Preprint
Article

Transcriptomics Reveals Granulosa Cell’s Coping through Redox, Inflammatory, Metabolic and Cytoskeleton Mechanisms under Acute Heat Stress

Altmetrics

Downloads

443

Views

252

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

26 February 2022

Posted:

28 February 2022

You are already at the latest version

Alerts
Abstract
Heat stress affects the granulosa cells (GCs) and ovarian follicular microenvironment, causing poor oocyte developmental competence and fertility. This study aimed to investigate the physical responses and global transcriptomic changes in bovine GCs to acute heat stress (43 ℃ for 2 h) in-vitro and gave essential insights into the general interaction at cell–stress nexus. Heat-stressed GCs exhibited transient proliferation senescence, resumed proliferation at 48 h post-stress. While post-stress immediate culture-media change had a relatively positive effect on proliferation resumption. Increased accumulation of reactive oxygen species and apoptosis was observed in heat stress group. In spite of the upregulation of pro-apoptotic and caspase executioner genes, antioxidants and anti-apoptotic genes were also upregulated in heat-stressed GCs. Progesterone and Estrogen hormones along with steroidogenic genes expression, declined significantly, in spite of the upregulation of genes involved in cholesterol synthesis. Out of 12385 differentially expressed genes (DEGs), 330 significant DEGs (75 upregulated, 225 downregulated) were subjected to KEGG functional pathway annotation, gene ontology enrichment, and STRING network analyses. Based on the manual query of DEGs, pathway and enrichment analyses, a vast interplay observed among all major signaling pathways strongly evidence the repression of cellular transcriptional and proliferation activity, averting the effects of heat stress through remodeling of cellular structural proteins and energetic-homeostasis. This study presents detailed responses of acute heat-stressed GCs at physical, transcriptional, and pathway levels and presents interesting insights into future studies regarding GCs adaptation and their interaction with oocyte and reproductive system at ovarian level.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated