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Abstract 
 
Intratumoral heterogeneity associates with more aggressive disease progression and worse 
patient outcomes. Understanding the reasons enabling the emergence of such heterogeneity 
remains incomplete, which restricts our ability to manage it from a therapeutic perspective. 
Technological advancements such as high-throughput molecular imaging, single-cell omics 
and spatial transcriptomics now allow recording the patterns of spatiotemporal heterogeneity 
in a longitudinal manner, thus offering insights into the multi-scale dynamics of its evolution. 
Here, we review latest technological trends and biological insights from molecular diagnostics 
as well as spatial transcriptomics, both of which have witnessed a burgeoning growth in recent 
past in terms of mapping heterogeneity within tumor cell types as well as stromal constitution. 
We also discuss ongoing challenges, indicating possible ways to integrate insights across 
these methods to have a systems-level spatiotemporal map of heterogeneity in each tumor, 
and a more systematic investigation of implications of heterogeneity for the patient outcomes. 
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Introduction  

The intrinsic heterogeneity in cancer cells can be attributed to their dynamic evolution in response 
to various stresses they face. This heterogeneity can exist at many levels (genomic, metabolomic, 
transcriptomic, epigenomic, proteomic etc.) and has clinical implications as it hinders accurate 
diagnosis and effective treatment, thereby often associating with worse outcomes across cancers 
1–4. Thus, in a heterogeneous tumour mass, cancer cells exhibit distinctly different molecular 
signatures. Comprehensive molecular characterization of tumours through consortia such as The 
Cancer Genome Atlas (TCGA) Research Network, have revealed specific subtypes in multiple 
cancers 5,6, but recent investigations at a single-cell level have revealed that most, if not all, 
tumours contain cells from multiple subtypes, although in different proportions 7–9.  

Tumour heterogeneity does not have a singular cause; it rather accumulates from multitude of 
factors such as genetic, transcriptomic, epigenetic and microenvironmental variations. Inter-
tumoural heterogeneity, that refers to heterogeneity in the same cancer between different patients, 
mainly originates from genetic and somatic alterations between patients whereas intra-tumoural 
heterogeneity that refers to heterogeneity in tumour cells within the same patient originates mainly 
from dynamic variations in tumour cells/tumour microenvironment within the same tumour 4. 
Indeed, this intratumoural heterogeneity, both spatial and temporal, provides an escape 
mechanism for cancer cells against various therapies, ultimately posing a severe hindrance to the 
efficacy of personalized and adaptive cancer therapies 10. Given spatiotemporal variations in 
microenvironment, it is possible to have different resistance mechanisms in same tumour, 
depending on biopsied tumour location 11. Thus, resistance to cancer therapies can be largely 
resolved by accurate analysis of spatial and temporal heterogeneity in tumours, and eventually 
aiming to eradicate the same through a better understanding of the underlying mechanisms.  

Molecular diagnostics in all its advancement is unable to perfectly quantify intratumour variability 
within in vivo setting. For example, microarray analysis measures the transcriptome profiles in a 
large number of cells and provides an average measure of the bulk mass of cells/tissue, but it does 
not capture phenotypic and genotypic variance, thus limiting its use for precision medicine. Spatial 
transcriptomic methods developed recently offer a better resolution into mapping tumour 
heterogeneity, by classifying stromal signatures as well 12. Tumour biopsies and random sampling 
methods are usually unable to capture the full extent of phenotypic or genetic variations. Hence, 
noninvasive methods of analyzing the whole tumour volume appears to be of clinical benefit in 
assessing intratumour heterogeneity and identifying cohorts of patients with poor prognosis and 
response to therapy13–15. Molecular imaging and particularly recent advances in image analysis 
methods have made appreciable advances towards exploring tumour heterogeneity in tumour 
progression and response to therapy. The significance of spatial structure in biological systems 
having long been established, the current clinical unmet need is to support the clinical implications 
of spatial heterogeneity through experimental results and development and integration of robust 
analytical, genomic and molecular imaging modalities to address this challenge; so as to control 
this heterogeneity and improve oncologic treatment outcomes.   

The multiple complex interactions among diverse intra- and extra-cellular processes that leads to 
spatial and/or temporal heterogeneity enabling several cell phenotypes and various gene 
expression archetypes to emerge from the same lesion (genetic background) has been well 
documented in other reviews16–19 . Here, we wanted to focus on examples of quantification of 
heterogeneity through two complementary recent technological advancements: a) how intra-
tumour heterogeneity can be assessed from clinical radiology data to provide meaningful 
diagnostic and therapeutic interventions, and b) how spatial transcriptomics and single-cell data 
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can be leveraged to better identify therapeutic vulnerabilities and treatment strategies.  Correlating 
radiological heterogeneity features to spatial transcriptomics and/histopathology data can provide 
insights that may significantly improve therapeutic outcomes in patients.  

 

Molecular imaging of intratumour heterogeneity: 

The most commonly used clinical imaging modalities of computed tomography (CT), magnetic 
resonance Imaging (MRI), Positron emission tomography (PET)/ Single-photon emission 
computed tomography (SPECT) perform quantitative standard Region Of Interest (ROI) analysis 
that generates a mean parameter for all considered voxels and therefore does not necessarily 
estimate underlying spatial distribution. However, sophisticated image analysis methods have 
been developed now and can quantify spatial heterogeneity in these same imaging data obtained 
from CT, MRI, PET/SPECT images20. These methods can essentially add vital information about 
tumour heterogeneity over simple biomarkers such as tumour size and function and thus either 
quantify overall tumour spatial complexity or identify the tumour sub-regions that may drive disease 
transformation, progression, and drug resistance.  

Histogram analysis: The histogram analysis is the most common and popular method of 
characterization of intratumour heterogeneity in imaging data. It measures image heterogeneity 
using parameters such as standard deviation, nth centile, interquartile range, kurtosis and 
skewness as well as mean and median value21 and calculates the pixel intensity values and 
displays the distribution of pixels or “local spatial image density” in a grayscale mode.  

In a study by Emblem et. al., the diagnostic accuracy for grading gliomas in patients were 
compared, using the histogram analysis of normalized cerebral blood volume maps (cBV) with the 
hot-spot method for dynamic contrast enhanced MRI in the patients. It was observed that the 
diagnostic accuracy and sensitivity of detection with histogram analysis for blood volume 
heterogeneity was much higher (~90%) than for the hot-spot method (55-76%)22.  

In another study by Ma.et. al, the authors demonstrated the utility of the histogram method in 
delineating the heterogenous morphological features of the tumour vasculature for patients with 
histologically confirmed GBM, or lymphoma or solitary metastatic tumour. Patients underwent 
dynamic susceptibility contrast enhanced MRI (DSCE-MRI) along with conventional MRI, to probe 
the heterogeneity in tumour vasculature along with other changes in tumour anatomy.  The semi 
quantitative histogram analysis, where 6 histogram parameters were analyzed from the normalized 
rCBV were able to accurately distinguish different enhancing and peri enhancing lesions for GBMs 
lymphoma and patients with solid metastatic lesions23.    

Since glioblastoma pathology has well documented demonstrations of heterogeneous morphologic 
features of tumour capillaries with varying degrees of permeability within the same tumour, GBM 
images were mostly studied for identifying intratumour heterogeneity with such histogram analysis 
methods. In other dynamic contrast enhanced MRI studies (DCE -MRI) for monitoring tumour 
response to treatment in GBM patients, Peng et.al were able to quantify with modified full width at 
half-maximum (mFWHM) analysis of wash-in slope histograms, the changes in tumour 
heterogeneity on response to radiotherapy. Such tumour heterogeneity analysis demonstrated for 
brain tumours, showed that tumour progression could be measured from a function of the changes 
in tumour heterogeneity and not by tumour size alone24.  

Texture analysis: Tumour heterogeneity as a prognostic factor, can help in grading tumours25,26. 
A limitation of histogram analysis is the inability to retain the spatial arrangement of the voxels. 
Other mathematical models such as texture analysis and fractal analysis, can account for 
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intralesion heterogeneity and therefore has gained attraction in the field of medical image analysis 
in the last 10 years. Texture analysis applies mathematical models and statistical based methods 
to measure pixel-position, and relationship between neighboring pixels. For a particular lesion, the 
spatial information is extracted as gray-level intensity that ultimately generates spatial “texture 
features”.  
 
Texture analysis has been applied to CT and MRI images for improved diagnosis. In case of 
computed tomography (CT), unenhanced, contrast enhanced as well as derived images (such as 
perfusion CT) can be analyzed for heterogeneity with texture analysis.  In a study by Huang et al., 
using statistical based texture analysis, the authors correlated the 2D normalized autocovariance 
coefficient to interpixel correlations and were able to differentiate benign (84) from malignant (80) 
liver lesions in CT images27. Normally, CT involves the use of an iodinated contrast agent that 
generates contrast enhanced images for the tumour vs. normal tissue. Iodinated contrast agents 
have issues of renal toxicity among others. This study could differentiate benign from malignant 
lesions based on the difference in spatial heterogeneity of the lesion without the need for any 
external contrast, thus signifying the potential of improved clinical diagnosis based on advanced 
image analysis methods that quantify tumour heterogeneity. Another study where CT texture 
analysis approach to account for spatial heterogeneity as a diagnostic biomarker was shown by 
Ng. et al. and authors where texture features were compared between the largest cross-sectional 
area vs. the entire tumour and through measurements of entropy and uniformity the authors found 
that whole tumour rather than the chosen largest cross-sectional area was more representative of 
the tumour heterogeneity in a cohort of 55 colorectal tumour patients28. The potential of CT texture 
analysis in providing information regarding vascular heterogeneity that causes localized changes 
in blood flow leading to focal areas of hypoxia in the tumour, has been addressed as well29  and 
indeed vascular heterogeneity was shown to be well correlated to the CT texture analysis of 
entropy measures in patients of colorectal and primary NSCLC30. CT texture analysis was also 
able to quantify spatial heterogeneity and therefore differentiate renal lesions with excellent 
sensitivity and specificity31. As in CT, texture analysis of MRI data has also been applied to account 
for spatial heterogeneity, most significantly in breast, liver and brain tumour studies. For example, 
in breast cancer, apart from being able to distinguish between just benign and malignant lesions 
of breast cancer, texture analysis using co-occurrence matrix successfully differentiated invasive 
lobular carcinoma (ILC) from invasive ductal carcinoma (IDC), two common forms of invasive 
breast cancer32. Importantly, CT texture analysis established itself as prominent prognostic marker 
as well. Coarse texture analysis and uniformity in texture ratios served as significant predictors of 
overall survival in colorectal cancer patients (receiving cytotoxic therapy) independent of the 
tumour stage, or in renal cell cancer patients on antivascular therapy33,34. Apart from improved 
diagnosis and predicting survival outcomes in patients, texture analysis of CT images, has shown 
potential to assess response to therapy, although only a few studies have explored this so far. In 
fact, texture analysis proved to be a better predictor of treatment response in renal cell cancer 
metastases treated with tyrosine kinase inhibitors, compared to the current scale of treatment 
assessment, (response evaluation criteria in solid tumours, RECIST)35. In another study of ~ 200 
women, Waugh et al. for the first-time used texture analysis to classify breast cancer subtypes 
based on pixel intensity distributions of CT images. Spatial heterogeneity was mapped from 
entropy-based features from co-occurrence matrix. This important classification could potentially 
improve monitoring and follow up of breast cancer patients on treatment regimens36.  
 
Interestingly, only few studies in MRI have attempted to assess heterogeneity with treatment 
response37. However, these studies have shown encouraging results that prove that texture 
changes in MRI can be a potential biomarker for treatment responses, such as texture changes 
observed in T1 and T2w MRI of non-Hodgkin lymphoma patients at staging, followed by post-first 
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and fourth round of chemotherapy38. Compared to CT and MRI, the potential of texture analysis in 
PET imaging, especially for diagnosis, has not been widely explored39,40. One of the reasons for 
this could be the inherent low spatial resolution of PET images, large variability in implemented 
methodology and lack of technical details41. However, few attempts at texture analysis of PET 
images as a predictive marker of response to chemoradiation has shown that local (homogeneity, 
baseline entropy) and regional (size) texture parameters were better indicators than SUV 
measurements in differentiating responders vs. non responders42,43. Indeed, combination of 
image-derived texture features from both PET and CT or PET and MRI have predicted lung 
metastases in soft tissue sarcomas and characterized renal cell carcinoma44,45 (Fig 1). 
 
Fractal analysis:  

Fractal dimensions can be indicative of surface texture heterogeneity as well and therefore used in 
medical imaging where images reveal organs that have fluctuations in space and time and cannot 
be differentiated or characterized using one spatial or temporal scale46. The most useful fractal 
analysis model is the fractional Brownian motion model which quantifies the intensity surface of a 
medical image as the end result of a random walk47 and thereby correlate texture heterogeneity to 
fractal dimensions. Using fractal analysis, images of two textures for example can be distinguished 
based on the measure of lumpiness in them. As in texture-based methods, fractal analysis has been 
used also to distinguish as well as characterize benign and malignant lesions. For example, Kido et 
al. used fractal analysis of CT images and classified small lung lesions as benign or malignant, where 
benign hamartomas displayed a lower 2D fractal volume compared to malignant bronchogenic 
carcinomas, tuberculomas and pneumonias48. Other studies utilized 3D fractal dimensions from 
regular CT images and were able to differentiate adenocarcinomas from squamous cell carcinomas, 
and correlate greater heterogeneity in malignant nodes of colorectal cancer vs. benign nodes with 
an accuracy of 88%. Fractal analysis was useful in patients with colorectal cancer where both fractal 
dimension and abundance from CT perfusion images were higher in the cancer vs. normal bowel49 
and in repeatability measurements CT perfusion data of rectal adenocarcinoma patients, 2D and 3D 
fractal analysis of regional blood flow showed great correlation and good reproducibility50. Application 
of fractal geometry analysis to MRI analysis have been mostly applied to brain tumour MR images. 
For example, in a study by Di leva et al, patients with recurrent malignant brain tumour were imaged 
with MRI, particularly susceptibility weighted MR imaging to assess the change sin vasculature. The 
qualitative heterogeneity patterns from MR images, analyzed by fractal-based analysis methods was 
able to quantify the heterogeneity and provide the way to follow up brain tumours51. It was first shown 
by Rose et al, that spatial heterogeneity in dynamic contrast MRI (DCE MRI) maps could be 
quantified by fractal analysis and further be correlated to tumour grade52.  In other studies, fractal 
analysis of voxel-based DCE-MRI data of breast cancer patients was able to deconvolute the texture 
at various spatial-frequency scales in a more accurate manner and therefore be marker for early 
prediction in breast cancer53.  

Texture based analysis of radiology data has been also used for assisting in planning for therapy. 
Targeted radiation therapy is an area of cancer therapy where statistics-based model of texture 
analysis on co-registered PET/CT image in the clinic could identify abnormal nodes for 
radiotherapy by utilizing increased heterogeneity information in PET images and higher uniformity 
in CT. Tumour delineation which is essential for oncologists before radiation therapy was found to 
correlate better with automated texture-based segmentation as compared to the traditional 
thresholding SUV method. The anisotropic nature of voxels in commonly used radiology data from 
CT, MRI or PET images makes it challenging for comparing the radiology images to histology data.  
When equated to histopathology and genomics data, the final in-space resolution of radiology data 
(200- 2000 µm for preclinical and 500-5000 µm for clinical) is orders of magnitude different from 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 February 2022                   doi:10.20944/preprints202202.0004.v1

https://doi.org/10.20944/preprints202202.0004.v1


them therefore making it difficult for correlating spatial heterogeneity information obtained from 
pathology images to radiology data54,55. 
 
Methods such as parcellation techniques which refer to grouping of “similar voxels” can isolate 
specific tumour subregions that might share similar tumour biology yet differ in their ability to resist 
therapy or promote progression. Parcellation methods of identifying tumour subregions with spatial 
heterogeneity can therefore be matched to histology of the same subregions for correlation of 
imaging and histology evidence of sublocal heterogeneity. The most common methods of 
parcellation techniques involve distinguishing based on a priori assumptions (threshold 
classification such as median apparent diffusion coefficients (ADC) in a diffusion-weighted MRI or 
binary classifiers, such as Ktrans maps from perfusion MRI graphs) or multispectral analysis 
(combination of multiple imaging parameters such as Ktrans of DCE-MRI along with SUVmax of 
FDG PET). Results from the parcellation based spatial heterogeneity studies have supported the 
theory that analysis of tumour subregions may be more useful than accounting for average values 
from the entire tumour, when predicting tumour response to therapy or tumour progression56–59.  
 
New imaging methods focusing on spatial heterogeneity assessment:  
 
Metabolic activity in tumour cells is a well-established therapeutic target and a route for tumour 
evasion. Within the same tumour, different spatial distributions of metabolically distinct cell 
populations exist, at least partly driven by hypoxic gradients existing within a tumour 60–63. This 
distribution can be quantified based on different drug responses displayed by them to differential 
cytotoxic drug treatments with the appropriate analysis method applied to the cell-level imaging 
data. A new analytical method was able to distinguish cell-level spatial heterogeneity in optical 
metabolic imaging data (obtained from two-photon microscopy experiments) and applying density 
based clustering and spatial principal component analysis (SPA) to relate the multivariate 
measurements of cell metabolism64,65 with spatial trends across models and treatments 
conditions66. Briefly, the optical imaging data quantified the mean lifetimes (ζm) of NAD(P)H and 
FAD, which are markers for metabolically different cell populations within the same tumour67–70 

both in xenografts, and in 3D organoids. Spatial patterns of cellular drug response were correlated 
with drug diffusion to assess the influence of drug accessibility on cellular metabolic distributions. 
These methods could be translated to other optical metabolic imaging data acquired over an entire 
organoid volume or a superficial tumour volume to characterize 3D distributions of metabolism and 
drug response. 
 
Optical microscopy methods although can provide rich contrast visualization of the tumour 
microenvironment, due to its limitation of low-depth penetration only a few microns of tissue depth 
can be assessed71. Optoacoustic/photoacoustic imaging, a relatively new technique that combines 
the advantage of rich optical contrast and high spatial resolution of ultrasound can image at larger 
penetration depth (~ cm range), and therefore has great potential for clinical translation72. Li et al. 
every recently developed a multispectral optoacoustic mesoscope (MSOM) for solid tumour 
imaging, an unique investigational tool for assessing spatial heterogeneity of tumour vasculature 
and tumour hypoxia at resolutions much higher (~50 µm) than what is offered by the current 
optoacoustic systems (100 -150 µm). Focal hypoxia is a prognostic biomarker of tumour 
progression in solid tumours therefore quantifying hypoxia maps in the overall tumour can provide 
valuable information for screening patients for personalized treatments73. 
 
Yet another imaging modality that has gained momentum in the last few years for investigating the 
spatial distribution of variety of molecules in the complex biological system is mass spectrometry 
imaging (MSI). MSI attempts to provide the relative abundance of various molecules in a spatially 
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resolved manner without the need for histological dissection or target-specific reagents as required 
in histopathological examinations of entire tumour tissue. Different ionization methods (MALDI, 
DESI, LEASI, SIMS) can be used resulting in ion density maps predicting relative intensity for each 
m/z value detected at particular spatial localization74. 
 
Spatial transcriptomics in cancer 

Genomic and transcriptomic analysis have revealed multiple mutations including driver mutations 
of KRAS, CDKN2A, TP53, and SMAD4 75. Most of such characterization has been at a bulk level, 
with a few exceptions such as quantifying epithelial-mesenchymal heterogeneity at tumour interior 
vs. invasive edge 76,77. Traditional transcriptomic methods result in loss of spatial information. To  
address this caveat, multiple spatial transcriptomic (ST) methods have been developed recently 
(Fig 2). 
  
In a study involving engrafted human PDAC in ischemic hind limbs of nude mice, gene expression 
was observed to vary spatially depending on oxygenation of the microenvironment 78. In the control 
group (normoxic conditions), the subgroups (SG) identified by spatial transcriptomics had diverse 
functions, such as enrichment of genes involved in proliferation in SG2, SG3, SG4 and SG11, but 
under hypoxic condition only SG6 showed properties of proliferation. Also, in the control group, 
SG10 showed enrichment of genes involved in response to hypoxia and angiogenesis, but in 
hypoxic group, genes related to angiogenesis and collagen organization was enriched in SG4. 
Both ST and IHC analysis revealed that LDHA (lactate dehydrogenase A) expression was found 
in the tumour boundary for both groups, but AKT was only upregulated in hypoxia. All subgroups 
under hypoxic condition showed a high metabolic rate, as revealed by GO and KEGG analysis. In 
another study of three PDAC human tumour samples, micro-array-based ST methods were 
integrated with single-cell RNA-seq to determine spatial patterns of gene expression by capturing 
the transcriptomes of a set of adjacent cells 79. Multimodal intersection analysis was performed to 
annotate the precise cellular composition of distinct tissue regions. Interestingly, different cell types 
– ductal cells, macrophages, dendritic cells and cancer cells – had spatially enriched zones. Also, 
inflammatory fibroblasts and cancer cells that co-localized spatially exhibited stress-response 
profile, thus deciphering the spatial architecture seen in PDAC.   
 
Besides PDAC, spatial and temporal intra-patient heterogeneity of metastatic tumours has been 
investigated in prostate adenocarcinoma tissue 80. Here, unbiased clustering pinpointed a subset 
of samples with enrichment of small-cell neuroendocrine prostate cancer (SCNC) signature: low 
to absent expression of androgen receptor (AR) signaling, inactivation of TP53, PTEN and RB1 
genes, elevated expression of ASCL1 and genes associated with small cell morphology, and 
increased levels of E2F1 and CDKN2A, reminiscent of observations in small cell lung cancer 81. 
Among 14 patients who underwent therapy, only 3 of them evolved to a SCNC phenotype from 
adenocarcinoma phenotype, with varied levels of loss of AR signalling. Further, analysis of 176 
primary and metastatic prostate tumours unravelled that both the phenotypes (adenocarcinoma, 
SCNC) could co-exist in a patient in distinct metastatic lesions, thereby indicating lineage plasticity 
82. In another prostate cancer study, tissue samples from the patients who underwent radical 
prostatectomy were analysed using an artificial intelligence (AI) based method 83. Differences 
between mp-MRI (multi-parametric MRI)-invisible and mp-MRI-visible prostate cancer tumours 
were visualized at a single-cell resolution through the annotated pipeline of segmentation, cell 
typing, modelling of tumour  architecture and spatial interactions, and the employment of software-
generated masks. The visible mp-MRI tumours did not show specific boundaries between the 
stromal and glandular components, but invisible ones had a rounded glandular structure and had 
less closely spaced glands interspersed with stroma, thus bearing more similarity to normal 
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prostate tissue 83. Similarly, spatial transcriptomics on patient samples with adeno-carcinoma post 
radical prostatectomy revealed tissue-wide gene expression heterogeneity. Expression gradient of 
genes such as FOSB, AQP3 and NR4A1 was observed between tumour and stroma 12. A novel 
deconvolution approach analysed transcriptomes of nearly 6750 tissue regions comprising stroma, 
normal and PIN glands, immune cells and cancer. This method showed accuracy in delineating 
the extent of cancer foci, similar to pathologist annotations, without directly looking at histological 
changes. Put together, spatial transcriptomic approaches have unravelled how different parts of a 
tumour may manifest the different stages of cancer progression, further indicating genetic and/or 
non-genetic components of cancer evolution at play, including those driven by different therapies. 
Further, spatial transcriptomics data can be used to develop spatially resolved metabolic network 
models of prostate tumour microenvironment 84, thus identifying malignant cell-specific metabolic 
vulnerabilities targetable by small molecule compounds. For instance, based on the identification 
of spatial segregation of regions showing enrichment in fatty acid synthesis and desaturation, it 
was predicted that inhibiting the fatty acid desaturase SCD1 may selectively kill cancer cells. Thus, 
spatial transcriptomic data can also help pinpoint selective drug targets for specific cancer types.  
In addition to spatial transcriptomics, digital spatial profiling (DSP) can decode the underlying 
heterogeneity patterns in a tumour. DSP quantifies the abundance of both RNAs and proteins in 
spatially distinct regions using multiplexing, which is counting the uniquely indexed 
oligonucleotides to specific targets of interest in a fixed tissue 85. These oligonucleotides can be 
attached to antibodies or RNA probes though a linker that is photocleavable; that is light projecting 
onto the tissue sample can release the photocleavable oligonucleotides in each spatial region. 
These light patterns can be manipulated to help profile distinct regions or cell type in a tumour or 
its microenvironment 86. In a study using DSP to study samples obtained from 27 patients who 
died of metastatic castration resistant prostate cancer 87, 141 regions of interest from 53 
metastases (from diverse anatomic sites of tumour dissemination) were analysed. Six phenotypes 
of metastatic prostate cancer were identified, based on expression levels of genes associated with 
androgen receptor (AR) and a small cell neuroendocrine (NE) phenotype: AR+/NE−, ARlow/NE−, 
AR−/NE−, AR−/NElow, AR+/ NE+, and AR−/NE+. The DSP measurements of AR and NE activity 
scores – when averaged across regions of interest for a given sample – correlated well with bulk 
RNA-seq measurements done on corresponding frozen tumour tissue; suggesting a high level of 
intra-patient homogeneity. Majority of metastases were also devoid of significant inflammatory 
infiltrates, as they expressed at high levels B7-H3 (CD276), an immune checkpoint protein similar 
to PD-L1 (CD274) 88. Thus, DSP can accurately classify tumour phenotype, assess heterogeneity 
in tumours and stromal components, and identifying aspects of tumour biology involving the 
immunological composition of metastases.  
 
Beyond PDAC and prostate cancer, spatial transcriptomics has also been applied to breast cancer. 
Spatial mapping of samples from eight patients undergoing mastectomy revealed heterogeneity 
between sites based on their proximity to the tumour 89. High copy number aberrations (CNAs) 
were identified at the morphologically normal epithelium sites closer to the tumour, but this variation 
was unable to explain diversity in corresponding gene expression profiles or mRNA abundance. 
Spectral co-clustering was used to identify bi-clusters, i.e. co-expressed sets of genes that are 
commonly upregulated (or downregulated) in certain samples closer to the tumour than those that 
are further away. This comprehensive spatial CNA and mRNA characterization of morphologically 
normal epithelium from primary tumours of patients representing different molecular subtypes 
suggested that Wnt signaling may be one of the first ones to change in breast cancer progression.  
In another spatial transcriptomic analysis of micro-dissected tissues from triple-negative breast 
cancer (TNBC) cell line MDA-MB-231 xenograft model, three cell-type clusters in primary tumour 
and axillary lymph node metastasis were revealed 90. Two of these clusters were identified to be 
stem cell-like (CD44/MYC-high, HMGA1-high). scRNA-seq analysis on TNBC patient samples two 
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cancer stem cell-like populations were detected similar to that observed in the xenograft model, 
highlighting potential common principles of heterogeneity in tumours. Given the complementary 
information available through spatial transcriptomics/digital profiling and scRNA-seq/ proteomics, 
methods integrating insights from these can be a powerful tool for potentially categorizing patients 
into different therapeutic regimes, depending on archetypes observed in a given tumour sample. 
 
Computational tools for spatial transcriptomics data analysis 

Many computational tools are being developed to integrate scRNA-seq and spatial transcriptomics. 
One such tool is SPOTlight 91; it uses Nonnegative matrix factorization (NMF) to obtain cell-type 
specific topic profiles. Its performance was tested by using synthetic mixtures comprising of 2-8 
cells from the peripheral blood mononuclear cell (PBMC) scRNA-seq datasets. When tested on 
these synthetic mixtures, it showed sensitivity of 0.911, an accuracy of 0.78, and Median Jensen 
Shannon Divergence (JSD) values of 0.160, thus indicating high accuracy of estimated cell type 
proportions. It was also able to detect in a sensitive manner different cell types and other subtle 
cell states at their expected spatial locations, and predict accurately despite shallower sequencing.  
Another computational tool that identifies statistically significant spatial gene expression trends is 
Trendsceek 92. It ranks and assesses the significance of spatial trends seen for each gene, thus 
identifying the set of genes for which dependencies exist between spatial distribution of cells and 
corresponding gene expression in those cells. It uses an approach where the spatial location of 
cell is given by an assigned point, and expression levels are captured by mark on each point. 
represent the spatial location of cells and mark on each point represents the expression levels. It 
was used to probe gene expression patterns from mouse olfactory bulb and breast tumour 
sections. Thus, this nonparametric method incorporates both spatial and expression-level 
information for a gene, thereby overcoming limitations of approaches using only one-dimensional 
information – pseudospace 93 or pseudotime 94,95. Several genes implicated in breast cancer were 
found to have crucial spatial patterns, such as the transcription factor KLF6 and the 
transmembrane protein PMEPA1.  
 
Besides the above mentioned tools, a method designed for digital analysis of pathology whole-
slide images identified the molecular traits, and showed a significantly statistical connection 
between survival and heterogeneity 96. Methods using deep learning algorithm (ST-net) that 
combine spatial transcriptomics and histology images to capture high-resolution expression 
heterogeneity have also been recently developed 97. ST-Net was trained on a spatial transcriptomic 
data from 68 breast tissue sections taken from 23 patients, and could predict the expression of 
102 genes that correlated well with experimental measurements too. It takes a 224×224-pixel 
patch of the histopathology image corresponding to approximately 150×150µm2 and predicts the 
expression of 250 specific genes. It was trained iteratively using leave-one-out analysis, i.e. taking 
22 patients. Thus, its performance is affected by experimental noise in spatial transcriptomics data 
as well as the limited sequencing depth. For independent validation of this method, breast cancer 
samples from the 10x Genomics Spatial Gene Expression dataset were used. Corresponding 
transcriptomic dataset included measurements for 234 of the 250 genes that ST-Net was trained 
to predict. Out of the 234 genes available, the predicted expression of 207 of them were positively 
correlated with that seen in experimental data. Next, when applied to breast cancer samples in 
TCGA, ST-Net was used to scan H&E images of 1,550 samples from 1,093 patients without any 
re-training. Because TCGA only has bulk RNA-seq data, a pseudo-bulk expression profile for each 
sample was derived from ST-Net predictions. For 177 out of 250 genes whose expression ST-Net 
could  spatially resolve and predict, the correlation with experimental measurements was positive. 
Further, the inferred expression levels could help distinguish histological subtypes in breast cancer  
infiltrating ductal adenocarcinoma and infiltrating lobular carcinoma. Finally, ST-Net could also 
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predict the top five genes that showed the highest variation in intra-tumour expression - GNAS, 
FASN, AEBP1, SPARC and BGN. Given that heterogeneity, instead of mean expression levels, 
itself can be a marker of aggressiveness in breast cancer too 98, the framework proposed by ST-
Net can be helpful in identifying patients with worse prognosis across multiple cancer types. 
 
Integrating single-cell measurements with spatial transcriptomics 

Single-cell high-throughput measurements at genomic, epigenetic, metabolomic, proteomic and 
chromatin levels are becoming more popular by the day 99–101, but they often compromise on 
spatial and temporal information due to the tissue dissociation step. To overcome this limitation, 
methods such as fluorescent in situ sequencing (FISSEQ)102 have been developed to show in vivo 
messenger RNA localization within cells.  But scaling in situ to perform whole genome sequencing 
is not easy. Thus, besides array-based approaches such as high-density spatial transcriptomics 
(HDST), a few methods can now obtain spatial information through approaches such as 
computational inference, gentle tissue dissociation and physical separation by laser 
microdissection103,104 .  
 
One of the earlier technologies that allowed visualizing over 100 transcripts per sample with single 
cell resolution is single-molecule fluorescent in-situ hybridization (smFISH) 105. It provided absolute 
quantification of copy number and localization of RNA molecules, and can detect low copy number 
transcripts as well. Earlier, it was limited by the number of available fluorescent channels, but multi-
plexing has now enabled using a larger number of targets (= F^n; F = no. of fluorophores, n = no. 
of hybridization cycles). This approach is called temporal barcoding (also called as sequential FISH 
or seqFISH) and can visualize 10,000+ genes within a single cell by using specific barcodes106. 
While both FISSEQ and seqFISH are capable of measuring the expression of various genes while 
retaining single-cell resolution in a given field of view, they often have long acquisition times and 
thus assaying whole transcriptomes of single cells over large areas of interest are yet impractical. 
To overcome these limitations, “sci-Space” was developed to provide single-cell resolution, along 
with determining the spatial information on a larger scale107, thus offering advantage over spatial 
transcriptomics where each spot can still include RNA from multiple cells. It labels nuclei using 
unmodified DNA oligos before single-cell RNA sequencing with specific combinatorial indexing 
(sci-RNA-seq). This method was used to profile 14 sagittal sections derived from two embryonic 
day 14 (E14.0) mouse embryos (C57BL/6N), and led to approximately 120,000 spatially resolved 
single-cell transcriptomes. Albeit large, this number still accounts for only 2.2% nuclei present 
overall. Thus, this data was integrated with non-spatial sci-RNA-seq mouse organogenesis cell 
atlas dataset spanning adjacent time-points - E9.5 to E13.5 and cells from a developing mouse 
brain atlas spanning E13.5 to E14.5, thereby endorsing the ability of sci-RNA-seq in generating 
spatially resolved single-cell atlases of mammalian development. How this technique is applied to 
investigate the dynamics of tumour progression at a single-cell level remains to be demonstrated. 
A similar method that integrates histological staining and spatially resolved RNA-seq data has been 
developed to study mammalian tissue108. While it can be applied to most high-quality fresh-frozen 
tissue types, the spatial resolution is listed currently to 100 μm. Thus, it can be potentially used for 
identifying heterogeneity patterns in smaller regions of interest, thus limiting the number of cells 
that can be investigated at a time. Another workflow that can be applied for tumour samples is 
XYZeq that encodes spatial metadata at 500μm resolution into scRNA seq libraries109. This method 
could assign transcriptomes to single cells in case of mixed-species experiment consisting of 
human [human embryonic kidney (HEK293T)] and mouse (NIH 3T3) cell mixtures. Mouse tumour 
models were profiled using XYZeq to capture the spatially barcoded transcriptomes from tens of 
thousands of cells, which led to identifying a cell migration-associated transcriptomic program in 
tumour-associated mesenchymal stem cells (MSCs). Thus, this method could map transcriptome 
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and spatial localization of individual cells in situ, and can capture both spatially variable patterns 
of gene expression which is a function of cellular composition, as well as heterogeneity within a 
cell type depending on the spatial coordinates. Given that XYZeq can be adapted to many z-layers, 
it could potentially facilitate a three-dimensional map of heterogeneity within a tumour too. 
Together, these methods could enable a better understanding of how microenvironment shapes 
cell identity. 
 
Conclusion 
 
At present, molecular imaging analysis using texture and fractal dimensions have displayed their 
ability to account for spatial heterogeneity in radiological images of the entire tumour, however the 
reproducibility of these studies especially in larger cohorts need to be established for applying in 
the clinical scenario. More importantly, integrating spatially corrected imaging data with genomics 
and transcriptomics data and pathology biomarkers can bypass the caveats of heterogeneity 
related drug resistance in tumour and poor tumour prognosis. Also, emphasis should be given to 
imaging studies in preclinical animal models that take into account the spatial heterogeneity of the 
tumour environment as observed in humans. Various recent technological advancements have 
enabled mapping the spatiotemporal heterogeneity in tumours at varying degrees of resolution. 
Such deluge of information has also triggered the development of potent computational methods 
that can process such high-dimensional data into biologically meaningful insights; for instance, 
association of different localization patterns of tumour and/or stromal cell types in a tumour with 
patient outcomes. Future steps should integrate these advancements at technological and/or 
conceptual levels, with the goal of achieving a predictive systems-level multi-scale understanding 
of dynamic tumour microenvironment and its implication in terms of patient prognosis and outcome. 
This understanding can empower more targeted therapeutic interventions as well as a longitudinal 
monitoring of variability within patient response to therapy. 
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Fig 1: Neuro-oncology radiomics study workflow. 1) Multimodal imaging and biological data acquisition; 
(2) Data preprocessing and standardization; (3) Delineation of regions of interest, including manual 
segmentation and deep learning-based segmentation; (4) Radiomics feature extraction using 
predefined algorithms or deep learning techniques; (5) Data analysis, feature reduction, and/or 
selection for further analysis of machine learning and/or deep neural networks; (6) Multi-omics and 
clinical information integrated model training and testing, guiding individualized disease diagnosis, 
treatment evaluation, and prognosis prediction. GB, Glioblastoma; OS, Overall Survival; PFS, 
Progression free survival. (Figure and description adapted from Liu et al. 2021 (26)).  
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Fig 2: Spatial Transcriptomics (ST) study design in prostate cancer. a Sample location used in this 
study and annotations made by a pathologist. The sections annotations are colour coded. Prostate size 
is indicated by scale bar. b 1007 spatially barcoded spots of the spatial microarray. The barcoded spots 
have a diameter of 100 μm and have a 200 μm center-to-center distance.Orientation, and lack spatial 
barcodes are denoted by filled circles. The ST procedure yields matrices with read counts for every 
gene in every spot, which are then decomposed by factor analysis resulting in a set of factors (“cell 
types”), each comprising one activity map and one expression profile. (Figure and description adapted 
from Berglund et al. 2018 (12)) 
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