Preprint
Article

Unauthorized Unmanned Aerial Vehicle Detection using YOLOv5 and Transfer Learning

Altmetrics

Downloads

856

Views

470

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

11 February 2022

Posted:

15 February 2022

You are already at the latest version

Alerts
Abstract
Recently, the use of drones/unmanned aerial vehicles (UAVs) has notably increased due to their broad commercial spread and low cost. The wide diffusion of drones increases the hazards of their misuse in illegitimate actions such as drug smuggling and terrorism. Thus, the surveillance and automated detection of drones are crucial for safeguarding restricted regions or special zones from illegal drone interventions. One of the most challenging issues in drone detection in surveillance videos is the apparent similarity of drones and birds against complex backgrounds. In this work, an automated image-based drone-detection system utilizing an advanced deep-learning-based object-detection method known as you only look once (YOLOv5) is introduced for protecting restricted regions or special zones from unlawful drone interventions. Due to the lack of sufficient data, transfer learning was utilized to pretrain the object-detection method to increase the performance. The experiments showed outstanding results, and an average precision of 94.7% was accomplished.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated