The past two decades have witnessed the introduction of and then a steady increase in the use of computational techniques in the study and development of molecularly imprinted polymers (MIPs). Molecular dynamics (MD) based studies have had a significant role in this development as they can provide insights concerning the mechanisms governing the molecular level events underlying MIP synthesis and MIP-ligand interactions and can be used for the identification of preferred monomer compositions and for the prediction of MIP properties. We here review the role that MD has played in the development of molecular imprinting and examine the different types of MD strategies that have been used, including their advantages and challenges. Recent trends in the application of MD to the study of MIPs are presented, along with a perspective on the future importance of MD-based studies for the development of molecular imprinting science and technology.
Keywords:
Subject: Chemistry and Materials Science - Theoretical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.