the application of such scenes mainly due to the influence of the type (single door, double 
door, glass door, fire door, etc.) and complexity of the door. The learning performance of 
the model gradually improves with iterations, and the convergence speed is very fast, and 
the curve has stabilized by 1000 epochs. The experiments in this paper use the training 
results of 1000 epochs to demonstrate, and the actual production and engineering appli-
cations can be adjusted and optimized based on the actual situation. 

The loss function describes the performance of a given predictor in classifying the 
input data points in a dataset. The smaller the loss, the better the classifier is at modeling 
the representation of the relationship between the input data and the output target. Figure 
11 plots the effect of two different types of losses, which represent losses related to the 
predicted bounding box and losses associated with a given cell containing objects during 
training. ValBox and valObjectness plots represent their validation scores, with training 
losses measured in the middle of each stage and validation losses measured after each 
stage. The results show that the improved YOLOv5s model loss function is smoother and 
converges faster than the original model loss function, which is more suitable for the ap-
plication in the scenario of this paper. 
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Figure 11. Comparison of performance metrics between YOLOv5s and improved YOLOv5s 
during training 

Figure 12 gives an example of some of the results of element recognition for indoor 
scenes of buildings under different lighting and angle conditions. The proposed model in 
this paper is not only applicable to detecting the elements of interest captured in each 
frame of the scene video when the line of sight is in frontal view but also to localize the 
anchor elements captured under the condition that the line of sight is shifted by a certain 
angle during walking. In addition, using the proposed model, the localization anchor el-
ements can also be well-identified under the conditions of sunny daytime, dusk, and in-
door lighting at night. 
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Figure 12. Recognition results of building interior elements using the improved YOLOv5s network 
in different time series 

3.2.3. Localization results of indoor scene recognition for cell phones 
The goal of the experiment is to verify that this method has good localization results 

under the constraints of map localization anchor point information and in buildings with 
rich spatial structure semantic information. The system focuses on indoor scene localiza-
tion under the condition of the known motion starting point. The user starting position is 
obtained by Bluetooth and fused multi-source sensor localization, which is input to this 
method as a known condition. Figure 13 shows the visualization effect of real-time posi-
tioning starting from a certain starting position in the building area. Yellow is the trajec-
tory of the user walking along the corridor path, and blue is the trajectory depicted after 
the video scene element identification localization anchor point and the building map 
road network node (corridor centerline) for map matching. When the input video data 
can be solved in real-time to output accurate positioning coordinates, it will be matched 
with the road network walking nodes to obtain the fusion results of positioning points 
and road network and draw the segment trajectory map. The experimental results show 
that the richer the semantic constraint information in the building map scene and the 
richer the element information obtained from the element recognition in the field video, 
the more information that can be matched between the identifiable elements of the build-
ing space scene and the anchor points of the building map positioning, and the higher the 
accuracy of the completed positioning in the scene walking will be. 
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Figure 13. Localization results of indoor scene recognition for cell phones with semantic con-
straints of building maps 

In order to analyze the effectiveness of this method quantitatively, a total of 103 co-
ordinate points were collected during the experimental matching positioning process, and 
the deviations from the x and y directions of the matching coordinates of the road network 
are shown in Figure 14. The deviation points are mainly concentrated in the x negative 
half-axis. Since the user will face the camera toward the semantic information-rich wall in 
the corridor scene during the recognition process through the cell phone camera, and thus 
will be closer to the opposite semantic information-less wall, resulting in the x direction 
deviation is mostly negative. Because the corner direction is the direction where the y-axis 
is located and the user will temporarily miss the semantic information constraint points 
in the building during the cornering process, the y-direction deviation is larger than the 
x-direction deviation. The experiments do not measure the deviations in the z-direction. 
The z value of the final positioning point coordinates is the z value of the matching walk-
ing node SN (Step Node), and the 10 pairs of point coordinates with the largest deviations 
in the x and y directions of the path coordinates are selected from them for typicality anal-
ysis. 
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Figure 14. Coordinate deviation statistics of pedestrian walking trajectory and map matching tra-
jectory 

As shown in Tables 4, the quantified analysis of the x and y coordinate deviations of 
the coordinate point pairs shows that the maximum interval of deviation variation is 
Δ𝑥 ∈ [−0.231,0.644 ],Δ𝑦 ∈ [−0.415,0.775]. The analysis shows that the large deviation is 
a result of less information of identifiable elements within the field of view of pedestrians 
at the corner. Since the span of accuracy unit scale (m VS cm) between the arbitrary oscil-
lation of pedestrians during walking (meter level) and the deviation of recognition algo-
rithm (centimeter-level) is large, the error range of this method is controlled in the maxi-
mum range which is acceptable in practice. Therefore, the visualization of the guidance 
information in the form of matching scene recognition positioning anchor points with 
road network nodes does not cause any disturbance to the user's positioning and naviga-
tion process. The method has good feasibility and engineering application value. 

Table 4. Statistics of coordinate deviation between pedestrian walking trajectory and map-matched trajectory (partial). 

Track point number Coordinates of pedestrian walk-

ing track points 

Map Matching Track Point Coor-

dinates 

Deviation values 

（Δ𝑥,Δ𝑦） 

Starting Point (-12.145,21.343) (-12.0,21.2,17.550) (-0.145,0.143) 

1 (-3.231,21.975) (-3.0,21.2,17.550) (-0.231,0.775) 

2 (29.401,21.474) (29.5,20.7,17.550) (-0.099,0.774) 

3 (7.950,18.903) (8.0,18.2,17.550) (-0.050,0.703) 

4 (39.931,21.868) (40.0,21.2,17.550) (-0.069,0.668) 

5 (31.915,21.867) (32.0,21.2,17.550) (-0.085,0.667) 

6 (38.941,21.860) (39.0,21.2,17.550) (-0.059,0.660) 

7 (-0.858,21.681) (-1.5,21.2,17.550) (0.642,0.481) 

8 (4.077,19.333) (3.5,19.7,17.550) (0.577,-0.367) 

9 (21.017,17.828) (20.5,18.2,17.550) (0.517,-0.372) 

10 (0.144,20.785) (-0.5,21.2,17.550) (0.644,-0.415) 

End Point (41.661,21.507) (41.5,21.2,17.550) (0.161,0.307) 

4. Discussion 
In this paper, a building map semantic constrained cell phone indoor scene recogni-

tion and localization method is proposed. The scene element recognition method is based 
on the improved YOLOv5 model, where the element information in the building scene is 
recognized in real-time through the cell phone camera, and then the map location anchor 
points with geographic coordinates are matched. This paper constructs MLA with univer-
sal scene elements in building interior, so the scene element recognition model does not 
need to manually research a lot of element information of other building interior scenes, 
and it does not need to maintain or update the scene element recognition information for 
a long time, therefore this method is less dependent and more universal in multi-applica-
tion scenes. The comparison experiments show that the improved YOLOv5s network 
model outperforms the YOLOv5s model in identifying nine different types of pervasive 
element anchors in building scenes, and the recall rate in the test set is consistently above 
97.2%, indicating that the method is suitable for indoor scenes of buildings with rich scene 
element information. 

This paper constructs map location anchors based on the geometric and semantic 
information of building spatial elements to provide spatial semantic constraints for scene 
element recognition results. The elements of building map location anchor points are all 
types of elements with universal characteristics, and these elements generally have a long 
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life cycle after the building is put into use, and thus have the advantages of stability and 
long-term availability. At the same time, the location anchor point of the building map 
proposed in this paper contains not only the geometric location anchors MLA(C), which 
is considered as a recognizable element in scene recognition, but also the geometric infor-
mation location anchors MLA(S), which is used by the cell phone to sense the signal of 
each sensor in cooperation with multi-source sensors and can be applied to assist the co-
operative localization method of other built-in sensors of the cell phone, so as to achieve 
the effect of cooperative localization application for complex multi-scene. The experi-
mental results show that map location anchor points can provide very effective reference 
coordinate location information in the process of cell phone video recognition localization. 
In addition, the data sample collection scheme is oriented to the geometric and semantic 
constraint process of building map model, so the method in this paper can easily imple-
ment a crowdsourcing-based approach to aggregate building location anchor data, and 
efficiently integrate indoor scene data from different buildings to form a shared building 
map sample library. 

The experiments match the element information obtained by recognition with the 
map location anchors MLA in the SQLite database to locate the position of the constrained 
user in the road network. The maximum interval of the deviation change of the scene 
element recognition matching localization method is Δ𝑥 ∈ [−0.231,0.644 ] , Δ𝑦 ∈

[−0.415,0.775], which is within the acceptable range of the arbitrary oscillation (meter 
level) error during the pedestrian walking process, and the real-time matching process of 
this method can eliminate the error in the early pedestrian movement without cumulative 
error generation, which significantly enhances the robustness of the method calculation 
process. In addition, the building indoor scene recognition model on the cell phone not 
only provides input video data but also can quickly retrieve the building map data source 
locally on the mobile side, which is a significant advantage of offline recognition and map 
matching quickly on the mobile side. This method not only allows real-time browsing of 
realistic holographic maps of buildings with real feelings on the cell phone but also facil-
itates the further enhancement of related applications utilizing AR-enhanced semantic el-
ement information in building maps, etc. 

5. Conclusions and Future Work 
In this paper, we propose an indoor scene recognition and localization method for 

cell phones with semantic constraints of building maps. This paper provides semantic 
constraint information for indoor positioning by constructing a geocoded entity library of 
building map location anchor points (MLA), and then identifies the semantic constraint 
element information in the scene based on the improved YOLOv5s model, and matches 
the identified element information with the database map location anchor points MLA, 
and lastly constrains the location of the user in the road network corresponding to the 
location information from the scene element feature points, thus Realize real-time posi-
tioning and navigation. The experimental results show that the improved YOLOv5s 
model network model can identify 9 different types of pervasive element anchors in build-
ing scenes by comparison, and the recall rate is consistently above 97.2% in the test set, 
and the method can be extended and applied to other building map models, and the max-
imum localization error is within the range of 0.775 m, and up to about 0.5 m after apply-
ing the BIMPN road network walking node constraint, which can effectively achieve high 
positioning accuracy in the building scenes with rich MLA element information. 

The solution proposed in this paper is not a solution that particularly requires indoor 
environmental data. The video for scene element recognition is obtained through cell 
phone camera shooting, and the key to cell phone scene element recognition is an efficient 
lightweight network model. In the future, it is necessary to consider a more efficient and 
robust generalized training element anchor model, and apply it to more complex and 
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large-scale environments. The main goal is to interact building maps with augmented re-
ality and to visually represent the semantic information in building maps, thus providing 
more accurate and richer services to users for real-time location navigation. 
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