Preprint
Article

Wearable Sensor Based Human Activity Recognition with Transformer

Altmetrics

Downloads

585

Views

410

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

04 February 2022

Posted:

08 February 2022

You are already at the latest version

Alerts
Abstract
This paper describes the successful application of the Transformer model used in the natural language processing and vision tasks as a means of processing the time series of signals from gyroscope and accelerometer sensors for the classification of human activities. The Transformer model is based on deep neural networks with many layers which can generalize well on signals. All measured signals come from a smartphone placed in a waist bag. Activity prediction is sequence-to-sequence, each time step of the signal is assigned a designation of the performed activity. Emphasis is placed on attention mechanisms, which express individual dependencies between signal values within a time series. In comparison with another recent result, the recognition precision was improved from 89.67 percent to 99.2 percent. The transformer model should in the future be included among the top options in machine learning methods for human activity recognition.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated