Preprint
Article

Investigating Transfer Learning in Graph Neural Networks

Altmetrics

Downloads

279

Views

297

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 January 2022

Posted:

31 January 2022

You are already at the latest version

Alerts
Abstract
Graph neural networks (GNNs) build on the success of deep learning models by extending them for use in graph spaces. Transfer learning has proven extremely successful for traditional deep learning problems: resulting in faster training and improved performance. Despite the increasing interest in GNNs and their use cases, there is little research on their transferability. This research demonstrates that transfer learning is effective with GNNs, and describes how source tasks and the choice of GNN impact the ability to learn generalisable knowledge. We perform experiments using real-world and synthetic data within the contexts of node classification and graph classification. To this end, we also provide a general methodology for transfer learning experimentation and present a novel algorithm for generating synthetic graph classification tasks. We compare the performance of GCN, GraphSAGE and GIN across both the synthetic and real-world datasets. Our results demonstrate empirically that GNNs with inductive operations yield statistically significantly improved transfer. Further we show that similarity in community structure between source and target tasks support statistically significant improvements in transfer over and above the use of only the node attributes.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated