Preprint
Article

Tandem Recurrence Relations for Coefficients of Logarithmic Frobenius Series Solutions about Regular Singular Points

Altmetrics

Downloads

241

Views

234

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

22 February 2022

Posted:

23 February 2022

You are already at the latest version

Alerts
Abstract
We enhance Frobenius' method for solving linear ordinary differential equations about regular singular points. Key to Frobenius' approach is the exploration of the derivative with respect to a single parameter; this parameter is introduced through the powers of generalized power series. Extending this approach, we discover that tandem recurrence relations can be derived. These relations render coefficients for series occurring in logarithmic solutions. The method applies to the, practically important, exceptional cases in which the roots of the indicial equation are equal, or differ by a non-zero integer. We demonstrate the method on Bessel's equation and derive previously unknown tandem recurrence relations for coefficients of solutions of the second kind, for Bessel equations of all integer and half-integer order.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated