Preprint
Article

Predictive Optimization Based Energy Cost Minimization and Energy Sharing Mechanism for Peer-to-Peer Nanogrid Network

Altmetrics

Downloads

288

Views

230

Comments

0

Submitted:

09 February 2022

Posted:

10 February 2022

You are already at the latest version

Alerts
Abstract
The concept of distributed generation has made photovoltaic an integral source of energy in smart grid systems, especially in peer-to-peer energy trading frameworks that exploit excess power to fulfill the energy requirements of consumers in cost-efficient and eco-friendly manner. It is believed that P2P energy trading will dominate a significant portion of research in forthcoming power generation systems due to the excessive rise of energy demands across the globe. Despite a plethora of studies on energy optimization solutions in P2P trading, minimizing nanogrid energy trading cost and efficient energy sharing between consumers and prosumers are deemed among the challenging problems. This study overcomes essential issues overlooked by the contemporary P2P energy trading models by introducing a predictive optimization-oriented nanogrid energy trading model. The proposed study encompasses two stages: (1) predictive optimization model which harnesses BD-LSTM-based forecasted energy parameters (energy load, energy consumption, and PV generation) that are later incorporated in PSO-enabled objective function to reduce nanogrid trading cost, (2) optimal energy sharing plan is devised to decide the role of nanogrids as prosumers or consumers by emphasizing the use of PV-produced energy. The proposed model is validated on the case study containing nanogrid houses data. The simulation provides detailed experiments by comparing the energy demand and response using the proposed energy sharing model. The outcomes yield that the energy sharing plan holds a significant potential to fulfill maximum energy requirements of nanogrid house in P2P cluster and significantly reduces the energy cost compared to grid.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated