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Abstract: Starting from the SU(2) group of weak interactions in the presence of Electric Charge Swap
(ECS) symmetry, we show that ordinary and non-regular (ECS) leptons are related by the ECS
rotational group SO(3). We find that many Standard Model (SM) algebras depend on the sin of the
angle 6s of the ECS rotational group SO (3). We call these ECSM algebras. Furthermore, the break of
the gauge symmetry of the SM groupoid gives the massive ECS particle. We find that the ECS particle
masses are related with the SM particle masses by sinf;. We also investigate the finite subgroups of the
ECS Mobius transformations. We find that sinf, could be derived from the ECS dihedral group Dr,
which refers to the symmetry of the fermionic polygon (F-gon). The average value of the anchor of the
SM algebroid depends on the fermionic Catalan numbers (Cg). Finally, we find that the ECS physics at
loop level differs the SM physics. The ECSM mass is suppressed by the Cr numbers. For 24 fermions,
the calculated one-loop radiative correction to the bare Higgs mass p is 125GeV—a value very close to
the experimental one.
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1. Introduction

In the electroweak (EW) theory, SU(2).x U(1)y[1] is broken down to the electromagnetic
gauge group U(1)., by the vacuum expectation value of an elementary scalar field ¢. This
scalar field should be part of the Grand Unification Theory (GUT)[2]. To produce a vacuum
expectation value of a size that imparts to the observed W and Z boson a mass of 82 and 91
GeV, respectively, the Standard Model (SM) Higgs scalar field must obtain a negative mass
term, of a size [1]:

11 =—(100). (1)
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Equation (1) is subjected to additive renormalization. Beyond tree level, the radiative
corrections to the Higgs mass for the Higgs (H), top quark (t-¢ ), and boson (W, Z ) loops in
the SM [4-6], are shown in Figure 1:
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Fig. 1. One-loop corrections to the Higgs mass. The diagrams for the Higgs (H), top quark (t-
¢ ), and boson (W,Z) loops are quadratically divergent, and make the Higgs mass highly UV-
sensitive [7] C. Grojean, Philos Trans A Math Phys Eng Sci. 2015 Jan 13; 373(2032):
20140042).

Each diagram in Figure 1 shows a contribution to the self-energy iZ(p °), where p is the four-
momentum of the external particle [8]:

ME =45 + X2 (M7). )

In Equation (2), u, is the bare Higgs mass. Using a cutoff to regularize the bare amplitudes
[8], these radiative corrections lead to the well-known mass correction:

2
ME =2 +—0C [MZ +2ME +MZ —am@l+.. @3)
327w

where m;, My z, and My are the mass of the top quark, W, Z bosons, and Higgs bosons (H),
respectively, v is the vacuum expectation value of the Higgs potential in the SM, and A is the
cutoff energy scale A¢ [4-6]. The dots indicate logarithmic corrections at the cutoff energy

scale A, as well as contributions independent of the cutoff energy scale, in the large A¢ limit

[8].

Ac can be the energy scale of a new physics coupled to the SM one. In particular, Ac can even
be the Planck mass scale, M,. On the other hand, it is unnatural to have 4. >> m,, since
everything is defined by the EW scale [9]. Equation (3) is the source of the usual fine-tuning
problem in the SM: if A, ~ my , then we must suppose that the tree-level 4 and the loop
contributions cancel each other in order for || to be ~ m% [9]. After the discovery of the
Higgs boson (of a mass of 125 GeV) in the ATLAS and CMS experiments [10, 11], the SM
would be a perfect theory but from the fine-tuning problem. There are two general ways to
solve this problem: either by evoking some (super)symmetry to cancel out the huge terms
[12], or by introducing some new physics, such as large extra dimensions [13], composite
Higgs models[14], etc., at a scale not very far from the electroweak one, thus making the 4, to
be small [7]. The observation of a light Higgs boson with properties consistent with the SM
[10,11] has motivated much reexamination of the notion of the naturalness problem [7].

It is well known that the supersymmetric extension of the SM can solve the fine-tuning
problem. Despite many efforts to search for supersymmetry at the Large Hadron Collider
(LHC) experiments, the current LHC data do not offer unequivocal proof for the production
of supersymmetric particles [15]. For this reason, we investigate the possibility of solving the
fine-tuning problem without supersymmetry.
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In the SM, mass is generated due to spontaneous symmetry breaking in the Higgs sector.
While the Higgs boson mass was introduced by Peter Higgs et al. [16] from the outset, the
tachyon mass term breaks the scale invariance (conformal symmetry) explicitly [16].
However, if the conformal symmetry could be broken sufficiently ‘softly’ so that symmetry is
restored at high energies, the Higgs mass would still be protected from the largest radiative
corrections necessitated by the highest energies [17,18,19].

Recently P. Grang’ et.al [8] re-analysed the perturbative radiative corrections to the Higgs
mass within the SM in the light of the Taylor-Lagrange renormalisation scheme. This scheme
naturally leads to completely finite corrections, depending on an arbitrary scale. Nima
Arkani-Hamed et.al [20] proposed the N-naturalness model, which presents a new solution to
the electroweak hierarchy problem. The authors introduced N copies of the SM, with varying
values of the Higgs mass parameter. This proposition generally yields a sector whose weak
scale is parametrically removed from the cutoff by a factor of 1/ V' N.

In the framework of fine symmetries, the Monster Group is related to the symmetries of a
particular bosonic string theory on the Leech lattice [21]. However, there is no physical reason
for the presence of the Monster Group or its subgroups in the Lagrangian: its appearance may
merely be a coincidence. Another coincidence is that, in reduced Planck units, the Higgs mass

is approximately 48|M |_1/ 3 ~125.5GeV (where |M| is the order of the Baby Monster group).

This suggests that the small size of the Higgs mass may be due to a redundancy caused by a
symmetry of the extra dimensions, which must be divided out [22]. It is also possible that the
hierarchy problem is a specific manifestation of Bayesian statistics[23-27] .

In the Fine-Tuning Naturalness (FTN) problem, we suppose that bare SM parameters are
physically interpreted as “fundamental parameters,” analogous to the microscopic lattice
parameters of a Condensed Matter (CM) system [28]. Alternatively, bare SM parameters can
be interpreted as unphysical “auxiliary parameters”: if the Wilsonian Renormalization Group
(RG) transformations are interpreted as invertible re-parametrisations, the bare parameters in
High Energy Physics (HEP) and Condensed Matter Physics (CMP) are formally—but not
physically—analogous [28]. Furthermore, it is possible that neither the bare mass, o, nor the
radiative corrections, oM?, are directly measurable. Since these are probably not physical,
there is no coincidence to be explained (Wetterich 1984[29]), (Bianchi & Rovelli 2010[30]).

For quarks and leptons, an Electric Charge Swap (ECS) symmetry has been proposed by the
author [31]. A family of particular transformations may be continuous (e.g., the rotation of a
circle) or discrete (e.g., the reflexion of a bilaterally symmetrical figure, or the rotation of a
regular polygon) [31-34]. ECS transformation between ordinary families of leptons produces
heavy, neutral, non-regular leptons of an O-order mass (TeV). These particles may form cold
dark matter [31]. Furthermore, the ECS symmetry could explain certain properties of lepton
families within the framework of superstring theories [35-39].

From the mathematical point of view, in R-Category—a category theory with invertible
morphisms [40]—the geometric structures under consideration are always associated with
local Lie brackets [, ] on sections of some vector bundles (Lie algebroids [41,42]). Based on
[41-43], in this article, we study the structure of transitive Lie algebroids as a mathematical
framework for generalizing the formulation of a gauge theory through an action functional:
the integral of a differential form on the algebroid [44]. On Atiyah Lie algebroids [45], the
space of ordinary connections 1-forms corresponds with the Ehresmann connections on a
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principal fiber bundle P (see the S. Lazzarini and T. Masson in [46,47]). Cédric Fournel
(2013) [44] proved that transitive Lie algebroids equipped with generalized connections
contain scalar fields as algebraic parameters. These parameters, absent in differential
geometry, have a role similar to that of the scalar field in the Higgs mechanism [16]. In
higher-dimensional spacetime, the Double Field Theory (DFT) is a gravity theory with
manifest T duality (Hull-Zwiebach, 2009 [48]). The DFT has gauge symmetry (described by
the C bracket ([ , ]c: see[48])), which defines the Vaisman-algebroid (Vaisman, 2013[49]).

This paper is structured as follows: In section 2, taking the SU(2) group of weak interactions
in the presence of ECS symmetry as a starting point, we show that ordinary and non-regular
(ECS) leptons are related by the ECS rotational SO(3) group. In section 3, we investigate a
version of the SM algebroid whose anchor map depends on the sin of the ECS angle 6 of the
ECS rotational SO (3) group. We find many SM algebras that depend on sin6s; we call these
algebras ECSM algebras. Furthermore, the broken gauge symmetry of the SM groupoid gives
the massive ECS particle. We find that the ECS particle mass is related with the SM particle
mass by sinfs. In section 4, we investigate the finite subgroups of the ECS-Maobius
transformations. In this case, sinfs could be originated from the ECS dihedral group Dg,
which refers to the symmetry of the Fermionic polygon (F-gon). The average value of the
anchor of the SM algebroid then depends on the fermionic Catalan numbers, Cr . Finally, in
section 5, we find that the ECS physics at loop-level differs from the SM physics: the ECSM
mass is suppressed by the numbers Cr. For 24-fermions, the calculation of one-loop radiative
corrections to the bare Higgs mass p is 125GeV, which is very close to the experimental
value.

2. The global ECS symmetry for quarks and leptons

Hypothetical non-regular leptons are, a) a zero-charged version of the electron, &°, and, b) a

positively charged version of the electron neutrino, v, . Non-regular leptons can, therefore,

be obtained from the swap of electric charge between electrons and electron neutrinos in the
internal space. We call these proposed non-regular leptons, electric charge swap (ECS)
leptons [31].

Although ECS leptons have the same mass as ordinary-family leptons, they are distinguished
from the latter by their different lepton numbers (L; =1 for ordinary leptons; I:S =-1 for

ordinary antileptons) and their electric charge (positive or neutral for ordinary leptons;
negative or neutral for ordinary antileptons). We hypothesize that ECS leptons are produced
from ordinary-family leptons when the latter enter the internal space: in these conditions, the
properties of ordinary-family leptons change profoundly as these leptons lose their
‘individuality’ and swap their electric charge [31]. To formulate the swap of electric charge
between ordinary leptons, we have to look for a global symmetry that characterises the swap

process in the framework of 2-internal dimensions [31]. We consider the 2-sphere S% asa

quotient space (S2 =SU (2) /U(@D)y), and express it in terms of the new symmetry between
the original lepton and the new ECS lepton doublets. We do this in the following steps [31]:

First, we observe that both the ordinary lepton doublet, lo(x")=(e|,v,), and the ECS lepton

doublet, I~0(xV')=(é°,_,17g’) , can form the fundamental representation of SU (2), [50]. This
fundamental representation is given by:


https://doi.org/10.20944/preprints202202.0059.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 May 2022

[Iailﬁ]:igaﬁyly' (4)

The generators are denoted as:

e =57, 5)

where

(01) (0 -} (10
A Yels Pl )

are the isospin versions of Pauli matrices.

The action of the latter on the new lepton states is represented by:

%UﬂEG} ™)

To link the two distinct types of lepton, ordinary and ECS leptons, we assume that neither the
ordinary (L) nor the ECS (L) lepton numbers are conserved, while the overall number of
leptons is conserved obligatorily.

Loveran =Ls +L= 0. (8)
L =L, L0e)=L(")=-1. ©)
L=L, LE")=L()=1. (10)

The quantum numbers of the new ECS leptons are given in Table 1 [31].

Table 1. Quantum numbers (weak ECS isospin I, charge Q, ECS hypercharge Y, ECS
lepton number Ls) of the ECS leptonsé v/

New lepton | Is-z Q Y L

\76+ Y Y 1 1 -1

a0 Ya ) 0 1 -1
L

The next step is to define the group transformation that can account for the swap of electric
charges between the electron and electron neutrino particles. The global ECS transformation
must be derived from a transformation from:

d0i:10.20944/preprints202202.0059.v2
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1) SU(2), /U(@)y, in which the fundamental representation of SU (2), is

lo(X")=(e_,v,),and U(l), isthe symmetric group generated by hypercharge

Y=-1
to
2) SU (2)Is /U (1)YS , in which the fundamental representation of SU (2)IS is

b (x")=@%,v) , and U@y, is the symmetric group generated by swap

hyperchargeYg =1.

The quotient space SU (2)/U (1) is diffeomorphic to the unit 2-sphere S%. Consequently, the
swap of electric charges between electrons and electron neutrinos must be an automorphism
of the 2-sphere to itself [31]. Since the two internal dimensions are endowed with the Fubini-
Study™ metric [51], [52], not all Mdbius transformations (e.g., dilations and translations) are

isometries. Therefore, the automorphism from $2=SU(2)/U(1) to itself, which causes the

electric charge swap between the electrons and electron neutrinos, is given by the isometries
that  form a  proper subgroup ofthe group of  projective  linear

transformations PGL, (C)(Charge) —namely PSUcharge) - SUbgroup PSUxcharge) IS isomorphic
to the global rotation group SO(3)gcs [51], [52],[31], which is the isometric group of the unit

sphere in three-dimensional real space R®. The automophism of the Riemann sphere C is
given by:

Rot ecs) (C) = PSUychargey = SO()ecs )

C=Cuwn=52

where C is the extended complex plane, PSUcharge) 1S the proper subgroup of the projective
linear transformations, and global swap symmetry, SO(3)gcs, is the group of rotations in
three-dimensional vector space R®. This can be consigned in the double fibration on a vector

bundle of lines 3% in the extended space (ad infinitum), that is to say,C=CuUoo .
The universal cover of SO(3)gcs is the special unitary group SU (2),(,5) [31]. This group is

also differomorphic to the unit 3 sphere S°. We regard the ordinary and ECS leptons as
different electric charge states of the same particle—analogous, that is, to the proton-neutron
isotopic pair. Finally, in terms of global rotational symmetry between the original lepton and

the proposed ECS lepton, the ECS 2 sphere Sécs is given by:

Sgcs = SU @10g) TYU @y v, [31], 12)

M The round metric of the 2-sphere can be expressed in stereographic coordinates as:

GOy

=L where & = «/yf +Yy5 . The metric G is the Fubini-Study metric of the 2-sphere [51], [52]
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where SU(2)(,,) is the special unitary group and U Dy (v,) Is the symmetric group generated

by hyperchargeY (Y,). Similar with hypothetical non-regular leptons, hypothetical non-

regular quarks are, a) an 1/3-electrically charged version of the up (a) quark types, a~, and, b)
a -2/3-electrically charged version of the down (k) quark types, k™ . Non-regular quarks can,
therefore, be obtained from the swap of electric charge between up and down quark types. We
call these proposed non-regular quarks electric charge swap (ECS) quarks. We regard
ordinary and ECS quarks as different electric charge states of the same particle—analogous,
that is, to the proton-neutron isotopic pair. Some quantum numbers of the new ECS quarks
are shown in Table 2.

Table 2: Quantum numbers of the proposed ECS quarks.

d0i:10.20944/preprints202202.0059.v2

New (ECS) | Q: electric charge | ls,: ECS isospin component | Bs: Baryonic number
quarks
u,cot 1/3 ) -1/3

~,s7,b” -2/3 Y -1/3

The simplest way to realise the global SO(3)ecs group provided by Equation (11) is by adding
the ECS electron éE and grouping it together with the ECS electron neutrinoV; , electron

antineutrinov, , and electrone into a triplet, as follows:

Ve

v ~+ v ~+
T [f} | |( fJ 178 | ev2l !l v cose, +&%sing, | evil, (13)
e ) &) |\e) (&%), -

e
L

where s is an arbitrary real parameter, independent of space-time coordinates, which
represents the lepton and ECS quark mixing angle. There remains a left-hand singlet:

Skcs :{[(e‘)R ,(ﬁ;)R]I(e_)R :(‘;;)evrlow}. (14)

- {(17e cosd, —&%sind;), €\7rlow}

The muon (™) and its antineutrino (v, ), as well the tau ( 7~ ) and its antineutrino (v, ), can
be introduced in a manner similar to the above, at the cost of the four ECS leptons
([18 \7;,?8 V). For this introduction, we have to add an 1/3-electrically charged version of

the up (o) quark types (ECS-o quarks) and group them together with the -2/3-electrically
charged version of the down (k) quark types (ECS-k quarks), and the anti-up (a) and down

() quark types into a triplet:

a
To =| asinbs +kcosb; | . (15)

K L
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There remains a left-hand singlet:
Sq, =(&siné, +acosé), . (16)

Equations (13) and (15) form the fundamental representation space of the SO(3)gcs group:

A 7, A

Ve sind, +&°cosd, || v, sin6, + i° cosé || v, sind; +7° cosd, |¢ (17)
e ﬂ_ T L
a ¢ t

Usind, +dcosé, |,| €sind; +Scosd, |,| Tsing, +bcosd, | - (18)
d S b L

Equations (17) and (18) are 3-component vectors for the linear combination between fermions
and ECS fermions. The representative matrix of a general element of the SO(3)ecs group can
be written as:

iy eex,
OECS =e “ y a=(1,2,3), (19)

with & = (0",6%,6° being arbitrary real group parameters independent of space-time
coordinates, and Ogcs being an orthogonal 3 x 3 matrix:

OfcsOkcs = | =OgesOcs - (20)

The three basic ECS rotation matrices that rotate fermions by an angle 6" (o = 1, 2, 3) about
the x-, y-, or z-axis in three internal dimensions can be explicitly written as follows:
OECS :e_iesaxa i (21)

In this representative space, the representative matrices of the generators of the SO(3)gcs
group are denoted by X, (a =1, 2, 3):

1 010 (0 -1 0 10 O
X1= 1 0 1|, Xp= 1 0 -1y, X3=(0 0 O (22)
\E 010 \F 01 0 0 0 -1
These matrices satisfy the following condition:
[Xe: X5]1=iChp X, (23)
where C,, are structure constants of the SO(3)ecs group. Generator X, is Hermitian and
traceless:
X=X, , TrX, =0. (24)


https://doi.org/10.20944/preprints202202.0059.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 May 2022

To calculate the trace, we used the sum of the diagonal elements of the rotation matrix given
by Equation (21):

Tr(Ogcs) =2co0s|| 6, || +1. (25)

From Equation (25), it follows that the arbitrary absolute value of the ECS angle is:

Tr(Oges) -1 . (Tr(Oges) -1
0 =116 II= arccos[%} = % —arcsin [%)

Tr(Ogcs)
2

(26)
F(65) =sin||6; |I=

3. The Standard Model of particle physics in the R-Category theory

In general, the U(n) gauge group cannot be identified as a more familiar-looking manifold. It

"’SZn—l

is an ‘iterated extension’ of the odd-dimensional sphere st ss,. , and the rational

homotopic equivalent to the product Sle3x...xSZ”_1[53—55]. This means that the U(n)
gauge group has the same rational co-homology and rational homotopy groups as this
product; however, it is generally not homeomorphic or diffeomorphic to this product[53-55].
‘Tterated extension’ means that the unitary groups fit into fiber sequences which are ultimately
built from odd spheres, starting with:

det
SU (n) »>U (n)—>St, (27)

and continuing with:

SU(n-1) - SU(n) > S, (28)
The first sequence is a short exact sequence of Lie groups and splits smoothly; therefore,
the U(n) is diffeomorphic to SU (n) x S*[53-55]. In particular, the SM gauge group U(2) [56-

57] is diffeomorphic to the product $% xS manifold. However, this is not an isomorphism of
groups, since U(n) is a semidirect rather than a direct product. The vector spaces of

34T, =a()| +B(X)2r,, a=(1,23), (29)

together with the commutator relation

[1,,741=0,[71,72] =2ir3 0=(1,2,3) (30)
[z2,73]=2i7y ,[r3,71] =27y, (31)

are referred to as the SM algebra N=u(2)=R*. I2 are the 2x2 unity matrix and the 3-

tuple 7 (Equation.(31)) of the Hermitian and traceless matrices, respectively; £%(x) are the

real arbitrary group parameters of the local U(2) gauge group; and a(x) and B(x) are the real
arbitrary group parameters of the local SU(2) and U(1) gauge groups, respectively.
From the mathematical point of view, in R-Category—a category theory with invertible

morphisms [40]—the geometric structures we consider here are always associated with local

d0i:10.20944/preprints202202.0059.v2
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Lie brackets [ , ] on sections of some vector bundles (Lie algebroids). A Lie algebroid over a
manifold B is defined to be a vector bundle A over B with a Lie algebra structure on its space
of smooth sections [ , ], together with a bundle map, p (called the anchor of the Lie
algebroid), from A to the tangent bundle TB. Here, we definite the ECS-Standard Model
(ECSM) algebra R=0(2)=R* from the SM algebroid Asy over the product M =S3x St

manifold which satisfies the conditions:

Lo(12), p(7)1= p([12: 7, 1) (49)
2,07, 1=l 7,1+ (0(12) - @)z, »6=(1,2,3) (50)
Lo(za), p(z5)]= p([74:7]) (51)
e 97l =0lr,. 751+ (p(z,) - P)rp . p=(1.23) (52)

(with 7, being smooth sections of Asy, and ¢ being a smooth function on M = $3x s, when

the anchor’s smooth multiplication factor of the SM-algebroid, Asy, iS given by Equation
(26), and the ECS generators are derived from the SM generators by the anchor map:

I, = p(1,) =F()1, = 1,8in6, eT(TM), (53)
7y, = p(1,) =F(6s)7, =7,5ING, e T(TM) . (54)

In the above equations, T"(TM) indicates the sections of the tangent bundle TM,

F =F(6,)=sin6, (55)

indicates the smooth function on S®xS!, and 6, are the arbitrary ECS-angles if we
parametrise the unit 3-sphere by hyperspherical coordinates (Xy,X;,X,,%;) and use(y,6;,9).
By restricting the domain of Equation (26), we obtain:

sin:| -Z,Z | 5 [-11],
2'2 . (56)
65 > sin g

This function is both one-one and onto; therefore, it has inverse function:

sin:[-11] —{—Z,Z}
22 (57)

-1
O, —sin "6

By Equations (56) and (57), the anchor of the SM-algebroid, Asy, is thus both an one-one and
onto map between the SM and ECS generators.

F(6,)

F(6,)?
F(6,) e

[o(T,), PT I =IFO )T, F(O)T 51 =F(6)[T, Tyl = F(O,) e

[T, T,]=i T, .(59)

10
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, T,
T, - ——%—:the changes of scale of the generatorT,,
F(6)te

quantity. p([T,.T,1) = p(iT, ) =iF (6,)T, (59).For &£—0 by Equations (58) and (59) we
have: [p(T, ), o(T)] = ([T, ).

and ¢ an infinitesimal positive

Hence Equations (49) and (51) define the ECSM algebra & =((2) = [R* in terms of the SM

algebra X =u(2) =[R* as follows:

[12, 7, 1=F(&)15, 7,1 =sin615,7,]1=0 , (60)
[7,, 75]1=F(0)lz, T4 =sin6[r,,74] (61)
Properties

The ECSM algebra is the F(6;)-valued SM algebra in Agy. Consequently, we have the
following properties for the & =((2) = R* algebra:

1. For angle 6;= 0, we find an ECS trivial algebra {0} and the usual SM algebra.

2. For angle 6; = +x/2, we find the usual SM-algebra.

3. For every other value of angle s, we find many SM algebras that depend on ECS angle 6s.
These are called ECSM algebras.

The terms (p(l,)-#)and (p(z,)-#) in Equations (50) and (52) correspond to the Lie

derivatives of ¢ with respectto I, andz,:
3,,)P=sinb[l,,¢]1=0, where[l,,4] =0, (62)
Sp(r,)P =500, 4. (63)

For a gentle smooth function on M =S3xS! that satisfies the eigenvalue equation
0,¢=1img with eigenvalues (m=0,+1+2,......), Equations (50) and (52) for the SM
algebroid Asy become:

[12.¢7,1=0, (64)

[z, #75]=dlz, . 7511+ MF(6;)) , where m=0,£1,+2,...... (65)

For (6, =0) or (m=0), we find the usual SM-algebra. The other possibilities generated by

the eigenvalues m are under investigation for a further paper [58]. Following Mark Bugden,
Peter Bouwkneg (2018)[59] and Cédric Fournel (2013)[44],when Agy is an SM algebroid, we
can use the anchor map (Equation ()) to lift any vector bundle connection (I7,) on Agy, to a so-
called A connection () on Agy:

11
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AV:T(A) ®T(A) > T(A). (66)
In this paper, we use a specific A connection, given by:

AVT}# (M) =V om,)u(Tp) = P(T)V 1 (Tp) (67)

where V, (Fﬁ) is the bundle connection. Once we have an A connection, we can define the A

curvature of * 7, as follows:

AE . —
P =V o106V 0000 1= Vo, v o1, = [P0V ATV ] (68)
_[p(Ta )! p(Tﬂ )]V[eﬂ,ev] = p(T;/) Fyv + p(Ty)Vyvv
where
Fo =V, V1= Ve e, (69)

is the curvature of the bundle connection 7,
3.1. The ECSM-groupoid U (2)

Following Marius Crainic and Rui Loja Fernandes (2003)[42], we now deduce the known
inerrability.

1. Lie algebra bundles: For Lie algebroids with zero anchor map (Lie algebra bundles), the
orbits are the points of M. Therefore, the conditions of the main theorem [42] are trivially
satisfied, and we obtain the results of Douady and Lazard (1966) [60]:

Corollary 1 [42]: Any Lie algebra bundle is integrable to a Lie group bundle.
Corollary 2: The ECSM algebra is integrable to the ECSM group U(2)gcs.

By Corollary 1, the SM algebra is integrable to a SM group. By the anchor of the SM
algebroid Asy (Equations (53-54)), the SM and ECSM algebras are integrable to the SM
group U(2) and ECSM group U(2)ecs, respectively, up to the anchor homomorphic surjection
between the SM and ECSM algebra.

From equations (29) and (53-54), we obtain the vector spaces of
> (T, =a(X)l, + B(X)2 7, 0=(1,2,3,4), (70)

together with the commutator. Equations (70) and (60), (61) are referred to the ECSM
algebra® =(0(2) = R* . We observe that:

a()T_(65)+b(x)-£(6s) = a(X)F(6s)1 | +b(x)- F (65)z
(a(x)+b3(x)) (by(x)—iby(x)) : (71)

:F(gs)[(a(x)mg(x)) (a(X) ~ b3(x))

]:o?(x,&s)lz +b(x,65) -7

12
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with being the real arbitrary ECS parameters. These parameters are as follows:
a(x,6,) = a(x) p(65),b;(x, 65) = by (X) p(6),

l52()(1 05) =b, (x) p(65), 63(X, 0s) =bs(x) (&),

Here, F(6,) is the smooth function onS3xS*, given by the Equation(55); 6, is the ECS
mixing angle, which is strictly a global parameter; and a(x),b, (x),b,(x),b;(x) are the real
arbitrary group parameters of the local U(2) gauge group [56-57].

A representation of the SM gauge groupoid U(2) on a vector bundle E—>M induces a

representation * 7 of Agy on E—M, defined by the following system of partial differential
equations (PDE):

(72)

Vi UG, (x.6)) = (%U (€4 (%.65)) |z, 0 ]U (8, (x.65)) =i T*U(&,(x.6,)) , (73)
where
(diNU(ga (x,6,) |éa=0j= iT%, 0=(1,2,34). (74)

T%are the generators of the SM algebra, given by Equation (29). Using Equations (71)—(72),
the solution of the PDE system is given by:

U (x,65) = {exp(io?(x, 05)1 )exp(ib(x, 65) -7) | G(x,05) € R, 6 < R,B(x, 85) € R3} cU(2) (75)
withU (2) being the SM gauge groupoid of two dimensions. Therefore, it follows that
U (x,65) = {exp(id(x, 05))exp(iB(x, 6s) - 7) | G(x, 0) € R, O € R,B(x, 05) R3}

: (76)
= U(x); U(x)o eU@)xSU(2)
where
U(x,0)1 = {exp(ic(x,65)) | &(x,65),€ R, 0 e R} eU (1) , (77)

U()is the unitary gauge groupoid in one dimension, generated by phase I, [56-57],

and SU (2) is the special unitary gauge groupoid in two dimensions, generated by the 3-tuple

7,=(t1,72,73) Of the Hermitian and traceless matrices, respectively[56-57]. By comparing
equations (76) and (77), we have:

U@R)=U@D)xSU(2). (78)
For the Equations (71)—(72) and (75), we have:

U(x,6;) = {exp(iF(as)a(x) 1)+ (F(G5)b(x) 1) | a(x) € R, 05 € R,b(X) € R?’}

, (79)
—u)F@) ed(2)
where U (x) eU (2) [56-57],
U (x, 65) = {exp(iF(Hs)a(x)) exp(iF (65)b(x)-7) | a(x) e R, 65 € R,b(x) € R3}
, (80)
~ U *) U e xsU(2)

where

13
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U (x, 65 )1 = {exp(iF (6s)er (X)) | (), R, 65 € R} =U ()1 ) el (D), (81)
U (x,65)p = {exp(iF(as)b(x) 7)|6s € R,b(X) € R3} ~U(5 %) esi(), (82)
and U (x); eU (1) ,U (%),  SU (2) [56-57].

Therefore from equations (79), (80),we have:

U607 = upr ) upoH ). (83)

We observe that the U(2),SU(2), and U (1) gauge groupoids are the F(6;)-valued U(2),
SU(2), and U(1) gauge groups [56-57] in 6s.

Properties

The gauge groupoid U (2), therefore, has the following properties:
1. For angle 65 = 0, we obtain the trivial group {1} .

2. For angle s = = #/2, we obtain the usual SM gauge group U (2).

3. For every other value of angle 8s, we obtain many SM gauge groups U (2) that depend on
the ECS angle 6s; therefore, these groups are called the ECSM gauge group U (2)gcs -

We regard the ECSM gauge group sectors as mirror SM models [61-63] that are suppressed
for small values of the ECS angle 6, . These groups will be explored in future work [64].

The ECS-angle g, in the anchor map (Equation (53-54)) is strictly a global parameter, and
may originate form a different group. In this case, the ECS angle g, could originate either

from the global SO(3)ecs group or from the finite subgroups of the ECS Mobius
transformations (see below). Furthermore, as Weinstein article illustrates [42], there is no
assumption that a gauge transformation actually extends to the entire object U(2): it may be
that the gauge symmetry does not extend globally but affects only a part of U(2), while the
ECS symmetry extend globally.

3.2. The Lagrangian of the gauge groupoid U (2)

The A connection coefficient of the gauge groupoid U (2) stems from the A connection:

Mg () =T, (MY, Tp) = p(T, )V, (T5) =sin6, T, (V , T5) = F(6) Ao X (84)
where
Aaﬁy (X) = Ta (Vﬂ Tﬁ) (85)

is the SM connection coefficient, and F(#;) is the smooth function on S3x81, given by
Equation (55). The gauge covariant derivative is as follows:

14
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D,(x.6,)=0, —igA,(x,6) =0, —igF (6;) A, (). (86)
The transformation of AN(X,QS) is derived from the following equation:

D, (x.6,)=“®* D, (x,6,). (87)
After same matrix manipulations, the solution of Equation (87) for [\;,(x, ;) in terms of
A, (x,6) is:

A, (x,60) =€) A, (x, 9s)e“”"(x'95)‘%5u8(xlf9s) ' (88)

where e ¥®%) s the inverse of the matrixe'**%) . The strength of the ECSM and ordinary
SM gauge fields Afj (x,65) and A (x) are defined as follows:

- 1 - -

F o (,05) :Q[D,,(x,es), D, (x.6,) |=0,,A,(x.6,)-8,A,(x.6,)

-ig[ A, (,6,), A (,.6,) | = F(6,)(0,,A () -8, A, () ~igF (6)[ A, (0. A.(x)]) (89)
= F(es) F/,zv (X)

Similarly, IEW(X, ;) andF,, (x) can also be expressed as linear combinations of generators:

Fu (x.6) = Fi, (,6) T, =F, (0T, =F(6)F, (0 T, =F(6,)F,, (¥) . (90)

14

The transformation law for the matrix Ifw (x,6,) is:

ﬁ;”/(xl HS) _ eig(X,é’s) Ifuv (x, gs)e—ig(X,Hs) ) (91)

Thus, we can write down a kinetic energy term as follows:

1 = = uv
Secs =5 Fin (R O)FL (x.64) (92)

v

The Lagrangian density of the ECSM is given by:

_ I 1- =
SECSM (Xves) = _'//[7# (ay - IgAZ (X1 es)Ta) + m]l// _ZFHHV(X’ 05) Fayv (X, 95)

2
=1 (0, ~IGF @A (0T, )+ mly L (L %)+ 0(p(0))

(93)

We see that the Lagrangian is given in the initial form before the spontaneous breaking of the
groupoid U(2) symmetry. The U(l)y ECS gauge groupoid is implicitly assumed in the
second term of the summation over SU(2), . The first term represents the kinetic terms and
the gauge interactions of fermions, provided by the covariant derivative(s).

15
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3.2. ECSM gauge field mass

It turns out that the concept of spontaneous symmetry breaking plays an important role in the
proposed theory of ECS electroweak interaction. The broken large groupoid symmetry

sU(2) L X U Oy — U@ EM (94)

gives the massive ECS particles W and Z bosons. In equations (80) and (81), we observe
that the spontaneous breaking of the large groupoid symmetry can only occur when the
symmetry of electroweak interaction breaks spontaneously:

SU2)xU(1)y — U(1em (95)

Equation (95) predicts the massive particles W and Z bosons, whose correct mass has already
been known since 1983 [4-6]. In Equation (81), U(L)gp is the ECS gauge groupoid of

electromagnetism, which is the F(6;)-valued U(1)em common electromagnetism in 6s.
Therefore, we may view the ECS electromagnetism sectors of the U (1)g,, gauge groupoid as

the mirror sectors [61-63] that are suppressed for small ECS angles & (a proposition to be

explored in further work [64]). The most general Lagrangian consistent with the gauge
invariance, Lorentz invariance, and renormalizability of the ECS gauge groupoid

U@D)xSU(2):

1 ~ = R R
Secs =10, ~iA, 19 -8,y )G | -9 -2 (F'4)

, (96)
1, . . . 2 . A .
== 1sin|6; 140, ~isin| 6| (A, 1V 1B,y )} | - sin’ |6, g sin’ 6 | (4°9)"
where
A, (%8,) =F(B)A,(X), B, (x,65) = F(6:) B, (X) , §(x.6) = F (6,)¢() . (97)
The scalar Lagrangian (96) then yields an ECSM vector boson mass term:
1 1 ' o
=510, =1, (877 ~18,(6,) -7 ")p(0) =2 (%Aaﬂ(esﬁ“ —%Aaﬂws))j[w )j
70, (98)
P(05)9° % iy 000087 5 s
= 4 W,u(gs)w (‘95)_sz(95)2 (95)
where g and g’are the coupling constants. The ECSM masses are given as follows:
1 . 1. ;
M ;\(95)=0,MW(9S)=Egu(es),MZ~(HS)=5u(95)\/92+g 2. (99)

Here, W*and Z° are the gauge bosons that mediate the ECS-exchanging electroweak
interaction between the families of fermions (for details see [31]). Using Equation (97), the
ECSM masses become
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M5 (6) =Mp =0,M; (6) =My, F(6). M5 (6) =Mz F(&) , (100)
where
MAzoiMW :%gU!MZ :%U\lgz_‘_g'z (101)

are the gauge boson masses of the SM vector [4-6]. The ECS Higgs potential in Equation
(96) is given by

Vo(@) = 22| +2/g] - (102)

Decomposing into physical and Nambu-Goldstone (NG) modes, we notice that, when we
expand about some general vacuum with ¢ = v undetermined, the resulting masses are:

M7 (6,) = i +625(6,)° (103)

Mice (6s) = % +240(6)° (104)

where mgg is the common mass of the NG bosons. At the minimum of the potential in
Equation (102), we obtain the bare ECS Higgs mass:

M3 (6,) =2/ = 440(6,)* =4A0°F (6,)* = m3 F(6,)°, (105)
where
mé = 4A0% . (106)

The SM Higgs gauge boson [4-6] and all the NG bosons are massless.
3.3. Masses of the ECSM quarks and leptons

The masses and mixing of the ECSM quarks and leptons have a common origin, as suggested
in the SM [4-6]. They arise from the Yukawa interactions with the ECS Higgs condensate:

Ly =Y Qig(F (8,))dg; —Y§'Qlieg (F(6;)) Ug;+hc, (107)

where Yi}"d are 3x3 complex matrices, ¢(F(6;)) is the ECS Higgs field, i, j are generation

labels, € is the 2x2 antisymmetric tensor, QII_i are left-handed ECSM quark doublets, and

JF'{J- and U,';{J- are, respectively, right-handed down- and up-type ECS quark singlets in the

weak eigenstate.

When ¢(6,) acquires a vacuum expectation value, (<¢3(HS)> =(0,9(6,) /2)), Equation (107)

yields mass terms for the ECSM quarks, as follows:

Ly =-Qlim{ (8,)dy; —Yi'Qlim{ (6,) Uk +he, (108)
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where
mi (0. = Vi (4°(6)) =mif F(@,) .« mj () = X% (4°(6)) =mj F(6) (109)
mj = (#°)  mi =2 (4°) (200)

are the SM quark masses [4-6]. The ECSM quark masses depend on the arbitrary couplings
and cannot be predicted. Furthermore, since ECSM quarks are not observed in isolation, their
masses are not precisely defined. Similarly, for ECSM leptons, we have:

mj (6) = XYy (8°(60)) =mj F(&,) (201)
where
mf =Y (4°) (203)

are the SM quark masses [4-6].

4. Finite subgroups of the ECS Maobius transformations

We observe that the U(2),SU(2), and the U (1) ECS gauge groupoid are the F(6,)-valued
U(2), SU(2), and U(1) gauge groups [4-6] in 6s. The ECS angle 6, in Equation (55) is strictly
an arbitrary global parameter, and may originate form a different group—either the SO(3)gcs

group or from the finite subgroups of the ECS Mobius transformations as we explain in this
section.

Let T be an ECS subgroup of PSL,(C)ecs, consisting of elliptic elements together with the
identity. Then T'gcs is conjugate in PSL,(C)ecs to a subgroup of PSU,(C)ecs [53-54].

Now, by the group isomorphism (12), for every finite subgroup of ECS rotations (i.e. a
subgroup of PSU,(C)ecs ), we have the following:

For a given finite group, I'ecs, of ECS rotations in C* (Equation ()),one of the following holds
[53-54]:

1 .I'is ECS-cyclic;
2 .I'is ECS-dihedral;

3. I' is the ECS symmetry group of a regular ECS tetrahedron (A;), ECS octahedron (S,), or
ECS icosahedron (As).

One can show that two finite ECS subgroups in PSL,(C)gcs are conjugate if and only if they
are isomorphic.

4.1. ECS-dihedral group

Here, D (with F being the number of fermions) refers to the symmetries of the Fermionic
polygon (F-gon:having F fermionicsides)—a group of order 2F. In abstract algebra, D¢ refers
to this same ECS dihedral group (for details of the Dirac equation on the polygon regions see
[69-75]). Dk is a subgroup of O(2)gcs =U (Q)gcs s i1-€., the group of ECS rotations (about the

origin) and ECS reflections (across axes through the origin) of the plane. However, the
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notation ‘D¢’ is also used for a subgroup of SO(3)gcg = SU (2)gcs » Which is also an abstract

group: the proper symmetry group of an F-gon embedded in three-dimensional internal
space (if the number of fermions is F > 3).

Following [69], the Dirac-like equation for the fermionic F-gon, given by decomposition of
the equation into two complex conjugate parts through operator calculus, and assuming ye.gon
is a two-vector wave function:

(720, — iTlag)WF—gon (0,6)=A(cosb; - | +isiné; '73)1//F—gon (o,6) ,

where 1’s are the isospin versions of Pauli matrices, A iS a positive constant, and
(o,¢) internal coordinates . Here, the difference with the original Dirac equation is the

inclusion of ECS-angle 0s into the equation. By applying finite differences on the partial
differentials from [69], we may obtain the following solutions in the continuum limit:

WE_gon(0.6), =(iAc0sbs)y . +(iAsin6s)y .,

Ve _gon(0.6)- = (120086, )y_ +(iAsinby)y_ (6]
We can apply representation theory by exchanging the elements into matrices. The fermionic
Dihedral group D, is the set of the 2F rotation and reflection symmetries of a F-sided
fermionic polygon. Assuming we are orienting positive direction as clockwise, then let the
group element R; denote rotation by i units, while S; denotes rotation of i units, then a
reflection. RR; =R,;,RiS; =5,j,SiR; =S;_;,5;S; =R;_;. Note that using the group

representation theory, the elements are isomorphic to

+j

27k . 2rk 27k 27k
Cos —=SIn COS—— Sin——
Rk - F F , Sk = F F ) keN
. 27k 27k 27k 27k
Sin—— COS—— — —COS——
F F
where
27k
0.(F)=——
L (F)= 22

ECS-angle and F is the number of fermions. By calculation, one can find the mapping from
C[Dg] to a direct isomorphic sum of End[V;], where Vi, V... are the irreducible

representations of D group [69].

4.2. The averages of F(6s) function over the triangulation of a convex fermionic F-gon

The sum of the interior ECS angles of a simple F-gon is (F — 2)= radians. This is because any
simple F-gon can be considered to be made up of (F—2) triangles, each of which has an angle
sum of x radians:
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495(':):(1—%]”, (204)
where
F = Fordinary + Fecs - (205)

F is the total number of fermions, given by the sum of ordinary Fygiyayand ECS

fermions Fgg . Following [76], we find that the number (C¢) of triangulations of a convex
fermionic F-gon in the internal space satisfies the recursive formula

where C, = 1 [77-80]. The numbers Cr are now called fermionic Catalan numbers. From
(206), it follows that C; = 1, C, = 2, C; = 5, and so on. Using generating functions and
Segner's formula, an explicit formula for Cr can be developed [80]:

_ (2F)!
Cr C(F+)IFY (207)

with F being the total number of fermions.

After the triangulation of a convex fermionic F-gon in three-dimensional internal space,
Equation (55) becomes:

zsin( 6, (F)
Siﬂ(t9S (F))(AF) = ( Z:F )averge :é Lon [0,/2], (208)
where
i 2 /2 2
sin(6; (F))averge =— on [0,/2]. (209)

This is the normalised average sin of the ECS angle 6, over the triangulation of a convex
fermionic F-gon by the fermionic Catalan numbers Ck.

5. Results

Now that the averages of the F(6;) function have been determined by the fermionic Catalan
numbers Cg, we consider two possible scenarios of ECS contribution to the SM:

Loop level: The ECS Physics at loop-level differs from the SM physics; the ECSM mass is
not identical to the SM mass; therefore,

: 2 My
sin(6;(F)),, y=—=——""=#1,0n[0,1/2] (210)
S (An) Cn M p-SM
implies
. 2M o
Mo—a,) =Sin(G(P) s y Mpsu =—-—— on [0,2/2], (211)

F
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where Mp_(a,) are the triangulation masses of the ECS particles (from equation
(208)), M _g are the corresponding masses of the SM particles, and Cr are the fermionic
Catalan numbers for the triangulations of the fermionic F-gon.

Tree level: The ECS Physics at tree level is the same as the SM physics, and the ECSM
masses are identical to the SM masses. Therefore,

: 2 My,

sin( 6. (F =—=—"-2"-1 on[0,n/2 212
(0P, =¢, - [0.7/2] (212)

implies

Mp_sm =Mp_(a,) (213)

where Mp_(a,) are the ECS particle triangulation masses of the fermionic 2-gon, are the
corresponding SM particles masses, and C, = 2 is the fermionic Catalan number for the
triangulation of the fermionic 2-gon.

In the proposed ECS model ((211), (212)), the tree-level mass term, |uo|, Which sets the
electroweak scale, is naturally ~ my, 2. We thus only consider the effect of the new ECS
physics at loop level. We estimate the ranges of tree-level mass term |u| as follows.

For ,ug <0, there is a tree-approximation vacuum expectation value of the stationary point of
the Lagrangian. (96).

2 2 2
2 |1u0 |smattest mW mz 2 | 1o |Largest 2 2 2
Usmallest = TS =—5C08" @y =—————C0s" §y = U argest COS Ay,
24 A A 24 (214)
2 |:uO |Largest m%
ULargest T 2 )
where

2 2 2 2 2 2 2 2 2
|IUO |Smal|est: 2A05mallest =2 My '|/u0 |Largest: 2ﬂ“ULargest =2mz ,mz; =my / cos Ay (215)

and 4, ; the Weinberg angle [1,2]. Implies that the bare parameter| yg | must be in the mass
ranges of

2 2 2 2 2
| 245 lsmattest = 2Myy < 45 [€2M3Z = 145 |Largest’ (216)

where my,=82GeV and mz=91GeV are the W and Z boson mass respectively.

Considering the one-loop contribution to the effective potential (102), the radiative
corrections take the form:

2

RCOES Ag e STIM(G(AR)) + (217)

Vi(g) =

where STr = Tr (—1)" defines the supertrace. This new contribution can be absorbed into V,
(Equation (102)) by shifting the bare *:

2 3Ac

5 STIM?($(AR,))

TN

(218)
:u§+3;/\c M3 (Ag,)+2M3 (A, )+ M2 (Ag, ) - 4mE (Ag, )]+ ..
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The trace over the ¢-dependent triangulations masses is given by

> M2(@(AR) = (M (Ag) |, —m (Ag) |; o)>
scalars (219)
+3(MRep =0 ~Mics l5=0)) =3m3 (A) 5=

Thus Equation (218) is reproducing.

Here, M5 (Ag), My; 7 (Ag), andm;(Ag) are the triangulation masses of the ECS top quark

(from equations (211) and (3)), ECS W,Z , and ECS Higgs bosons (H ), respectively, and v
is the vacuum expectation value of the Higgs potential in the SM [4-6]. The dots include
logarithmic corrections in Ac, as well as contributions independent of A¢ in the large A¢ limit.
Using equations (211) and (3), we obtain the one-loop radiative corrections to the bare Higgs
mass:

o SME(Ae)AC 337N

M5 =g = )
° 2  ar2c2

(220)

I~

87%0

These corrections depend on the fermionic Catalan number Cr (Equation.(207)), the top quark
Yukawa coupling A; and the cut-off energy scale 4c Using equations (216) and (220), we
estimate the ranges of the one-loop radiative corrections to the bare Higgs mass as follows

3AENE 3MENE
2 2 2
(MH )Smallest :_(IUO)SmaIIest + 112 2 = M|Z| < (IUO)Largest t— ﬂ/[ < _( H )Largest (221)
47°CE 47°CE
SHAC _ A
(M2) =2mg + <MZ <2m3 + =(M%) . (222)
H /Smallest my A Cé H = Z A 2 CE H /Largest

Using equations (221) and (222), we obtain the median value of the one-loop radiative
corrections to the bare Higgs mass:

M2 ~L(mz M2 _ ol em2 4 A 223
( H)Median—z(( H)Smallest"’( H)Largest)_mN+mZ+4ﬂ_2C2 ' ( )
F

Following equations [9], an all-orders result for ME' is given by the following equation:

& A

M& =4 +A Z (}L)Iog”[—cj, (224)
n=0 Q

where ¢, = (3272)'STr M?v’. The remaining ¢, can be calculated recursively by the

following relation:

dc,
d(logQ)

(@+n)Chi = ,3| 5 (225)

21

where yg should be independent of the renormalization scale Q. For example:
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2
(16n2)q;:EéTGA42——54g2-—1890-+7225)+é%5(27g2+17ga-+962?-—9023)

F F : (226)
15 gt + 25 g+ 9 9292
2C2 2C2 2C2

Since each order in n involves more factors of (16n°C%) ', we expect that, for large fermionic
Catalan numbers Cg, the higher-loop contributions are unimportant. Our approach to the
higher-order contributions yields that each c, #0 is suppressed by the large fermionic Catalan
number Cg for all n separately. In the infinite cutoff limit (or in a cutoff-independent
solution), this would be the correct procedure for solving the fine-tuning problem [29]. Given
that all ¢, #0 are independent of, and suppressed by, the large Cg over the (A;) parameter, a
solution exists. Therefore, our approach makes it possible to solve the fine-tuning problem,
since an all orders of solutions exist. For an equal number of ordinary and ECS fermions, the
calculated one-loop radiative corrections to the bare Higgs mass o’ is given in Table 3.

Number of Ordinary Fermions (Forginary)

12
Number of ECS Fermions (Fgcs) 12
Total Number of Fermions (F) Eq. (205)

24
Fermionic Catalan Number (Cg) Eq (207) 2.28x10™

Largest value of the tree-level mass term, || argesty (G€V) Eq(216) [128,6

Smallest value of the tree-level mass term, |uo|smaiesy (GeV) Eq(216)(115,9

Largest value of the Higgs mass My, - (GeV) Eq(222) 131

Smallest value of the Higgs mass My ®™"*') (GeV) Eq(222) 119

Sum (GeV) 250

Count 2

Median value of the Higgs mass M, ™% (GeV) Eq(223) 125

Geometric Mean 124.85591696031
Range (GeV) 12

Table 3. One-loop radiative corrections to the bare Higgs mass, as calculated from Equation (223). For
the reciprocal fermionic Catalan number 1/C,, = O(10") (Equation (207)), and top quark Yukawa
coupling 4=0.99 and the cut-off energy scale Ac = O(10**GeV), where m,=82GeV and m,=91GeV are
the W and Z boson mass respectively.

This result is very close to the experimental value of the Higgs mass [10,11]. The all-orders

result for Mé with a fermionic Catalan number C,, becomes:
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2
M2 = 42 {é\—(’j e, (ﬂ)log”[%} . (227)

24 n=0
For instance, the calculated result

2
167%)c, = Ci2(1441 —54g% -189'> + 7212) + 21—2(279%17@1'2 +961%-9042)
24 24

15 2% 4 9 5, 1
—o 0 o 9% 20| -
2C24 2C:24 2(:24 C24

(228)

is of the order of the inverse square of the fermionic Catalan number of the 24F-gon. Our
approach, therefore, solves the fine-tuning problem, since it provides an all-orders solution
which is suppressed by the fermionic Catalan number Cg for all n separately. For 24 fermions,
we calculate a Higgs mass of 125GeV which is very close to the experimental value [10,11].

6. Conclusion

Taking the SU(2) group of weak interactions in the presence of electric charge swap (ECS)
symmetry as a starting point, we show that ordinary and non-regular (ECS) leptons are related
by the ECS rotational SO(3) group.

We investigate a version of the SM algebroid with the anchor map depending on the ECS
angle 6s. We find that many SM algebras depend on the ECS angle 6s. We call these ECSM
algebras. Furthermore, the SM algebroid is integrable to the SM groupoid; so, our results
potentially extend well beyond this case. Then, we investigate how the breaking of the SM
groupoid symmetry gives the massive ECS particle. We find that the ECS particle mass is
related to the SM particle mass through the ECS angle 6s.

We investigate the finite subgroups of the ECS Mdbius transformations. In this case, the
ECS-angle 6, could originate from the ECS dihedral group that refers to the symmetry of

the Fermionic polygon (F-gon). The ECS angle 6s can then be determined through the
triangulation of a convex fermionic F-gon.

Finally, we find that, at loop-level, the ECS Physics is different from the SM physics, and the
ECSM mass is suppressed by the fermionic Catalan numbers Cr For 24-fermions, the
calculated one-loop radiative correction to the bare Higgs mass p’ is 125GeV—uvery close to
the experimental value.
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