

Human muscle spindles are wired to function as controllable signal-processing devices

Michael Dimitriou^{1,*}

1 Affiliation: Physiology Section,
Department of Integrative Medical Biology,
Umeå University, S-901 87 Umeå, Sweden

* Corresponding author details

Email: michael.dimitriou@umu.se

Phone: +46-90-786-5186

Word-count

Abstract: 198

Main text: 4441

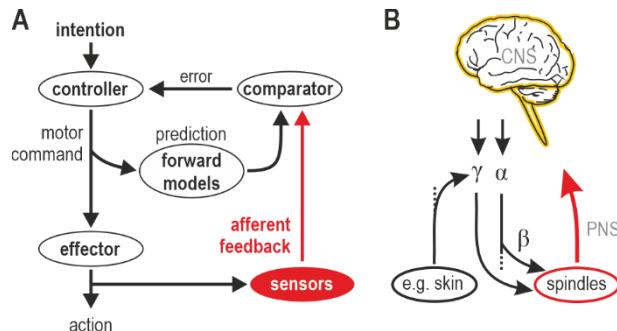
Keywords:

muscle spindle, proprioception, sensorimotor, fusimotor, signal processing, human

1 Contents

2	Abstract.....	3
3	Introduction.....	3
4	Spindle tuning linked to skeletal muscle activation.....	4
5	Independent tuning of muscle spindles in active contexts	6
6	Peripheral control of spindle sensitivity.....	9
7	Concluding remarks	10
8	Open questions.....	12
9	Acknowledgements.....	12
10	Competing interests statement	12
11	Funding	12
12	References.....	13
13		
14		

15 Abstract


16 Muscle spindles are encapsulated sensory organs found in most of our muscles. Prevalent models of
17 sensorimotor control assume the role of spindles is to reliably encode limb posture and movement. Here, I
18 argue that the traditional view of spindles is outdated. Spindle organs can be tuned by spinal γ motor neurons
19 that receive top-down and peripheral input, including from cutaneous afferents. A new model is presented,
20 viewing γ motor activity as an intermediate coordinate transformation that allows multimodal information
21 to converge on spindles, creating flexible coordinate representations at the level of the peripheral nervous
22 system. That is, I propose that spindles play a unique overarching role in the nervous system: that of a
23 peripheral signal-processing device that flexibly facilitates sensorimotor performance, according to task
24 characteristics. This role is compatible with previous findings and supported by recent studies with
25 naturalistically active humans. Such studies have so far shown that spindle tuning enables the independent
26 preparatory control of reflex muscle stiffness, the selective extraction of information during implicit motor
27 adaptation, and for segmental stretch reflexes to operate in joint space. Incorporation of advanced signal-
28 processing at the periphery may well prove a critical step in the evolution of sensorimotor control theories.

29 Introduction

30 Most of our skeletal muscles contain a large collection of muscle spindle organs. Spindles are generally
31 believed to be basic mechanoreceptors that encode muscle stretch and provide reliable information about
32 actual limb posture and movement kinematics. Previous work and more recent studies using genetic
33 manipulation methods have added a great deal of knowledge about the molecular mechanisms of
34 mechanotransduction (e.g., Kruse & Poppele, 1991; Bewick & Banks, 2015; Woo *et al.*, 2015). Spindles
35 have been proposed to play a basic, low-level role in reflex motor control (Houk, 1976) and proprioception
36 (Goodwin *et al.*, 1972), and their malfunction has been linked to impaired motor coordination (Sainburg *et*
37 *al.*, 1993). An interesting recent proposition is that the mechanoreceptive part of spindles responds best to
38 force-related variables, as shown in relaxed muscles (Blum *et al.*, 2017). Still, the role of muscle spindle
39 organs in their entirety (i.e., of the mechanoreceptor under *in vivo* efferent control) has remained unclear
40 (for a recent comprehensive review see Macefield & Knellwolf, 2018).

41 In the relaxed muscle of the unengaged human, the characteristics of imposed muscle stretch are rather
42 faithfully encoded by the signals of muscle spindle afferents. Specifically, there are two main types of
43 muscle spindle receptors, the primary and the secondary, which give rise to the primary (type Ia) and
44 secondary (type II) afferents, respectively (Boyd & Davidson, 1962). When imposing a ramp-and-hold
45 stretch of the relaxed muscle, type Ia from this muscle are most responsive during muscle stretch, are
46 sensitive to the rate of change of length (i.e., velocity), may encode static length but are silent during muscle
47 shortening. That is, under passive conditions, primaries can be considered to have both a good dynamic and
48 fairly good static muscle-length sensitivity, whereas type II from passive muscle represent good static
49 length sensitivity but a poorer dynamic sensitivity (Edin & Vallbo, 1990a). These response patterns reflect
50 the general view of spindles, which says that type Ia firing encodes static muscle length and the velocity of
51 stretch, and type II encode static muscle length. However, unlike other types of peripheral
52 mechanoreceptors, the spindle organs have their own motor supply in the form of γ motor ('fusimotor')
53 neurons (Barker & Chin, 1961; Matthews, 1972). Despite their rich innervation, the overarching role of
54 muscle spindles in sensorimotor control has remained unclear, particularly so in the context of naturalistic
55 active movement.

56 Figure 1A represents one prevalent model of how a voluntary movement is controlled and monitored
57 (Wolpert & Miall, 1996). In this model, a controller in the CNS turns the intention to move into a motor
58 command that is sent to skeletal muscles that power the action. A copy of the motor command is sent to

Figure 1. Human sensorimotor control and muscle spindle innervation

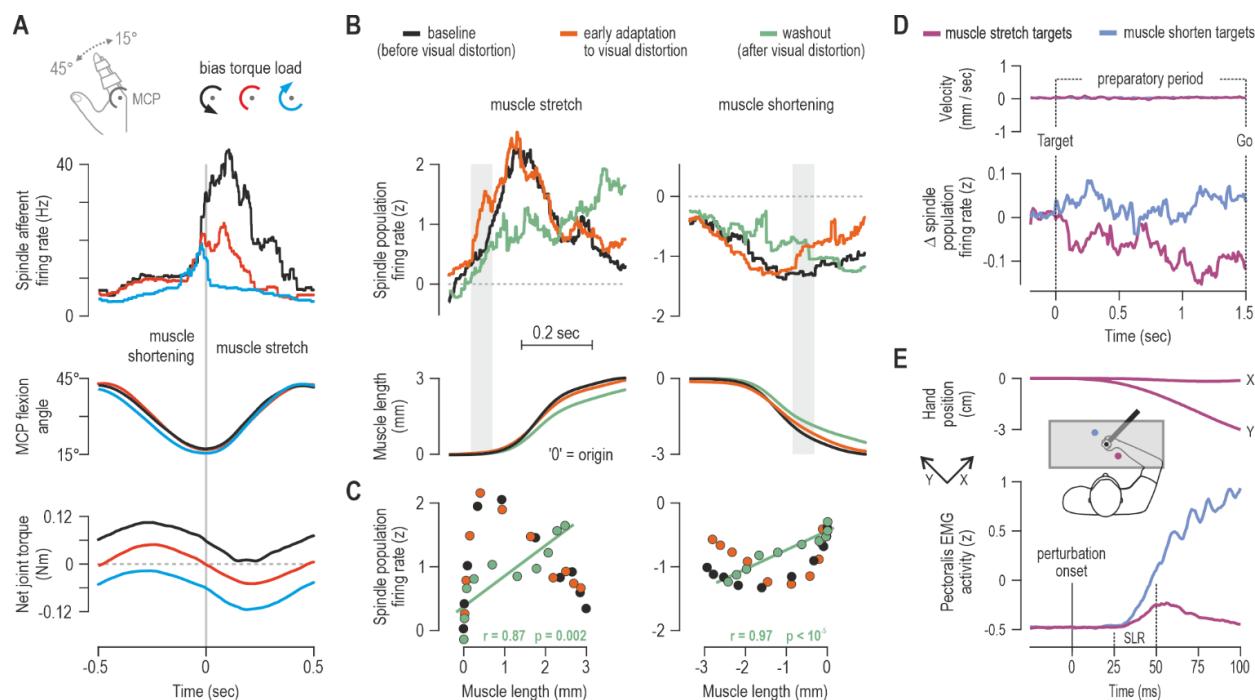
(A) One prevalent model of human sensorimotor control. Proprioceptors in muscle and skin are viewed as basic sensors, reliably encoding actual mechanical state in unimodal coordinates. Advanced (e.g., selective) processing of sensory signals is thought to occur only in the CNS. (B) The role of muscle spindles under naturalistic efferent control has remained unclear. Mammalian muscle spindles can be powerfully controlled by γ motor neurons. These lower motor neurons are subject to both top-down and peripheral control, including from cutaneous afferents. I propose that spindles and their control enable advanced processing of sensorimotor information, giving rise to flexible coordinate representations at the level of the peripheral nervous system (PNS).

59 internal forward models that make predictions about the sensory consequences of this action. The action
 60 itself generates feedback from sensory receptors. If the movement progresses as intended, there should be
 61 no discrepancy between the internally predicted signal and actual sensory feedback. This framework views
 62 mechanoreceptors in muscle and skin as basic sensors that transduce physical stimuli into unimodal
 63 feedback signals, ignoring the independent motor supply to muscle spindles. However, in mammals, ~30%
 64 of spinal motor neurons are γ , which supply muscle spindles exclusively (Kuffler *et al.*, 1951; Burke *et al.*,
 65 1977). These γ neurons can be controlled by descending commands and/or peripheral afferent input (Fig.
 66 1B; see also following sections). The nervous system has clearly placed a premium on the control of muscle
 67 spindle signals at source. Given the renewed emphasis on proprioceptive feedback in motor control (e.g.,
 68 Crevecoeur *et al.*, 2016; Scott, 2016; Tsay *et al.*, 2021), it is important to strive for a better understanding
 69 of how the most complex sensory organ outside of the special senses contributes to sensorimotor function.

70 A recent debate addressed the independent top-down tuning of human muscle spindles (Burke, 2021a, b;
 71 Dimitriou, 2021a, b). Here, all possible modes of spindle control are addressed (i.e., independent and α -
 72 linked top-down control, as well as peripheral control) to support a unifying proposal: spindles are best
 73 thought of as signal-processors that enable flexible coordinate representations at the level of the PNS (Fig.
 74 1B). In this framework, spindles can facilitate sensorimotor performance in a flexible manner according to
 75 task characteristics, and not limit their contribution to routinely encoding actual posture and movement. In
 76 other words, I propose that spindles primarily function for the benefit of sensorimotor performance rather
 77 than veridical proprioception. As described in the following sections, this proposal is compatible with
 78 previous findings and supported by recent studies where human participants actively engage in fundamental
 79 sensorimotor tasks.

80 Spindle tuning linked to skeletal muscle activation

81 The most popularized explanation for human spindle control is based on ‘ α - γ co-activation’ (Vallbo, 1970).
 82 In this view, γ fusimotor neurons are activated virtually the same time as α motor neurons, in order to
 83 prevent spindles from falling slack during muscle contraction. Essentially, in this context, α - γ co-activation
 84 simply maintains the stretch sensor operational. That is, the proposed function of fusimotor control is to
 85 compensate for the shortcomings/complexities of the neuromuscular system, allowing spindles to keep
 86 functioning as reliable kinematic proprioceptors. This rather mundane fusimotor function is probably one
 87 reason why prevalent computational frameworks have ignored fusimotor control. Most support for a lack


88 of independence between α and γ motor neuron activity has come from recording spindle afferent signals
89 during isometric contractions or during unnaturally slow and restricted movements (e.g., Gandevia &
90 Burke, 1985; Wessberg & Vallbo, 1995; Kakuda *et al.*, 1996). Moreover, co-activation of extrafusal
91 (skeletal) and intrafusal (spindle) muscle fibers can be easily implemented through the more primitive beta
92 neurons (Jami *et al.*, 1982; Emonet-Dénand *et al.*, 1992). β neurons are essentially just α motor neurons
93 that branch out to innervate extrafusal and intrafusal muscle fibers. Both mammals and lower vertebrates
94 have β motor neurons, but only mammals seem to have γ motor neurons (Hunt, 1951; Emonet-Dénand &
95 Laporte, 1975; Murthy, 1978). The vast majority of efferent projections to mammalian spindles are from γ
96 motor neurons (Matthews, 1964; Emonet-Dénand *et al.*, 1992). The independent γ motor supply must
97 therefore represent an evolutionary advantage, realized through the ability to dissociate spindle control from
98 the control of skeletal muscles, in cases where this dissociation is favorable to the organism (see following
99 sections).

100 Nevertheless, α - γ co-activation can account for the increase in spindle afferent firing observed during
101 isometric contraction of the spindle-bearing muscle (Edin & Vallbo, 1990b); β motor neurons can also
102 contribute (Kakuda *et al.*, 1998). This increase in spindle firing is congruent with the known ‘automatic’
103 gain-scaling of short-latency stretch reflexes (SLRs), where reflex sensitivity is proportional to background
104 activation of the homonymous muscle, as shown in postural tasks (e.g., Matthews, 1986; Pruszynski *et al.*,
105 2009). However, automatic gain-scaling alone cannot account for the modulation of SLR gains observed
106 during movement (Dufresne *et al.*, 1980; Soechting *et al.*, 1981; Nakazawa *et al.*, 1997; Wallace & Miles,
107 1998). I have recently shown that spindle sensitivity to stretch can be positively related to the activity level
108 of the spindle-bearing muscle, but also be negatively related to antagonist muscle activity (Dimitriou, 2014).
109 That is, during continuous sinusoidal movements of a finger against different loads, spindle responsiveness
110 to stretch was shown to depend on the balance of activity across an antagonistic muscle pair (hence joint
111 dynamics), rather than activity in the spindle-bearing muscle alone (Fig. 2A). The negative relationship
112 with antagonist activation is compatible with top-down reciprocal inhibition of fusimotor neurons, as shown
113 in intercostal muscles of the cat (Sears, 1964).

114 Using an innovative experimental approach, Villamar and colleagues (Villamar *et al.*, 2021) have very
115 recently tested the hypothesis that SLR sensitivity during movement can be explained by the balance of
116 activity across agonist and antagonist muscles. The observed changes in SLR sensitivity during ballistic
117 elbow movements did reflect the net background activity across agonist and antagonist muscles. Moreover,
118 the relative impact of agonist and antagonist activity on SLR gain were “remarkably similar” to the
119 coefficients generated by the aforementioned spindle study. Although the contribution of other mechanisms
120 cannot be excluded, taken together, the afferent and stretch reflex results suggest that spindle tuning is at
121 least partly responsible for shaping SLR gains during sinusoidal and ballistic movements under different
122 loads. The ‘antagonistic’ mode of control demonstrates that spindle sensitivity to stretch does not only
123 reflect the state of the homonymous muscle. The spindle response to a physical stimulus (i.e., the
124 mechanoreceptor signal) can be modulated or ‘processed’ according to the contractile state of the spindle-
125 bearing muscle and its antagonists. In the context of sinusoidal and ballistic single-joint movement, primary
126 spindles do not seem to function as reliable unimodal sensors encoding muscle stretch or joint rotation (Fig.
127 2A). Rather, by integrating mechanical stimulation and fusimotor commands, spindles help augment
128 volitional motor control according to the prevalent dynamics around a single joint. That is, spindle tuning
129 based on muscle activation balance (i.e., reciprocal control) enables even segmental reflex contribution
130 from single muscles to occur in ‘joint space’. Future research will determine whether spindle tuning can
131 also reflect multi-joint dynamics.

132 **Independent tuning of muscle spindles in active contexts**

133 As described in the previous section, spindle sensitivity can reflect muscle activation in isometric and
 134 movement tasks where differential muscle loading is the predominant or defining variable feature.
 135 However, neither ‘ α - γ co-activation’ nor ‘antagonistic muscle balance’ can justify the need for an
 136 independent fusimotor system. α -linked fusimotor activity could be carried solely by β efferents. So why
 137 have we and other mammals evolved γ motor neurons? What is the nature of independent spindle tuning?
 138 What are the benefits for sensorimotor performance? With existing methodologies, it has proven virtually
 139 impossible to systematically record from human γ motor neurons. Only one study claims to have directly
 140 recorded from single γ efferents of immobile humans (Ribot *et al.*, 1986). However, recording from
 141 individual spindle afferents using microneurography is a feasible and even preferable alternative, because
 142 γ neurons supply spindles exclusively, and the spindle organ acts as an integrator of input from
 143 mechanoreception and multiple fusimotor fibers; that is, afferent firing also allows assessment of net
 144 fusimotor impact, whereas random fusimotor fibers, whose actions sum non-linearly, may be less revealing
 145 in this respect (Matthews, 1972; Prochazka, 1989). Therefore, one way to address the questions above is to
 146 record spindle afferent signals during naturalistic movement in fundamental sensorimotor tasks.

Figure 2. Human muscle spindle organs are not basic kinematic sensors

(A) Averaged responses of a representative spindle afferent from the common digit extensor muscle, during active sinusoidal movements of a single finger at 1Hz (adapted from Dimitriou, 2014). Movement was constrained to the metacarpophalangeal joint (MCP) and occurred under a flexion resistive or assistive torque load, or no external load. Standard classification tests identified the afferent as a typical spindle primary (i.e., ‘type Ia’; see Fig. 2 in Dimitriou, 2014). Despite virtually identical finger flexion, spindle responses to stretch varied according to joint dynamics. (B) Averaged spindle afferent population responses and equivalent muscle length changes during the classic visuomotor rotation task (both ‘B’ and ‘C’ adapted from Dimitriou, 2016). Grey background bars highlight phases in early adaptation (orange) that differ substantially from baseline (black). (C) Correlating the signals shown in ‘B’ (down-sampled at 50 ms) confirmed a significant relationship in the washout stage. (D) Muscle velocity (null) and changes in spindle Ia responses before movement initiation in the classic instructed-delay reaching task with the hand. Ia firing rates from extensor muscles were lower when preparing movement to visual targets associated with stretch of the spindle-bearing muscle (purple). ‘D’ and ‘E’ are adapted from Papaioannou and Dimitriou (2021). (E) Averaged signals across participants; experiments using a robotic manipulandum showed a congruent goal-directed tuning of stretch reflexes, including at the short-latency epoch (‘SLR’) in cases where the homonymous muscle was not heavily loaded before perturbation. Color coding as in ‘D’.

147 One such task involves implicit adaptation to a visual distortion (i.e., the classic visuomotor rotation task).
148 In a recent study, participants used their right hand to perform this task while spindle afferent signals were
149 recorded from wrist extensor muscles (Dimitriou, 2016). The observed adaptation behavior was
150 stereotypical for this type of task: an exponential curve could be fitted to movement direction error in the
151 early adaptation stage and in ‘washout’ (the stage where participants gradually re-adapt to removal of the
152 visual distortion). Despite fundamentally identical muscle kinematics across all stages of the task, there was
153 a dissociation in spindle population signals as a function of task stage. Specifically, compared to baseline,
154 there was an increase in primary muscle spindle sensitivity to stretch in early adaptation (Fig. 2B)
155 suggesting a similar increase in stretch reflex gains as a means of reducing movement error online. In the
156 washout stage, spindle afferents (Ia and II) stopped encoding stretch velocity and were instead ‘linearized’
157 with respect to muscle length (Fig. 2BC, green). That is, spindle signals were tuned to hand position only
158 during washout, possibly for facilitating the relevant update of internal models in this stage, where haptic
159 and visual coordinate frames re-align.

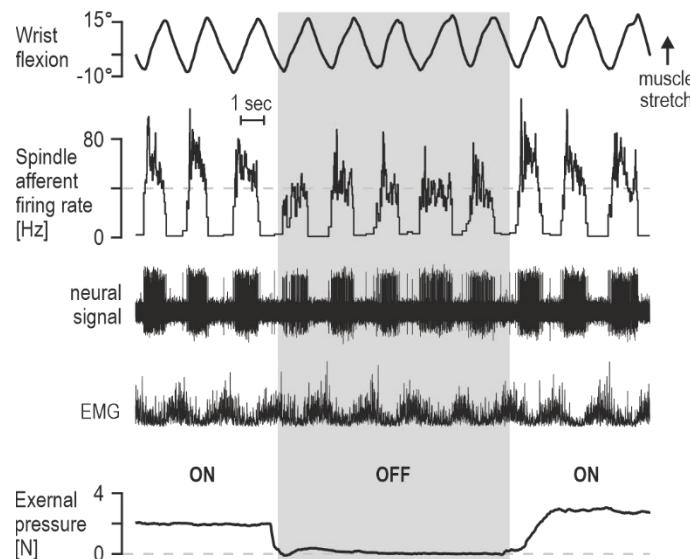
160 In the visuomotor adaptation task, muscle spindles were flexibly tuned according to the need to adapt and
161 the congruence between haptic and visual coordinate frames. A follow-up study applied whole-arm
162 perturbations during probe trials that were randomly interleaved at the different stages of the implicit
163 adaptation task; the study produced equivalent findings concerning stretch reflex tuning, including evidence
164 that levels of SLR attenuation in washout (a proxy for spindle ‘linearization’) reflect individual rates of
165 implicit adaptation (Dimitriou, 2018). It is believed that flexible and adaptive motor control can rely on
166 statistically optimal integration of multimodal sensory inputs (e.g., Kording & Wolpert, 2004; Bays &
167 Wolpert, 2007). For reaching movements, proprioceptive and visual information are thought to be weighted
168 according to their direction-dependent precision (van Beers *et al.*, 1999). Another line of research suggests
169 that the brain constructs flexible coordinate representations depending on task needs and characteristics
170 (Bernier & Grafton, 2010; McGuire & Sabes, 2011; Leoné *et al.*, 2015), although the required coordinate
171 transformations are considered costly due error and noise in the underlying computations (Soechting &
172 Flanders, 1989; Sober & Sabes, 2005; Schlicht & Schrater, 2007). By siphoning multimodal information to
173 the periphery in order to construct flexible representations at source, spindles and their fusimotor control
174 may help alleviate some of the cost associated with internal coordinate transformations.

175 Another well-studied experimental paradigm is the instructed-delay reach, where there is a delay between
176 a target cue and a ‘Go’ signal to move. This delay is designed to investigate movement preparation. Having
177 a long-enough preparatory delay improves the overall quality of movement and cuts down on reaction time
178 (Rosenbaum, 1980; Ghez *et al.*, 1997; Sutter *et al.*, 2021). Preparatory cortical activity correlates well with
179 parameters such as movement direction/extent and visual target location (Tanji & Evarts, 1976; Weinrich
180 *et al.*, 1984; Kurata, 1993; Shen & Alexander, 1997). It was initially suggested that preparatory cortical
181 activity represents a subthreshold version of the activity seen during movement, but more recent work
182 suggests that preparation sets an initial neural state that somehow facilitates the subsequent movement
183 (Churchland *et al.*, 2010). In a recent study (Papaioannou & Dimitriou, 2021), we demonstrate goal-directed
184 tuning of muscle spindles and stretch reflex gains during movement preparation. Specifically, despite no
185 differences in kinematics or surface EMG during preparation, type Ia firing rates were lower when preparing
186 to reach targets associated with stretch of the spindle-bearing muscle (Fig. 2D). That is, spindle responses
187 can also be flexibly adjusted according to ‘extrinsic’ visual information about target location. These
188 findings are congruent with recent reports of preparatory modulation in the primary somatosensory cortex
189 (Ariani *et al.*, 2021; Gale *et al.*, 2021), but suggest that such preparatory changes in the CNS may be
190 partially due to processing altered afferent signals, rather than exclusively reflect internally-generated
191 commands or priming.

192 We also found a strong positive relationship between type Ia firing during late preparation and time-to-peak
193 velocity during reaching, suggesting that spindle preparatory tuning has a substantial impact on the
194 subsequent voluntary movement (Papaioannou & Dimitriou, 2021); every additional unit increase in Ia
195 firing rate involved a 3 ms delay in attaining peak velocity during movement. This relationship can be
196 understood in terms of the spindle's role in stretch reflexes. By independently modifying spindle gains, the
197 fusimotor system can affect the degree of reflex muscle stiffness during movement execution, without
198 affecting contractile muscle force during preparation. Modulating the level of reflex stiffness in a goal-
199 appropriate manner can facilitate the execution of planned reaching movements. Muscle afferent (reflex)
200 feedback contributes significantly to force generation, about a third of volitional contraction (Hagbarth *et
201 al.*, 1986; Gandevia *et al.*, 1990), regardless if the contraction is maximal or not (Macefield *et al.*, 1993).

202 It is known that spindle Ia signals can also affect long-latency stretch reflex responses - LLRs (e.g., Hunter
203 *et al.*, 1988; Fellows *et al.*, 1993; Pruszynski & Scott, 2012). Additional experiments implicating whole-
204 arm perturbations confirmed that goal-directed tuning of type Ia responses reflected a congruent modulation
205 of stretch reflex gains at all latencies, including at SLR latencies in cases where the muscle was not heavily
206 pre-loaded (Fig. 2E). LLR gains exhibited goal-dependency regardless of muscle pre-loading level
207 (Papaioannou & Dimitriou, 2021). The same study demonstrated that goal-directed modulation of LLR
208 gains was stronger following a long rather than a relatively short preparatory delay, closely matching the
209 temporal evolution of spindle preparatory tuning. Moreover, the used 'short' preparatory delay (200 - 250
210 msec) is considerably longer than the minimum delay required for shaping LLR responses via selective
211 CNS processing (e.g., Yang *et al.*, 2011; Scott, 2016), but shorter than the time required for full afferent
212 expression of changes in dynamic fusimotor drive (Crowe & Matthews, 1964). Future work will determine
213 whether spindle tuning helps control reflex muscle stiffness across different tasks (such as object
214 interception), and further clarify how muscle loading relates to possible independent tuning of spindles. For
215 example, one approach could involve examining spindle afferent responses during dynamic ('force-field')
216 learning (Shadmehr & Mussa-Ivaldi, 1994).

217 Nevertheless, in planned voluntary reach, spindle responses to stretch can be locally adjusted (or
218 'processed') according to the intention to move in a particular direction (Fig. 2D). That is, tuning of human
219 spindles can reflect specific goals within a behavioral context (reaching), which represents a finer degree
220 of spindle modulation than tuning according to behavioral context or type of task, as previously and more
221 recently suggested (Prochazka *et al.*, 1985; Ribot-Ciscar & Ackerley, 2021). One study found no evidence
222 of a selective effect on fusimotor neurons when anticipating the need to make a contraction that would
223 oppose an imposed movement of the foot at the ankle (Burke *et al.*, 1980). However, our 2021 study was
224 the first to implicate true reaching intention and action. In this case, the intention to perform a voluntary
225 goal-directed movement may be necessary for engaging independent fusimotor control.


226 It should be emphasized that all findings described in Figure 2 involve control of the dominant upper limb.
227 It is possible that there is a large degree of functional specialization in the fusimotor control of upper vs.
228 lower limbs. Most of what we know concerning mammalian muscle spindle structure and fusimotor
229 function has come from work with cats (e.g., Barker, 1948; Matthews, 1972; Hulliger, 1984), and many
230 inferences we currently make concerning human fusimotor control would have been impossible without
231 this work. For example, such research has shown that there are two independently controlled groups of γ
232 motor neurons, 'static' and 'dynamic', with the latter innervating only primary muscle spindles (Matthews,
233 1962). In active cats, fusimotor and spindle activity has been most thoroughly examined in the context of
234 locomotion (see e.g., Prochazka, 1996). Equivalent data during human locomotion are lacking due to
235 methodological limitations. Mathematical modelling suggests that fusimotor control optimizes the spindles'
236 ability to encode position sense by accounting for the presence of musculoskeletal complexities and output

237 noise (Scott & Loeb, 1994). However, another prominent line of work suggests that spindles are not length
 238 detectors, but instead are independently controlled in a predictive manner in order to modulate the function
 239 of spinal central pattern generator (CPG) circuits during locomotion (Ellaway *et al.*, 2015). A similar
 240 fusimotor support of human bipedal locomotion may occur, although it is currently unclear whether CPG
 241 networks exist in the human spinal cord (Minassian *et al.*, 2017).

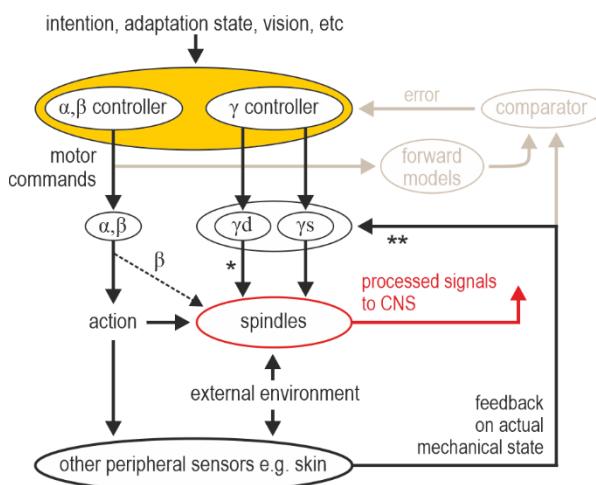
242 Recordings from humans have also suggested a more predictive role for spindle signals. In one paper, we
 243 correlated spindle population responses recorded during block-grasping and key-pressing with muscle
 244 velocity occurring at the same time as the recorded afferent signal, and velocity observed at different points
 245 into the future (Dimitriou & Edin, 2010). The closest relationship was between afferent firing rate and
 246 velocity ~150ms after the spindle signal. This result meant that muscle spindles fulfilled all three
 247 neurophysiological criteria for identifying a forward sensory model (Wolpert & Miall, 1996): spindle inputs
 248 were the current state of the system (mechanoreception) and an efferent command (β or α - γ), and spindle
 249 output predicted the future kinematic state. However, later studies showed that the spindles' 'predictive'
 250 capacity does not hold across tasks. For example, if anything, the opposite results should have been
 251 observed in preparatory modulation (e.g., Fig. 2D), and suddenly adding a new external load did not
 252 significantly alter the predictive capacity of spindles during the initial cycles of sinusoidal movement
 253 (Dimitriou, 2014). To identify forward sensory models, one could perhaps add a fourth criterion stating that
 254 forward models should make worse predictions in novel contexts.

255 Peripheral control of spindle sensitivity

256 Prominent theories of spindle and fusimotor control have not incorporated the possibility of substantial
 257 afferent influence on fusimotor neurons. Peripheral ('reflexive') input to γ neurons, including from
 258 cutaneous afferents, has been mainly demonstrated using electrical nerve stimulation in anaesthetized cats
 259 (Appelberg *et al.*, 1977; Johansson & Sojka, 1985; Johansson *et al.*, 1986). These findings reinforce the
 260 idea that pools of γ motor neurons should be considered as an integrative system able to combine
 261 sensorimotor 'apples and oranges' i.e., descending commands and peripheral multisensory information.

Figure 3. Percutaneous mechanical pressure near the spindle capsule affects encoding of active movement

Responses of a spindle afferent from a wrist extensor muscle while the participant continuously moved their right semipronated hand about the wrist (flexion-extension; 0° denotes alignment with forearm). A hand-held probe was used by the experimenter for applying and measuring mechanical pressure over a small area of skin on the forearm (5mm probe tip diameter), near the spindle capsule, during some movement cycles only (grey vertical bar denotes stimulus removal). Throughout, the participant's gaze was directed at a monitor displaying a cursor that tracked hand movement. Despite very similar hand movement and activation patterns of the spindle-bearing muscle ('EMG'), spindle responses to hand flexion were markedly stronger during the percutaneous pressure.


262 A functional degree of peripheral multisensory integration -such as for dexterous object manipulation- may
263 be possible at the level of the spindle as a result of afferent control of γ neurons. This hypothesis is
264 compatible with evidence of 'multimodal' signals (tactile-proprioceptive) already in area 3a of the
265 somatosensory cortex (Kim *et al.*, 2015). However, so far, cutaneous stimulation has been shown to have a
266 limited impact in two studies of spindle afferent activity in passive humans (Aniss *et al.*, 1990; Gandevia
267 *et al.*, 1994). But afferent control of spindle sensitivity may prove stronger or more easily unmasked in the
268 active individual (e.g., due to higher background tonus). The specific functional advantage of having such
269 afferent connections is currently unclear. One previous study has demonstrated edge-orientation processing
270 in tactile neurons as a function of their receptive fields (Pruszynski & Johansson, 2014). However, in this
271 case, cutaneous afferent signals were bound to the characteristics (edge-orientation) of the 'adequate'
272 physical stimulus. In contrast, muscle spindle output can potentially be modulated according to the
273 characteristics of a physical stimulus in another modality (e.g., cutaneous), via fusimotor control. Although
274 top-down control alone supports the notion that spindles are best viewed as flexible signal-processing
275 devices rather than basic mechanoreceptors (Fig. 1B & Fig. 2), the possibility of substantial peripheral
276 control of fusimotor neurons adds another layer of support to this proposition.

277 While fusimotor innervation can allow spindles to function as controllable signal-processors, peripheral
278 modulation of spindle sensitivity may be also enabled by the structure of these encapsulated organs. It has
279 long been known in microneurography circles that percutaneous mechanical pressure applied near the
280 spindle capsule, likely leading to its compression, can have some effect on spindle afferent firing. Such
281 mechanical pressure can otherwise represent an ecologically valid stimulus, brought on by increased
282 intramuscular pressure due to active contraction or simply materialize when muscles are palpated.
283 Representative preliminary data from our lab indicate that, regardless of underlying mechanism, spindle
284 afferent responses to active movement are substantially affected by light-to-moderate percutaneous pressure
285 applied near the spindle capsule (Fig. 3). It is tempting to speculate as to the potential regulatory function
286 of such peripheral modulation, especially in the context of recent findings that intramuscular fluid pressure
287 can have immediate and significant effects on contractile muscle force (Sleboda & Roberts, 2020).
288 Nevertheless, the preliminary findings in Figure 3 serve as yet another indication that spindles are inclined
289 to produce flexible representations rather than a consistent picture of actual limb kinematics.

290 **Concluding remarks**

291 I propose that muscle spindle organs are versatile signal-processing devices whose overarching role is to
292 facilitate sensorimotor performance according to task characteristics, rather than faithfully encode posture
293 and movement. Here, I have outlined recent evidence that spindle tuning can enable the independent
294 preparatory control of muscle compliance, the selective extraction of information during implicit motor
295 adaptation, and for segmental stretch reflexes to operate in joint space. The complete spindle repertoire
296 remains to be revealed. Of particular interest is the ability of spindles to act as conduits of multimodal
297 information. The fusimotor neurons controlling spindles can integrate multisensory peripheral input and
298 top-down commands (which can also reflect sensory events, e.g., in vision; Fig. 2D). It is reasonable to
299 think of fusimotor activity as an intermediate coordinate transformation enabling different information to
300 converge on spindles, generating flexible coordinate representations at level of the PNS (Fig. 4). Such
301 dimensionality reduction may potentially simplify motor control without limiting performance. A more
302 flexible and central role for spindles justifies the premium placed on their control by the nervous system
303 (i.e., ~30% of lower motor neurons are γ). Such a role is also compatible with the seemingly large number
304 of parameters found to correlate closely with motor and premotor neural activity, and with models that
305 claim the motor cortex essentially operates in 'proprioceptive' coordinates (Adams *et al.*, 2013).

306 Consistent information about actual limb position and movement kinematics is also necessary. It is widely
 307 believed that how we sense our body, including its position and movement, depends on the interplay of
 308 multimodal signals (e.g., Makin *et al.*, 2008; Proske & Gandevia, 2012). While spindles can encode limb
 309 position preferentially in certain contexts (e.g., Fig. 2C), vision, joint and cutaneous signals also contribute
 310 to proprioception and kinesthesia (Collins & Prochazka, 1996; Collins *et al.*, 2005; Sarlegna & Sainburg,
 311 2009). Both a flexible role for spindles and multimodal contributions to proprioception are supported by
 312 the general model proposed here (Fig. 4). Interestingly, it is known that direct electrical stimulation of single
 313 joint and cutaneous afferents evokes appropriate sensations, but stimulation of single spindle afferents does
 314 not lead to any conscious sensations in the absence of movement (Macefield *et al.*, 1990). Tendon vibration
 315 (artificial spindle stimulus) of the unseen limb can lead to illusory perception of physically impossible limb
 316 configurations, and seeing the vibrated limb strongly attenuates illusory motion (Lackner & Taublieb,
 317 1984). If spindles are not routinely tasked with providing a faithful representation of posture and limb
 318 kinematics (i.e., not tasked with encoding the actual kinematic consequences of action), spindle tuning can
 319 instead emphasize the flexible facilitation of concurrent or future action. While recording from human
 320 afferents and performing follow-up behavioral studies has helped shape our understanding of spindle
 321 function, elucidating the underlying mechanisms in more detail will require much more work on multiple
 322 fronts. For example, predictions stemming from human afferent data concerning fusimotor function can be
 323 tested more freely in animal models, using a range of modern techniques, as recently emphasized
 324 (Wilkinson, 2021). Achieving a comprehensive account of spindle contribution will likely also advance our
 325 understanding of core sensorimotor principles.

Figure 4. Advanced signal-processing at the level of muscle spindle organs

In addition to descending commands to skeletal muscles and an efferent copy to forward models (Fig. 1A), there can be independent descending control of γ dynamic (' γ_d ') and γ static (' γ_s ') spinal motor neurons. The vast majority of efferent projections to spindles are from γ motor ('fusimotor') neurons, but there is also some β supply (indicated by the thinner dashed line). Fusimotor control can affect spindle output in the absence of mechanical stimulation (i.e., muscle stretch), but fusimotor activity can also shape spindle responses to direct mechanical stimulation arising from own action or the external environment. γ_d project only to primary muscle spindles, allowing for differential control of primary and secondary muscle spindles. Electrophysiological studies in mammals have also demonstrated multisensory afferent convergence onto fusimotor neurons. γ_s : The specific impact of afferent control of fusimotor neurons has not been determined yet in the active human, and may well vary across body segments e.g., stronger in the hand and/or the foot. In this model, joint and cutaneous receptors (and vision) provide consistent/reliable information about actual bodily state, and potentially so do spindles, e.g., if they are predominantly affected by direct mechanical stimulation (as in the case of the passive, unengaged individual). But here, fusimotor activity represents an intermediate coordinate transformation that allows multimodal information to converge on spindles, creating flexible representations at the periphery. So far, spindle tuning has been shown to facilitate load compensation in joint space, the selective extraction of information during motor adaptation, and the independent preparatory adjustment of reflexive muscle stiffness before goal-directed reaching (Fig. 2).

326 **Open questions**

327 1. Does the nervous system tune muscle spindles according to multi-joint dynamics?

328 2. Beyond planned reaching, does independent tuning of spindles help control muscle compliance

329 across different tasks (e.g., object interception)?

330 3. In terms of task-relevant flexibility, how different is the tuning of primary and secondary muscle

331 spindle receptors?

332 4. Given the peripheral afferent input to fusimotor neurons, does cutaneous stimulation have a

333 significant impact on spindle sensitivity in the active human? What are the benefits for

334 sensorimotor performance e.g., in terms of the dexterous manipulation of objects?

335 5. Is there substantial functional specialization in spindle tuning across human upper and lower

336 limbs (e.g., in the degree of cutaneous modulation), and if so, what is its purpose? Similarly, are

337 there differences in spindle control between the dominant and non-dominant limb, and can such

338 differences account for discrepancies in sensorimotor performance?

339 6. Which brain areas and descending pathways are involved in fusimotor control during e.g.,

340 movement preparation?

341 **Acknowledgements**

342 I would like to thank D.W. Franklin, D. Soteropoulos and F. Torell for their constructive feedback on

343 previous versions of this manuscript.

344 **Competing interests statement**

345 The author declares that no competing interests exist.

346 **Funding**

347 MD is funded by the Swedish Research Council (2020-02140).

348

349

References

350 Adams RA, Shipp S & Friston KJ. (2013). Predictions not commands: active inference in the motor system.
351 *Brain Struct Funct* **218**, 611-643.

352

353 Aniss AM, Diener HC, Hore J, Burke D & Gandevia SC. (1990). Reflex activation of muscle spindles in
354 human pretibial muscles during standing. *J Neurophysiol* **64**, 671-679.

355

356 Appelberg B, Johansson H & Kalistratov G. (1977). The influence of group II muscle afferents and low
357 threshold skin afferents on dynamic fusimotor neurones to the triceps surae of the cat. *Brain Res*
358 **132**, 153-158.

359

360 Ariani G, Pruszynski JA & Diedrichsen J. (2021). Motor planning brings human primary somatosensory
361 cortex into action-specific preparatory states. *eLife*, 10.7554/eLife.69517

362

363 Barker D. (1948). The innervation of the muscle-spindle. *Q J Microsc Sci* **89 Pt 2**, 143-186.

364

365 Barker D & Chin NK. (1961). Efferent Innervation of Mammalian Muscle-spindles. *Nature* **190**, 461-462.

366

367 Bays PM & Wolpert DM. (2007). Computational principles of sensorimotor control that minimize
368 uncertainty and variability. *J Physiol* **578**, 387-396.

369

370 Bernier PM & Grafton ST. (2010). Human posterior parietal cortex flexibly determines reference frames
371 for reaching based on sensory context. *Neuron* **68**, 776-788.

372

373 Bewick GS & Banks RW. (2015). Mechanotransduction in the muscle spindle. *Pflugers Arch* **467**, 175-
374 190.

375

376 Blum KP, Lamotte D'Incamps B, Zytnicki D & Ting LH. (2017). Force encoding in muscle spindles during
377 stretch of passive muscle. *PLoS Comp Biol* **13**, e1005767.

378

379 Boyd IA & Davidson JN. (1962). The structure and innervation of the nuclear bag muscle fibre system and
380 the nuclear chain muscle fibre system in mammalian muscle spindles. *Philos Trans R Soc B* **245**,
381 81-136.

382

383 Burke D. (2021a). Crosstalk opposing view: Independent fusimotor control of muscle spindles in humans:
384 there is little to gain. *J Physiol* **599**, 2505-2508.

385

386 Burke D. (2021b). Rebuttal from David Burke. *J Physiol* **599**, 2511-2512.

387

388 Burke D, McKeon B, Skuse NF & Westerman RA. (1980). Anticipation and fusimotor activity in
389 preparation for a voluntary contraction. *J Physiol* **306**, 337-348.

390
391 Burke RE, Strick PL, Kanda K, Kim CC & Walmsley B. (1977). Anatomy of medial gastrocnemius and
392 soleus motor nuclei in cat spinal cord. *J Neurophysiol* **40**, 667-680.

393
394 Churchland MM, Cunningham JP, Kaufman MT, Ryu SI & Shenoy KV. (2010). Cortical preparatory
395 activity: representation of movement or first cog in a dynamical machine? *Neuron* **68**, 387-400.

396
397 Collins DF & Prochazka A. (1996). Movement illusions evoked by ensemble cutaneous input from the
398 dorsum of the human hand. *J Physiol* **496**, 857-871.

399
400 Collins DF, Refshauge KM, Todd G & Gandevia SC. (2005). Cutaneous receptors contribute to kinesthesia
401 at the index finger, elbow, and knee. *J Neurophysiol* **94**, 1699-1706.

402
403 Crevecoeur F, Munoz DP & Scott SH. (2016). Dynamic Multisensory Integration: Somatosensory Speed
404 Trumps Visual Accuracy during Feedback Control. *J Neurosci* **36**, 8598-8611.

405
406 Crowe A & Matthews PB. (1964). The Effects of Stimulation of Static and Dynamic Fusimotor Fibres on
407 the Response to Stretching of the Primary Endings of Muscle Spindles. *J Physiol* **174**, 109-131.

408
409 Dimitriou M. (2014). Human Muscle Spindle Sensitivity Reflects the Balance of Activity between
410 Antagonistic Muscles. *J Neurosci* **34**, 13644-13655.

411
412 Dimitriou M. (2016). Enhanced Muscle Afferent Signals during Motor Learning in Humans. *Curr Biol* **26**,
413 1062-1068.

414
415 Dimitriou M. (2018). Task-dependent modulation of spinal and transcortical stretch reflexes linked to motor
416 learning rate. *Behav Neurosci* **132**, 194-209.

417
418 Dimitriou M. (2021a). Crosstalk proposal: There is much to gain from the independent control of human
419 muscle spindles. *J Physiol* **599**, 2501-2504.

420
421 Dimitriou M. (2021b). Rebuttal from Michael Dimitriou. *J Physiol* **599**, 2509-2510.

422
423 Dimitriou M & Edin BB. (2010). Human muscle spindles act as forward sensory models. *Curr Biol* **20**,
424 1763-1767.

425
426 Dufresne JR, Soechting JF & Terzuolo CA. (1980). Modulation of the myotatic reflex gain in man during
427 intentional movements. *Brain Res* **193**, 67-84.

428
429 Edin BB & Vallbo AB. (1990a). Dynamic response of human muscle spindle afferents to stretch. *J
430 Neurophysiol* **63**, 1297-1306.

431

432 Edin BB & Vallbo AB. (1990b). Muscle afferent responses to isometric contractions and relaxations in
433 humans. *J Neurophysiol* **63**, 1307-1313.

434

435 Ellaway PH, Taylor A & Durbaba R. (2015). Muscle spindle and fusimotor activity in locomotion. *J Anat*,
436 **227**, 157-166.

437

438 Emonet-Dénand F & Laporte Y. (1975). Proportion of muscles spindles supplied by skeletofusimotor axons
439 (beta-axons) in peroneus brevis muscle of the cat. *J Neurophysiol* **38**, 1390-1394.

440

441 Emonet-Dénand F, Petit J & Laporte Y. (1992). Comparison of skeleto-fusimotor innervation in cat
442 peroneus brevis and peroneus tertius muscles. *J Physiol* **458**, 519-525.

443

444 Fellows SJ, Dömgens F, Töpper R, Thilmann AF & Noth J. (1993). Changes in the short- and long-latency
445 stretch reflex components of the triceps surae muscle during ischaemia in man. *J Physiol* **472**, 737-
446 748.

447

448 Gale DJ, Flanagan JR & Gallivan JP. (2021). Human somatosensory cortex is modulated during motor
449 planning. *J Neurosci* **41**, 5909-5922.

450

451 Gandevia SC & Burke D. (1985). Effect of training on voluntary activation of human fusimotor neurons.
452 *J Neurophysiol* **54**, 1422-1429.

453

454 Gandevia SC, Macefield G, Burke D & McKenzie DK. (1990). Voluntary activation of human motor axons
455 in the absence of muscle afferent feedback. The control of the deafferented hand. *Brain* **113 (Pt 5)**,
456 1563-1581.

457

458 Gandevia SC, Wilson L, Cordo PJ & Burke D. (1994). Fusimotor reflexes in relaxed forearm muscles
459 produced by cutaneous afferents from the human hand. *J Physiol* **479 (Pt 3)**, 499-508.

460

461 Ghez C, Favilla M, Ghilardi MF, Gordon J, Bermejo R & Pullman S. (1997). Discrete and continuous
462 planning of hand movements and isometric force trajectories. *Exp Brain Res* **115**, 217-233.

463

464 Goodwin GM, McCloskey DI & Matthews PB. (1972). Proprioceptive illusions induced by muscle
465 vibration: contribution by muscle spindles to perception? *Science* **175**, 1382-1384.

466

467 Hagbarth K-E, Kunesch E, Nordin MC, Schmidt R & Wallin EU. (1986). Gamma loop contributing to
468 maximal voluntary contractions in man. *J Physiol* **380**, 575-591

469

470 Houk JC. (1976). An assessment of stretch reflex function. *Prog Brain Res* **44**, 303-314.

471

472 Hulliger M. (1984). The mammalian muscle spindle and its central control. *Rev Physiol Biochem
473 Pharmacol* **101**, 1-110.

474
475 Hunt CC. (1951). The reflex activity of mammalian small-nerve fibres. *J Physiol* **115**, 456-469.

476
477 Hunter JP, Ashby P & Lang AE. (1988). Afferents contributing to the exaggerated long latency reflex
478 response to electrical stimulation in Parkinson's disease. *J Neurol Neurosurg Psychiatry* **51**, 1405-
479 1410.

480
481 Jami L, Murthy KS & Petit J. (1982). A quantitative study of skeletofusimotor innervation in the cat
482 peroneus tertius muscle. *J Physiol* **325**, 125-144.

483
484 Johansson H, Sjölander P & Sojka P. (1986). Actions on gamma-motoneurones elicited by electrical
485 stimulation of joint afferent fibres in the hind limb of the cat. *J Physiol* **375**, 137-152.

486
487 Johansson H & Sojka P. (1985). Actions on gamma-motoneurones elicited by electrical stimulation of
488 cutaneous afferent fibres in the hind limb of the cat. *J Physiol* **366**, 343-363.

489
490 Kakuda N, Miwa T & Nagaoka M. (1998). Coupling between single muscle spindle afferent and EMG in
491 human wrist extensor muscles: physiological evidence of skeletofusimotor (beta) innervation.
492 *Electroencephalogr Clin Neurophysiol* **109**, 360-363.

493
494 Kakuda N, Vallbo AB & Wessberg J. (1996). Fusimotor and skeletomotor activities are increased with
495 precision finger movement in man. *J Physiol* **492**, 921-929.

496
497 Kim SS, Gomez-Ramirez M, Thakur PH & Hsiao SS. (2015). Multimodal Interactions between
498 Proprioceptive and Cutaneous Signals in Primary Somatosensory Cortex. *Neuron*, 86, 555-566 .

499
500 Kording KP & Wolpert DM. (2004). Bayesian integration in sensorimotor learning. *Nature* **427**, 244-247.

501
502 Kruse MN & Poppele RE. (1991). Components of the dynamic response of mammalian muscle spindles
503 that originate in the sensory terminals. *Exp Brain Res* **86**, 359-366.

504
505 Kuffler SW, Hunt CC & Quilliam JP. (1951). Function of medullated small-nerve fibers in mammalian
506 ventral roots; efferent muscle spindle innervation. *J Neurophysiol* **14**, 29-54.

507
508 Kurata K. (1993). Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude
509 and direction of wrist movements. *J Neurophysiol* **69**, 187-200.

510
511 Lackner JR & Taublieb AB. (1984). Influence of vision on vibration-induced illusions of limb movement.
512 *Exp Neurol* **85**, 97-106.

513
514 Leoné FT, Monaco S, Henriques DY, Toni I & Medendorp WP. (2015). Flexible Reference Frames for
515 Grasp Planning in Human Parietofrontal Cortex. *eNeuro* **2**.

516
517 Macefield G, Gandevia SC & Burke D. (1990). Perceptual responses to microstimulation of single afferents
518 innervating joints, muscles and skin of the human hand. *J Physiol* **429**, 113-129.

519
520 Macefield VG, Gandevia SC, Bigland-Ritchie B, Gorman RB & Burke D. (1993). The firing rates of human
521 motoneurones voluntarily activated in the absence of muscle afferent feedback. *J Physiol* **471**, 429-
522 443.

523
524 Macefield VG & Knellwolf TP. (2018). Functional properties of human muscle spindles. *J Neurophysiol*
525 **120**, 452-467.

526
527 Makin TR, Holmes NP & Ehrsson HH. (2008). On the other hand: dummy hands and peripersonal space.
528 *Behav Brain Res* **191**, 1-10.

529
530 Matthews P. (1962). The differentiation of two types of fusimotor fibre by their effects on the dynamic
531 response of muscle spindle primary endings. *Q J Exp Physiol Cogn Med Sci* **47**, 324-333.

532
533 Matthews PB. (1964). Muscle spindles and their motor control. *Physiol Rev* **44**, 219-288.

534
535 Matthews PB. (1986). Observations on the automatic compensation of reflex gain on varying the pre-
536 existing level of motor discharge in man. *J Physiol* **374**, 73-90.

537
538 Matthews PBC. (1972). The physiological study of fusimotor fibers. In *Mammalian muscle receptors and*
539 *their central actions*, pp. 195-262. Edward Arnold Publishers Ltd, London.

540
541 McGuire LM & Sabes PN. (2011). Heterogeneous representations in the superior parietal lobule are
542 common across reaches to visual and proprioceptive targets. *J Neurosci* **31**, 6661-6673.

543
544 Minassian K, Hofstoetter US, Dzeladini F, Guertin PA & Ijspeert A. (2017). The Human Central Pattern
545 Generator for Locomotion: Does It Exist and Contribute to Walking? *Neuroscientist* **23**, 649-663.

546
547 Murthy KS. (1978). Vertebrate fusimotor neurones and their influences on motor behavior. *Prog Neurobiol*
548 **11**, 249-307.

549
550 Nakazawa K, Yamamoto SI & Yano H. (1997). Short- and long-latency reflex responses during different
551 motor tasks in elbow flexor muscles. *Exp Brain Res* **116**, 20-28.

552
553 Papaioannou S & Dimitriou M. (2021). Goal-dependent tuning of muscle spindle receptors during
554 movement preparation. *Sci Adv* **7**, aebe0401

555
556 Prochazka A. (1989). Sensorimotor gain control: a basic strategy of motor systems? *Prog Neurobiol* **33**,
557 281-307.

558
559 Prochazka A. (1996). Proprioceptive feedback and movement regulation. In *Exercise: Regulation and*
560 *integration of multiple systems*, ed. Rowell L & Shepherd JT, pp. 89-127. American Physiological
561 Society, New York.

562
563 Prochazka A, Hulliger M, Zanger P & Appenteng K. (1985). 'Fusimotor set': new evidence for alpha-
564 independent control of gamma-motoneurones during movement in the awake cat. *Brain Res* **339**,
565 136-140.

566
567 Proske U & Gandevia SC. (2012). The proprioceptive senses: their roles in signaling body shape, body
568 position and movement, and muscle force. *Physiol Rev* **92**, 1651-1697.

569
570 Pruszynski JA & Johansson RS. (2014). Edge-orientation processing in first-order tactile neurons. *Nat*
571 *Neurosci* **17**, 1404-1409.

572
573 Pruszynski JA, Kurtzer I, Lillicrap TP & Scott SH. (2009). Temporal evolution of "automatic gain-scaling".
574 *J Neurophysiol* **102**, 992-1003.

575
576 Pruszynski JA & Scott SH. (2012). Optimal feedback control and the long-latency stretch response. *Exp*
577 *Brain Res* **218**, 341-359.

578
579 Ribot-Ciscar E & Ackerley R. (2021). Muscle proprioceptive feedback can be adapted to the behavioral
580 and emotional context in humans. *Curr Opin Physiol* **20**, 46-51.

581
582 Ribot E, Roll JP & Vedel JP. (1986). Efferent discharges recorded from single skeletomotor and fusimotor
583 fibres in man. *J Physiol* **375**, 251-268.

584
585 Rosenbaum DA. (1980). Human movement initiation: specification of arm, direction, and extent.
586 *J Exp Psychol Gen* **109**, 444-474.

587
588 Sainburg RL, Poizner H & Ghez C. (1993). Loss of proprioception produces deficits in interjoint
589 coordination. *J Neurophysiol* **70**, 2136-2147.

590
591 Sarlegna FR & Sainburg RL. (2009). The roles of vision and proprioception in the planning of reaching
592 movements. *Adv Exp Med Biol* **629**, 317-335.

593
594 Schlicht EJ & Schrater PR. (2007). Impact of coordinate transformation uncertainty on human sensorimotor
595 control. *J Neurophysiol* **97**, 4203-4214.

596
597 Scott SH. (2016). A Functional Taxonomy of Bottom-Up Sensory Feedback Processing for Motor Actions.
598 *Trends Neurosci* **39**, 512-526.

599

600 Scott SH & Loeb GE. (1994). The computation of position sense from spindles in mono- and multiarticular
601 muscles. *J Neurosci* **14**, 7529-7540.

602
603 Sears TA. (1964). Efferent Discharges In Alpha And Fusimotor Fibres Of Intercostal Nerves Of The Cat.
604 *J Physiol* **174**, 295-315.

605
606 Shadmehr R & Mussa-Ivaldi FA. (1994). Adaptive representation of dynamics during learning of a motor
607 task. *J Neurosci* **14**, 3208-3224.

608
609 Shen L & Alexander GE. (1997). Preferential representation of instructed target location versus limb
610 trajectory in dorsal premotor area. *J Neurophysiol* **77**, 1195-1212.

611
612 Slezoda DA & Roberts TJ. (2020). Internal fluid pressure influences muscle contractile force. *Proc Natl
613 Acad Sci U S A* **117**, 1772-1778.

614
615 Sober SJ & Sabes PN. (2005). Flexible strategies for sensory integration during motor planning. *Nat
616 Neurosci* **8**, 490-497.

617
618 Soechting JF, Dufresne JR & Lacquaniti F. (1981). Time-varying properties of myotatic response in man
619 during some simple motor tasks. *J Neurophysiol* **46**, 1226-1243.

620
621 Soechting JF & Flanders M. (1989). Errors in pointing are due to approximations in sensorimotor
622 transformations. *J Neurophysiol* **62**, 595-608.

623
624 Sutter K, Oostwoud Wijdenes L, van Beers RJ & Medendorp WP. (2021). Movement preparation time
625 determines movement variability. *J Neurophysiol* **125**, 2375-2383.

626
627 Tanji J & Evarts EV. (1976). Anticipatory activity of motor cortex neurons in relation to direction of an
628 intended movement. *J Neurophysiol* **39**, 1062-1068.

629
630 Tsay J, Kim H, Haith A & Ivry R. (2021). Proprioceptive Re-alignment drives Implicit Sensorimotor
631 Adaptation. *BioRxiv*, 10.1101/2021.1112.1121.473747.

632
633 Vallbo AB. (1970). Discharge patterns in human muscle spindle afferents during isometric voluntary
634 contractions. *Acta Physiol Scand* **80**, 552-566.

635
636 van Beers RJ, Sittig AC & Gon JJ. (1999). Integration of proprioceptive and visual position-information:
637 An experimentally supported model. *J Neurophysiol* **81**, 1355-1364.

638
639 Villamar Z, Ludvig D & Perreault EJ. (2021). Short latency stretch reflexes depend on the balance of
640 activity in agonist and antagonist muscles during ballistic elbow movements. *BioRxiv*,
641 2021.2012.2006.471376.

642
643 Wallace CJ & Miles TS. (1998). Movements modulate the reflex responses of human flexor pollicis longus
644 to stretch. *Exp Brain Res* **118**, 105-110.

645
646 Weinrich M, Wise SP & Mauritz KH. (1984). A neurophysiological study of the premotor cortex in the
647 rhesus monkey. *Brain* **107** (Pt 2), 385-414.

648
649 Wessberg J & Vallbo AB. (1995). Human muscle spindle afferent activity in relation to visual control in
650 precision finger movements. *J Physiol* **482**, 225-233.

651
652 Wilkinson KA. (2021). Methodological advances for studying gamma motor neurons. *Curr Opin Physiol*
653 **19**, 135-140.

654
655 Wolpert DM & Miall RC. (1996). Forward Models for Physiological Motor Control. *Neural Netw* **9**, 1265-
656 1279.

657
658 Woo SH, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR, Francisco A, Jessell TM, Wilkinson KA &
659 Patapoutian A. (2015). Piezo2 is the principal mechanotransduction channel for proprioception.
660 *Nat Neurosci* **18**, 1756-1762.

661
662 Yang L, Michaels JA, Pruszynski JA & Scott SH. (2011). Rapid motor responses quickly integrate
663 visuospatial task constraints. *Exp Brain Res* **211**, 231-242.

664
665