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Abstract: Flavonoids are a biochemically diverse group of specialized metabolites in plants that are 

derived from phenylalanine. While the biosynthesis of the flavonoid aglycone is highly conserved 

across species and well characterized, numerous species-specific decoration steps and their rele-

vance remained largely unexplored. The flavonoid biosynthesis takes place at the cytosolic site of 

the endoplasmatic reticulum (ER), but accumulation of various flavonoids was observed in the cen-

tral vacuole. A universal explanation for the subcellular transport of flavonoids has eluded research-

ers for decades. Current knowledge suggests that a glutathione S-transferase-like protein (ligandin) 

protects anthocyanins and potentially proanthocyanidin precursors during the transport to the cen-

tral vacuole. ABCC transporters and to a lower extend MATE transporters sequester anthocyanins 

into the vacuole. Glycosides of specific proanthocyanidin precursors are sequestered through 

MATE transporters. A P-ATPase in the tonoplast and potentially other proteins generate the proton 

gradient that is required for the MATE-mediated antiport. Vesicle-mediated transport of flavonoids 

from the ER to the vacuole is considered as an alternative or additional route. 

Keywords: anthocyanins, proanthocyanidins, flavonols, flavones, flavonoid transport, flavonoid 

biosynthesis, flavonoid accumulation, ligandin, MATE, ABCC 

 

1. Introduction 

1.1 Biological relevance of specialized metabolites 

Plants produce an amazing diversity of specialized metabolites to cope with environ-

mental conditions. These compounds are not required for the immediate survival, but 

provide an evolutionary advantage and are often restricted to particular evolutionary lin-

eages. The various groups of plant metabolites and evolutionary steps towards this diver-

sity were previously reviewed [1,2]. Estimates go up to one million different compounds 

in the plant kingdom [3] with several thousand being produced by each individual plant 

[4]. Abiotic stresses like drought, heat, cold, ultra-violet radiation, high light intensities, 

specific ion concentrations in the soil and many more factors activate biosynthetic path-

ways. Biotic factors like pathogens and herbivors can also trigger the biosynthesis of spe-

cialized defence compounds. Responses to both types of stresses are not mutually exclu-

sive. The flavonoid biosynthesis emerges as an almost universal stress response pathways 

that is triggered by a broad range of stress conditions [5–11]. Flavonoids can be classified 

into several subgroups including flavonols, flavones, anthocyanins, and proanthocyanins 

[12]. These compounds are synthesized by different branches of the flavonoid biosynthe-

sis [12–15]. The products of separate branches differ in their biochemical properties thus 

it can be assumed that they fulfil different biological functions in a plant. Anthocyanins 

are colourful pigments that are involved in reproduction by attracting animals for polli-

nation and seed dispersal, but they are also significant as stress responses [12,16,17]. Fla-

vonols occur in a wide range of plant parts and are considered as an evolutionary old 

branch of the flavonoid biosynthesis [18]. They are often produced in response to UV light 
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suggesting an important function in response to this stress [19,20]. Proanthocyanidins 

(condensed tannins) are colourless polymers of catechin and epicatechin which turn 

brown upon oxidation [21]. Functions of proanthocyanidins include protection against 

reactive oxygen species (ROS) under abiotic stress conditions and protection against her-

bivors and pathogens [22]. 

 

1.2 Biosynthesis of flavonoids 

 The core pathway of the flavonoid biosynthesis is well conserved and a model sys-

tem for specialized plant metabolism (Fig. 1), but many unexplored species-specific dif-

ferences might exist. Briefly, chalcone synthase (CHS) is the first committed enzyme that 

catalyzes the formation of naringenin chalcone from 4-coumaroyl-CoA and malonyl-CoA 

[23]. The next step is controlled by the chalcone isomerase (CHI) that isomerizes 

naringenin chalcone to naringenin [24]. The conversion of naringenin into dihydroflavo-

nol is catalyzed by the flavanone 3-hydroxylase (F3H) [25]. Naringenin can also be chan-

nelled into the flavone biosynthesis through the flavone synthase (FNS)[26,27]. Flavonoid 

3’-hydroxylase (F3’H) and flavonoid 3’,5’-hydroxylase (F3’5’H) can add additional hy-

droxyl groups to dihydroflavonols [28,29]. Dihydroflavonols are converted into flavonols 

by the flavonol synthase (FLS) [30] or into leucoanthocyanidins by the dihydroflavonol 4-

reductase (DFR) [31]. Leucoanthocyanindins can be converted into anthocyanindins by 

the anthocyanidin synthase (ANS) [32,33] or into catechins by the leucoanthocyanidin re-

ductase (LAR) [34]. Anthocyanidins can be converted into epicatechins by the anthocya-

nidin reductase (ANR) [35] or undergo modification reactions including glycosylations, 

acylations, and methylations [36–38]. The enzymes involved in some branches of the fla-

vonoid biosynthesis are expected to form a metabolon i.e. are co-located at the surface of 

the endoplasmatic reticulum (ER) [39,40]. Membrane-bound cytochrome P450 enzymes 

like F3’H, F3’5’H, and FNS II are forming the cores of these metabolons and attach these 

clusters of enzymes to the ER [39,41]. The 3-0-glucosylation is usually the first glycosyla-

tion step und turns anthocyanidins into anthocyanins [42]. Additional decorations like 

sugar moieties or acyl groups also influence the stability of anthocyanins [42–44]. For ex-

ample, the addition of coumaroyl or malonyl groups can enhance the in vivo stability sub-

stantially [44]. A wide range of decorations is possible thus explaining the enormous di-

versity of anthocyanins and flavonoids in general. Enzymes catalyzing these decoration 

reactions are usually specific for a certain position of the flavonoid aglycone but can add 

a wide range of different sugar moieties – often to flavonoids of different subgroups [45–

48]. Following their synthesis, many specialized metabolites like the anthocyanins require 

transport into the vacuole for long-term storage [49–51].  
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Figure 1. a) Simplified illustration of the flavonoid biosynthesis. CHS (chalcone synthase), CHI 

(chalcone isomerase), FNS (flavone synthase), FLS (flavonol synthase), F3H (flavanone 3-hydrox-

ylase), F3′H (flavonoid 3′-hydroxylase), F3′5′H (flavonoid 3′5′-hydroxylase), DFR (dihydroflavonol 

4-reductase), ANS (anthocyanidin synthase), LAR (leucoanthocyanidin reductase), ANR (anthocy-

anidin reductase), UGT (UDP-dependent glycosyltransferase), AT (BAHD acyltransferase), and MT 

(methyltransferase). The successive decoration of anthocyanins with sugar moieties, acyl groups, 

and methyl groups is indicated by a circle with the names of the responsible enzymes. b) Chemical 

structure of a flavylium sekeleton of anthocyanidins. Frequently modified positions are highlighted 

with red dots. 

Long-term storage might not be the only reason for vacuolar sequestration of flavo-

noids. It is also plausible that additional modification steps require the extreme conditions 

of the vacuolar lumen or that the localization of modifying enzymes in the vacuole re-

quires the import of substrates for modification reactions. There are vacuolar glycosyl-

transferases and acyltransferases that can further modify flavonoids upon sequestration 

[37]. These enzymes are different from glycosyltransferases and acyltransferases found in 

the cytoplasm and belong to different evolutionary lineages. 
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1.3 Transport and subcellular localizaiton of flavonoids 

Glycosylated forms of anthocyanins, flavonols, flavones, and proanthocyanidin pre-

cursors are transported from the cytoplasm into the central vacuole [50]. The molecular 

mechanisms underlying the transport or diffusion of these metabolites are under investi-

gation for decades. However, the knowledge remained sparse compared to the detailed 

insights into the biosynthesis of the flavonoid aglycones. Some flavonoid-transport asso-

ciated genes were identified in Arabidopsis thaliana, Medicago truncatula, or Vitis vinifera, 

but no universal explanation of the process was achieved yet [8,52]. Two not mutually 

exclusive models were proposed to explain the transport of flavonoids: direct transport 

over the tonoplast or vesicle-mediated transport from the ER [53,54]. Mechanisms of fla-

vonoid transport could dependent on the flavonoid class, the cell type, the developmental 

stage, and various environmental factors. Observations in Hordeum vulgare inspired the 

hypothesis that transport into the vacuole might be controlled by a component of the fla-

vonoid biosynthesis pathway [55]. The authors noticed reduced transport of saponarin 

(flavones glycoside) in a chi mutant. The existence of such regulatory loops might explain 

why an efficient flavonoid sequestration into the vacuole is essential for high production 

in barley [55]. This could motivate research on this topic in other plant species and might 

turn the flavonoid transport into a promising target for the improvement of crop traits. 

Flavonoids have also been reported in the nucleus, chloroplasts, and mitochondria 

[56–62]. The functions of flavonoids in these compartments remain largely unexplored. 

One hypothesis suggest that flavonoids in the nucleus protect the DNA [60,63]. Flavo-

noids might have additional functions in sigaling processes and could influence the gene 

expression [64]. As the biosynthesis enzymes CHS and CHI were also detected in the nu-

cleus, these proteins might be involved in transcriptional regulation or could be responsi-

ble for the differential accumulation of flavonoids in nucleus and other compartments 

[65]. Flavonoids in chloroplasts and mitochondria could have functions in the prevention 

of reactive oxygen (ROS) formation and ROS scavenging [66]. 

 

 

1.4 Membrane permeability of specialized metabolites 

A sound comprehension of processes relevant for the transport of flavonoids and 

other specialized metabolites also requires profound knowledge and consideration of 

basic physico-chemical coherences. It is beyond debate that any transport of substances 

within the plant - either from cell to cell or long-distance translocation - requires the trans-

fer of the substance across biomembranes. Biologists have internalized that biomem-

branes represent efficient borderlines between the different cell compartments. In conse-

quence, it seems to be inevitable that any membrane passage requires the involvement of 

a corresponding transporter, or carrier systems, respectively. Indeed, this deduction ap-

plies to sugars, amino acids and most of the substances involved in primary metabolism. 

These substances are characterized by a high water solubility. In consequence, they are 

quite unable to diffuse though the lipophilic zone of bio-membranes. Thus, for their trans-

fer through and across any membrane, transporters are required [67–69]. This also applies 

to ionic nutrients like nitrate, sulphate, or metal ions, whose uptake by the roots necessi-

tates adequate transporters [70–72]. By contrast, a tremendous high number of specialized 

metabolites i.e. alkaloids, phenolic compounds like flavonoids, or terpenoids, indeed are 

able to diffuse passively though biomembranes [73]. The comprehensive knowledge 

about membrane permeability of multifarious substances, and how this ability can be es-

timated or evaluated, respectively, is premised on extensive studies on the uptake of xe-

nobiotics from the soil [74,75]. Due to their partially hydrophobic and hydrophilic charac-

ter, most of these substances can diffuse passively through membranes [76–78]. According 

to these insights and coherences, the most important property that enables a substance to 

simply diffuse through biomembranes is a balanced proportion of hydrophilicity and lip-

ophilicity. This feature is characterized in good approximation by the distribution 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 March 2022                   doi:10.20944/preprints202203.0124.v2

https://doi.org/10.20944/preprints202203.0124.v2


 5 of 28 
 

 

coefficient of a certain substance in an “octanole-water-system”, i.e., the so-called kow-

value, or its decadal logarithm, the logkow, respectively, which frequently is also denoted 

as logP-value [79]. It is understood that all substances revealing logP-values between -1 

and 3 do diffuse through biomembranes [75,80,81]. Indeed, when this realization had been 

used to predict the passive uptake of pharmaceutical drug, it turned out that some further 

cognitions are required, and some additional aspects have to be considered for a proper 

and sound specification of membrane diffusibility of a certain substance. These reflections 

lead to the argumentation of the “rule of five”, an implementation to predict the mem-

brane permeability that - in addition to the logP-value - also considers the size of the mol-

ecules, the ability to generate hydrogen bonds, and to act as proton acceptor or donor 

[82,83]. It is self-evident that these deductions do not only apply to xenobiotics and phar-

maceuticals, but also to natural products. This expectation was vividly verified by demon-

strating the uptake of alkaloids [84] and coumarins by the roots of various acceptor plants 

[73,85]. 

In the light of these considerations, many scientific articles on the translocation of 

specialized metabolites, which non-reflectively state the involvement of certain transport-

ers for the membrane transfer, could hardly be understood. Yet, even without considering 

the basic physico-chemical coherences mentioned above, just guided by our daily experi-

ence from drinking coffee and tea, or from smoking, it is beyond question that alkaloids, 

such as caffeine or nicotine are taken up promptly by mucous membranes without the 

involvement of any carrier. Nonetheless, related carriers are described to be relevant for 

the translocation, e.g. of nicotine in tobacco [86–88]. For elucidating this apparent contra-

diction, it is vital to consider that the physico-chemical properties of alkaloids are mas-

sively impacted by the pH: in acidic solutions, i.e., when the pH is quite lower than the 

pKs-value, the alkaloids are protonated and not anymore able to diffuse through biomem-

branes, whereas in neutral to alkaline solutions the alkaloids are present as free bases 

[89,90]. These basic coherences of this phenomenon had been vividly described and pre-

sented already half a century ago [91] as so-called ion-trap mechanism: whereas the free 

bases passively diffuse from the neutral cytosol through the tonoplast, the protonated al-

kaloids are trapped in the acidic vacuoles. In this context, the occurrence of certain carriers 

becomes relevant, because any export of the membrane impermeable protonated alka-

loids requires the action of a related carrier. These coherences illustratively outline how 

the milieu is impacting the ability of a certain substance to passively diffuse through a 

biomembrane and thereby determine whether or not a transporter is involved in related 

transport processes.  

Based on the coherences outlined above, it becomes obvious that any discourse on 

translocation of flavonoids has to consider whether or not a certain molecule is able to 

passively diffuse though a biomembrane or if an appropriate transporter is required. Most 

of the flavonoid aglycones reveal a logP (Table S1) that expound their inherent ability to 

diffuse passively across biomembranes. Since these compounds do not exhibit features 

that might restrict this property according to “the rule of five”, we have to assume that 

these flavonoids reveal steady membrane permeability. In contrast, the situation is quite 

different when focussing on the wide-spread derivatives of flavonoids (Table S2) and the 

positively charged anthocyanidins, whose sound logP-values are unfortunately hardly 

available. Due to the great number of hydroxyl-groups and the positive charge, respec-

tively, these compounds are not able to simply diffuse through biomembranes. Thus, their 

transfer from one compartment into another requires either a carrier-mediated or a vesi-

cle-based transport [50,54,92]. 

 

Here, we review the current knowledge about the intracellular transport and accu-

mulation of flavonoids. This includes tonoplast-based transporters and players associated 

with a vesicle-based transport system. We also summarized the sparse knowledge about 

mechanisms underlying the long-range transport of flavonoids within a plant. Finally, we 

outline open questions that can be addressed by recently developed technologies. 
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2. Ligandin and transporter-associated sequestration of flavonoids into the vacuole 

Different routes of subcellular flavonoid transport from the ER to the vacuole have 

been proposed based on numerous observations (Fig. 2). This involves the movement to 

the tonoplast and also the crossing of a membrane (tonoplast). One model proposes that 

vacuolar import of flavonoids is based on a transport system located in the tonoplast [53]. 

This vacuolar import process involves a ‘ligandin’ [93] that is necessary to escort anthocy-

anins and precursors of the proanthocyanidins from the ER to the tonoplast where trans-

porters can facilitate the actual uptake. Acidic conditions inside the vacuole induce con-

formational changes of flavonoids upon import which prevent the flavonoids from cross-

ing a membrane again resulting in retention in the vacuole [94,95]. 

Ligandins are glutathione S-transferase (GST)-like proteins that were reported as a 

crucial factor for anthocyanin and possibly proanthocyanidin precursor transport in many 

species: BZ2 in Zea mays [96], AN9 in Petunia hybrida [97], TT19 in A. thaliana [98], PfGST1 

in Perilla frutescens [99], and VvGST1 and VvGST4 in Vitis vinifera [100]. Initially, a detox-

ification function of these proteins was assumed based on a conjugation with glutathione 

[101], but it became clear that these proteins are only binding specific flavonoids without 

catalyzing an enzymatic reaction [102]. It is still an open question whether ligandins have 

high affinity for anthocyanins or proanthocyanidin (PA) precursors, respectively. Studies 

investigating the ligandin oder GST homologs of various plant species often complement 

the A. thliana tt19 mutant to demonstrate the functionality [51,98,100,103–108]. Experi-

ments show that the ligandins of some species only complement the anthocyanin deficit 

[103–106] while other studies also observed a restoration of the PA accumulation 

[51,98,100,107,108]. In summary, these studies suggest that these ligandins of some plant 

species could be dedicated to the anthocyanin transport. These ligandins could protect the 

flavonoids, while the actual transport is mediated by membrane proteins. ATP-binding 

cassette (ABC) transporters are a group of primary active transporters, i.e. powered by 

the consumption of ATP, that were associated with the uptake of flavonoids into the vac-

uole [50,109–112]. Many of these flavonoid transporters belong to subgroup C of these 

ABC transporters and were previously also called multidrug resistance proteins (MRP). 

Another important group of transporters are the multidrug and toxin extrusion trans-

porter (MATE) proteins that are secondary active antiporters i.e. antiporters that require 

a proton gradient for the flavonoid import [52,113]. The search for flavonoid transporters 

was often based on chemical inhibition of specific transporter classes. The primary active 

ABC transporters are generally inhibited by vanadate while this does not directly affect 

antiporters (e.g. MATEs) that take their energy from a proton gradient. In contrast, bafilo-

mycin A1 is an inhibitor of V-type ATPases that disrupts the proton gradient required for 

secondary active transport. Gramicidin D is an ionophore that also disrupts the proton 

gradient thus it only effects transporters that rely on this gradient (e.g. MATEs). 

Although ABCCs and MATEs were reported in many species this does not rule out 

the involvement of additional transporters in some species. A gene encoding a protein 

similar to the secondary active mammalian bilitranslocase (BTL) might be involved in 

the flavonoid transport in Dianthus caryophyllus [114] and Vitis vinifera [115]. The D. caryo-

phyllus protein is inhibited by cyanidin 3-glucoside [114]. The V. vinifera protein transports 

bromosulfalein which is structurally similar to flavonoids [115]. A competitive inhibition 

of the V. vinifera BTL-like protein by quercetin suggests that this is a potential flavonoid 

transporter [115]. The observation of this protein in berries and the gene expression pat-

tern during the ontogenesis support a potential involvement of the V. vinifera candidate 

in the flavonoid transport [115]. Transport efficiency of a secondary energized transport 

(proton gradient) is low compared to the directly energized mechanism (ATP consump-

tion) [109]. In summary, this could suggest that BTL is just a minor transport mechanism, 

while ABCC and MATE in combination with the ligandin could represent the major fla-

vonoid transport mechanism. 
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Figure 2. Simplified illustration of the intracellular flavonoid transport pathways. ABCC (ATP-binding cassette (ABC) 

subfamily C), ABCG (ABC subfamily G), MATE (multidrug and toxin extrusion transporter), BTL-like (bilitranslocase-

like), GFS9/TT9 (Green Fluorescent Seed 9/Tranparent Testa 9), EXO70B1 (exocyst complex component), ER (Endoplas-

matic Reticulum) and AVI (anthocyanin vacuolar inclusion). Strength of lines indicates the assumed relevance of these 

transport pathways. 
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Table 1. Genes involved in the transport of flavonoids. 

Function Gene Species Reference 

Ligandin (GST) AN9 Petunia hybrid (petunia) [97] 
 TT19 Arabidopsis thaliana [98] 

 BZ2 Zea mays (maize) [96] 

 VvGST1,VvGST4 Vitis vinifera (grape vine) [100,108] 

 PstGST1 Perialla frutescens (deulkkae) [99] 

 PpGST1/Riant Prunus persica (peach) [116] 

 BnGSTF6,BnGSTF12 Brassica napus (rapeseed) [117] 

 AcGST1 Actinidia chinensis (kiwifruit) [107] 

 BRACT1 Euphorbia pulcherima (poinsettia) [118] 

 RsGST1 Raphanus sativus (radish) [119] 

 RAP Fragaria vesca (strawberry) [103] 

 MdGSTF6 Malus domestica (apple) [104] 

 LcGST4 Litchi chinensis (lychee) [120] 

 IbGSTF4 Ipomoea batatas (sweet potato) [106] 

 CkmGST3 Cyclamen spec. [121] 

 FL3/DcGSTF2 Dianthus caryophyllus (carnation) [122] 

 PcGST1 Petroselium crispum (parsley) [123] 

 CmGST1 Chrysanthemum spec. [124] 

 CsGSTF1 Camelia sinensis (tea) [125] 

 DcGST1 Daucus carota (carrot) [126,127] 

 GmGST26A/GmHsp26A Glycine max (soybean) [97] 

    

MATE TT12,FFT Arabidopsis thaliana [113,128] 

 MtMATE1,MtMATE2 Medicago truncatula (barrelclover) [52,129] 

 VvAM1,VvAM3 Vitis vinifera (grape vine) [130–132] 

 LhDTX35 Lilium spp. [133] 

 MdMATE1,MdMATE2 Malus domestica (apple) [134] 

 BnTT12 Brassica napus (rapeseed) [135] 

 RsMATE9 Raphanus sativus (radish) [136] 

 SlMTP77 Solanum lycopersicum (tomato) [137] 

 VcMATE,2,3,5,7,8,9 Vaccinium corymbosum (blueberry) [138] 

 GmMATE1 Glycine max (soybean) [139] 

 FaTT12-1 Fragaria vesca (strawberry) [140] 

 GhTT12 Gossypium hirsutum (cotton) [141] 

 DcMATE1 Daucus carota (carrot) [127] 

 DkMATE1 Diospyros kaki (kaki persimmon) [142] 

    

ABCC (MRP) 
ZmMRP3(ZmABCC3), 

ZmMRP4(ZmABCC4) 
Zea mays (maize) 

[143] 

 AtABCC2 Arabidopsis thaliana [144] 

 VvABCC1 Vitis vinifera (grape vine) [145] 

 OsMRP15 Oryza sativa (rice) [146] 

 RsABC Raphanus sativus (radish) [147] 

    

P3A-ATPase AHA10/TT13 Arabidopsis thaliana [148,149] 

 PH5 Petunia hybrid (petunia) [150] 

 GmPH5 Glycine max (soybean) [151] 

    

H+-PPase VHP1 Arabidopsis thaliana [152] 
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BTL-like -1 Vitis vinifera (grape vine) [115] 

 -1 Dianthus caryophyllus (carnation) [114] 

    

Vesicle trafficking GFS9/TT9 Arabidopsis thaliana [153] 

 ECHIDNA Arabidopsis thaliana [154] 

 EXO70B1 Arabidopsis thaliana [155] 
1 Studies were based on antibodies and do not provide gene IDs. 

 

2.1. Anthocyanin transport 

The major transporter families ABCC and MATE appear to be involved in anthocya-

nin transport in Z. mays [143], A. thaliana [113], V. vinifera [130,145], M. truncatula [129] and 

many other species. Primary active ABCC transporters depend on ATP and glutathione 

for anthocyanin transport, but do not require anthocyanin-glutathione conjugates 

[102,145]. The Zea mays multidrug resistance-associated protein (ZmMRP3) belongs to an 

ABC transporter subfamily (ABCC) and was identified as a crucial factor for anthocyanin 

transporter in Zea mays [143]. Although ZmMRP3 was necessary for anthocyanin accumu-

lation in the vacuole, experiments with antisense transcripts suggest that an additional 

transporter is involved in the anthocyanin transport in the aleuron [143]. Based on the 

expression pattern it was speculated that ZmMRP4 could encode an aleuron-specific an-

thocyanin transporter, but a large deletion renders the resulting protein most likely non-

functional and made this look unlikely [143]. The ZmZRP3 ortholog in A. thaliana, AtA-

BCC2, is an active ATP consuming transporter required for sequestration of cyanidin 3-

O-glucoside, flavone glucosides, and flavonol glucosides into the vacuole [144]. An en-

richment of AtABCC2 in the vacuolar membrane fraction suggests that this transporter is 

located in the tonoplast. Inhibition assays suggest that this ABCC transporter and a H+-

antiporter work together in the import of flavonoids [144]. This matches a previously pro-

posed hypothesis that suggested that MRP3 might modify the substrate preference of 

MATE transporters towards anthocyanins [143]. This aligns with reports of the Medicago 

truncatula MATE1 as a high capacity, but low specificity anthocyanin transporter [129] 

that could require a regulation of its substrate specificity by interaction with an ABCC 

protein. It seems that ABCC are committed anthocyanin transporters while MATEs are 

able to transport anthocyanins in addition to other preferred substrates. However, it is 

surprising that the AtABBC2 knock-out does not show a flavonoid phenotype [112] and 

that AtABBC2 expression is not controlled by the anthocyanin biosynthesis regulators [42]. 

Nevertheless, the involvements of ABCCs in the transport of anthocyanins is also sup-

ported by an analysis of the V. vinifera ortholog VvABCC1 that revealed transport of an-

thocyanidin 3-O-glucosides and glutathione when heterologously expressed in yeast 

[145]. A proton gradient over the tonoplast was important for transport of anthocyanins 

in V. vinifera supporting the involvement of MATEs [130]. The proton gradient and vacu-

ole pH are usually controlled by V-ATPases located in the tonoplast, while P-ATPase are 

located in the plasma membrane. However, the P3A-ATPase AHA10/TT13 is involved in 

the formation of proanthocyanidins and located in the tonoplast [148,149]. The petunia 

AHA10/TT13 ortholog PH5 was also identified in the tonoplast where it is hyperactivated 

by another non-functional transporter [150]. A mutation in the PH5 gene caused a reduced 

vacuole acidification in petals that resulted in blue flower color of petunia [150]. This 

ATPase might be necessary for the secondary active transport of anthocyanins and pro-

anthocyanidins. However, significant AHA10/TT13 expression was only observed in the 

seeds of A. thaliana and in no other parts of the plant [149] which might indicate that a 

different mechanism is required to provide the proton gradient for the anthocyanin 

transport. VPH1 could be a candidate, but it remains unclear whether this weak H+-PPase 

can maintain the proton gradient required for flavonoid transport. An experiment to 
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rescue an aha10/tt13 mutant through overexpression of VPH1 resulted only in partial res-

toration of the wild type phenotype [149]. 

The existence of several MATE transporter isoforms might be explained by their 

specificity to certain flavonoid derivatives or their subcellular localization in tonoplast or 

vesicles, respectively [50,130,132]. Specific additions of methyl and acyl groups could be 

a regulating factor in the anthocyanin transport [131]. For example, Medicago truncatula 

MATE2 is more affine towards malonylated anthocyanins than towards proanthocya-

nidin precursors [52]. However, heterologous expression experiments in A. thaliana sug-

gest that MtMATE2 might be located in the Golgi and not in the tonoplast [132]. High 

accumulation of acylated anthocyanins was reported as a likely consequence of overex-

pression of a specific anthocyanin activating MYB in A. thaliana [42] and Solanum lycoper-

sicum [156,157]. In summary, ABCC transporters emerged as central for the anthocyanin 

transports, but MATE transporters could contribute to the process in several species. 

 

2.2. Proanthocyanin transport 

Different transporters could be involved in the proanthocyanidin (PA) precursor 

transport into the vacuole. However, the A. thaliana mate/tt12 mutant shows a lack of pro-

anthocyanidin accumulation [113,158]. At first, AtMATE/AtTT12 appeared to be an an-

thocyanidin 3-O-glucoside/H+-antiporter [113]. Although no transport of glycosylated fla-

vonols, procyanidin dimers, or catechine 3-O-glucoside were observed in vitro, it was pro-

posed that AtMATE/AtTT12 transports glycosylated flavan-3-ols in vivo [113]. A follow-

ing study demonstrated that AtMATE/AtTT12 transports epicatechin 3’-O-glucoside 

more effectively than cyanidin 3-O-glucoside [129]. Similar to AtMATE/TT12, a high af-

finity epicatechin 3’-O-glucoside transporter and a low affinity but high capacity cyanidin 

3-O-glucoside transporter was identified in M. truncatula hairy root cells, called 

MtMATE1 [129]. As described for AtMATE/AtTT12 [113], flavonoid aglycones had no in-

hibitory effect on the transport of the glycosides by MtMATE1, while the two tested glu-

cosides inhibited each others’ transport slightly [129]. M. truncatula MATE1 is a close hom-

olog of AtMATE/AtTT12 and was successfully used to complement the A. thaliana 

mate/tt12 mutant [129]. Several studies provide evidence that plants might modify flavan-

3-ols at the 3’-O rather than at the 3-O position, which could explain the observed sub-

strate preferences of AtTT12 [129,159,160]. 

Many plant species form PAs based on catechins (2,3-trans-flavan-3-ols) and epicat-

echins (2,3-cis-flavan-3-ols), which are synthesized by leucoanthocyanidin reductase 

(LAR) and anthocyanidin reductase (ANR), respectively. Due to a lack of LAR activity in 

A. thaliana [34], only the epicatechin pathway is active. It is assumed that glycosylated 

forms of PA precursors are imported into the vacuole and then condensed into polymers 

through spontaneous reactions that do not require enzymes [22]. Spontaneous reactions 

with polysaccharides and other cellular components [161] render PAs insoluble thus pos-

ing a challenge for the experimental investigation of the PA precursor and PA transport. 

Surprisingly, aha10/tt13 (ATPase mutant) seeds accumulate more epicatechin than wild 

type seeds, while the mate/tt12 mutant does not show a difference [113,148]. Additionally, 

vanillin-reactive PAs were not detectable in the vacuoles of aha10/tt13 mutants [149]. In 

summary, MATE transporters were identified as the central transporters of proanthocya-

nidin precursors, but require a proton gradient generated by an ATPase. 

 

2.3 Transport of other flavonoids 

GSTs can bind flavonol glycosides [102,108] and transport via ABCC transporters 

was observed in in vitro experiments [144]. ABCC transporters are also responsible for 

transporting flavones and iso-flavones into the vacuole [144,162,163]. These reports sug-

gest that flavonols and maybe other flavonoids are imported into the vacuole through the 

same tonoplast-based system as anthocyanins and proanthocyanidin precursors. 
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3. Flavonoid transport in vesicles 

There is strong evidence for vesicle-mediated flavonoid transport in many different 

plant species [49,164–166]. Flavonoid-containing vesicles were reported in Z. mays 

[165,167], sorghum [168], A. thaliana [49], and Ipomoea batatas [166]. Vesicle transport re-

quires specific tags to ensure that vesicles are delivered to the correct organell. The re-

quired proteins and the implications for the transport of flavonoids have been reviewed 

previously [8,169]. This vesicle-mediated transport of flavonoids could be an additional 

or alternative route into the central vacuole. Vesicle transport and direct import into the 

central vacuole must not be mutually exclusive, because the same mechanisms for 

transport across the tonoplast could be involved in loading the vesicles [95,129,170,171]. 

However, it is still debated whether specific components are associated with just one of 

these transport routes. MATE transporters might be committed to the uptake of flavo-

noids into the vesicles, but the localization of MATEs in the tonoplast does not allow the 

exclusion of an involvement in the tonoplast-associated GST/ligandin mechanism in the 

vesicle mediated flavonoid uptake [50,130]. For example, GST/ligandin could be associ-

ated with the direct flavonoid uptake into the vacuole which would require the GST/ligan-

din to protect anthocyanins during transit through the cytoplasm. However, A. thaliana 

tt19 (GST/ligandin) mutants show an enrichment of flavonoid-filled vesicles [172]. This 

suggests that GST/ligandin is not required for the transfer of flavonoids into the vesicles, 

but for the unloading of vesicles into the vacuole. 

 

3.1 Anthocyanin transport  

It is assumed that a fusion of anthocyanin-filled vesicles with the tonoplast results in 

the release of anthocyanins into the central vacuole [49,53,170]. Contradictory microscopic 

results about the presence/absence of membranes around ‘anthocyanoplasts’ [173] or an-

thocyanic vacuolar inclusions (AVIs) have been reported in numerous plant species 

[53,174,175]. It seems that a proteinaceous matrix in the vacuole binds anthocyanins 

[94,174]. VP24 metalloproteases were repeatedly reported as co-localized with anthocya-

nins [94,176,177], but the identities of other potentially involved proteins remains an open 

question. AVIs were reported in different organs and developmental stages including A. 

thaliana seedlings [178], Dianthus caryophyllus flowers [174], suspension cell cultures of Ip-

omoea batatas [94], and petals of Eustonia spec [164]. However, it remains unclear whether 

these anthocyanin clusters are surrounded by a membrane [49,131,179] or not [174,180]. 

A study in V. vinifera cell suspension revealed a correlation of anthocyanin content with 

the formation of AVIs and observed the transport of AVIs from the cytosol into the vacu-

ole [170]. The accumulation of acylated anthocyanins was observed in V. vinifera [181] 

hence AVIs might be a sequestration mechanism for specific types of anthocyanins. AVIs 

might also be a mechanism to retain anthocyanins in the vacuole as such large anthocya-

nin clusters are unlikely to be exported easily. Senescence goes along with leakage of 

membranes and a reduced energy gradient [182] that is required for anthocyanin 

transport into the vacuole. AVIs might explain how pigments are maintained in the vac-

uole at this developmental stage [8]. A study in Zea mays revealed that vacuolar morphol-

ogy and AVIs are influenced by light with small vacuoles merging and AVIs releasing 

anthocyanins into the vacuole upon light exposure [183]. These light induced changes 

could be responsible for a darkening of the tissue upon light exposure and could be a more 

general explanation for similar observations in other species [183]. Most epidermal cells 

of A. thaliana 5gt mutants that lack the ability to add sugar moieties at the 5-O position of 

anthocyanins show the formation of AVIs while this is rarely the case in the cells of the 

wild type [178]. A vanadate treatment of seedlings, which inhibits the primary active ABC 

transporters, resulted in a similar phenotype [178]. The authors present two non-exclusive 

models to explain these observations: (1) cyanidin 3-O-glucoside could inhibit the break-

down of autophagic bodies which become visible as AVIs and (2) cyanidin 3-O-glucosides 

and cyanidin 3,5-O-glucosides might be transported by different mechanisms with 
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cyanidin 3-O-glucoside being imported into the vacuole by a vanadate-sensitive trans-

porter and cyanidin 3,5-O-glucoside through a vesicle-based mechanism [178] (vanadate 

is also inhibiting the ATPases, but firstly those of the plasmalemma). The Golgi-disturbing 

brefeldin A had no impact on the accumulation of anthocyanins thus indicating that this 

vesicle transport is trans-Golgi network (TGN)-independent [49]. Anthocyanin-contain-

ing sub-vacuolar structures are increased through treatment with vanadate which is a 

broad range inhibitor of ATPases and ABC transporters. This corroborates the evidence 

that anthocyanins are accumulating in a sub-vacuolar compartment. Autophagy has been 

reported as a mechanism that causes the formation of large vesicles from smaller ones 

[183]. Anthocyanin-filled vesicles in V. vinifera hairy roots overexpressing an anthocyanin 

biosynthesis activating MYB suggest an involvement of vesicles in the anthocyanin se-

questration into the vacuole [130,131]. While anthocyanin-transporting MATEs (antho-

MATEs) were associated with these vesicles and the tonoplast, GST/ligandin was ob-

served at the presumed ER location [131]. Additional antisense experiments in V. vinifera 

hairy root cells suggest that anthoMATEs and GST/ligandin are involved in different an-

thocyanin transport mechanisms, because repression of the MATEs resulted in anthocya-

nin accumulation in the vacuole while repression of the GST resulted in anthocyanin ac-

cumulation in vesicles [131]. EXO70B1 is located in vesicles and involved in the internali-

zation of vesicles into the vacuole [155]. The A. thaliana exo70b1 mutant showed an almost 

complete loss of anthocyanin pigmentation in the leaves, but the severity of this pheno-

type decreased during development [155]. This could suggest that only one of the antho-

cyanin transport routes is affected. 

 

3.2 PA transport 

Vesicles directed at the central vacuole and filled with PA precursors have been re-

ported in A. thaliana seed coat cells [33,98]. Various transparent testa (tt) mutants indicate 

that the lack of seed pigmentation is connected to abnormalities of the vacuole 

[33,98,148,149]. Green fluorescent seed 9 (GFS9)/TT9 is a protein involved in the intracel-

lular membrane trafficking [153]. The gfs9/tt9 mutant shows a defect in seed pigmentation 

thus it is assumed that this factor is important for the vesicle-based transport of proantho-

cyanidin precursors. ECHIDNA is another protein associated with the vacuolar traffick-

ing or vacuolar development that is also crucial for the seed pigmentation [154]. Golgi-

localized GFS9/TT9 and TGN-localized ECHIDNA are both influencing the seed pigmen-

tation [153,154] supporting the relevance of the vesicle-mediated transport of flavonoids. 

Since ECHIDNA is required for the trafficking of a TGN-localized vacuolar H+-ATPase 

subunit [184], it is also possible that issues in the protein transport explain the seed color 

phenotype. An alternative explanation would be that the gfs9/tt9 or echidna mutants dis-

turb the ER organization thus preventing the formation of the flavonoid biosynthesis 

metabolon [154]. 

Seeds of the A. thaliana tt19 (GST/ligandin) mutant revealed an eightfold increased 

level of insoluble PAs in immature seeds and an absence of epicatechins and their deriv-

atives in the soluble fraction [172]. Moreover, these mutants show an enhanced accumu-

lation of the glycosylated epicatechins which seem to be the form transported by 

MATE/TT12 [129,172]. MATE/TT12 can transport PA precursors, but did not show 

transport of epicatechin aglycons in vitro [113]. The formation of small vesicles filled with 

PA derivatives in the tt19 mutant suggests that TT19 is not required for the import into 

these vesicles, but aberrant PA derivatives might be formed due to the lack of TT19 [172]. 

In contrast, the accumulation of anthocyanins in Zea mays kernels [96] or flavonols in A. 

thaliana pollen grains [185] was not possible without the GST-like protein. 
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3.3 Flavonol transport 

Flavonols were identified in the cytosol instead of the tapetosomes in pollen cells of 

the tt19 and tt12 mutant [185]. As a consequence, pollen of these mutants were more sen-

sitive to UV radiation with respect to a subsequent germination rate. In contrast to the 

PAs, flavonols seem to be channelled into the vesicle trafficking system at the ER and not 

at the vacuole [185]. Generally, the transport of flavonol glycosides is best studied in con-

nection to the seed development. A recent study identified a tapetum-specific flavonol 

sophoroside transporter (FST1) [186]. The authors demonstrated that this membrane-

bound member of the nitrate/peptide transporter family is crucial for the transport and 

accumulation of flavonol 3-o-sophorosides on the pollen surface. 

 

 

Figure 3. Simplified summary of potential flavonoid transport routes and the involved agents. Ex-

ample genes are named if the involvement in the transport of the respective compound was re-

ported. Aglycones are not included in this table, because they might be able to pass membranes by 

diffusion. Vesicle transport is indicated by a dot, the lack of transport ability is indicated by a minus, 

a lack of knowledge about the transport ability is indicated by a question mark.  

 

4. Secretion of flavonoids and long distance transport 

For many groups of specialized metabolites it is well-known that the sites of their 

synthesis and of their accumulation are quite different. Accordingly, these natural prod-

ucts are translocated within the plants, e.g. pyrrolizidine alkaloids are transferred from 

the roots into the shoots [187], cyanogenic glucosides are allocated from seeds into devel-

oping young leaves [188], and glucosinolates are transported from the leaves into the 

seeds [68]. In general, this allocation from source to sink organs is realized by a phloem-

based transport [187,189]. In contrast, nicotine, which is synthesized in the roots of Nico-

tiana plants is translocated into the shoots via xylem [190], driven by the transpiration 

flow. As a result, nicotine is not accumulated in physiological sinks, e.g., the developing 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 March 2022                   doi:10.20944/preprints202203.0124.v2

https://doi.org/10.20944/preprints202203.0124.v2


 14 of 28 
 

 

seeds [191], but in the transpiring leaves [89]. Unfortunately, with respect to flavonoids 

such comprehensive investigations of source to sink tissues and the corresponding insights 

on putative translocation processes are missing so far. 

One of the rare hints that flavonoids might be translocated within plants from one 

organ to another is based on distinct differences in the composition of flavonoids in 

Cuscuta plants parasitizing on various host plants [192]. As the Cuscuta plants take up the 

substances via their haustoria directly from the vascular bundles of the host, it might be 

assumed that the observed differences in flavonoid-pattern of the Cuscuta plants parasi-

tizing on different plants is due to corresponding differences in composition of flavonoids 

in the vascular tissues of the various hosts. Support for the presence of flavonoids in 

phloem and xylem stems from gene expression analyses that suggest that flavone biosyn-

thesis might be active in these organs [193,194]. The substances taken up via the Cuscuta 

haustoria could be derived from both, xylem and phloem [195]. These findings do not give 

a clue with respect to the localization of the flavonoids in the vascular system of the hosts. 

Moreover, these findings are not a solid prove, since a biosynthesis of the flavonoids by 

the Cuscuta plants themselves could not be fully ruled out [192]. 

Intercellular flavonoid transport might explain coloration patterns observed in the 

leaves and flowers of many plant species and could also serve as a stress response. For 

example, anthocyanins are transported in vascular bundles towards the root tip [196]. The 

GST-like ligandin might be involved in long-range transport of flavonoids, because it is 

expressed in the mid vein of leaves in A. thaliana showing an expression pattern similar to 

that of a flavonoid glycosyltransferase [197]. MtMATE2 [52] and RsMATE5 [136] might 

be involved in long-distance transport of anthocyanins. An ABC transporter that can ex-

port genistein and daidzein from the cell was studied in Glycine max (soybean) [198]. ABC 

transporters might transport flavonoids outside the cell, because no glycosylation or acyl-

ation is required for transport [50]. Mechanisms to export epicatechin or PA oligomers out 

of the cell remain unknown. Burst of vacuoles upon cell death is one hypothesis that could 

explain the PA release from cells [199]. 

Flavonoid transport between different parts of the plant would be required if biosyn-

thesis could not take place at the target site. Since the precursors of the flavonoid biosyn-

thesis are ubiquitous within a plant, it is likely that most cells would be able to produce 

flavonoids. Consequently, long-range transport might not be a particularly important 

mechanism. In summary, more research is required to assess the relevance of intercellular 

flavonoid transport and to elucidate the molecular mechanisms. 

 

5. Conclusion and open questions 

While the biosynthesis of the flavonoid aglycons is well understood, many questions 

remain around their modification, intracellular transport, storage, and degradation. How 

are specific modifications influencing or even controlling the transport? Is controlled 

transport necessary to achieve the right concentrations in different subcellular compart-

ments i.e. low concentrations of aglycone products in the cytoplasm and high concentra-

tions of substrates for following reactions in the vacuole? What is the biological relevance 

of flavonoids in the nucleus, chloroplasts, and mitochondria? Various transparent testa (tt) 

mutants do not show complete lack of PAs. Are these observations the results of diffusion 

across the membrane? Can different anthocyanin biosynthesis activating transcription fac-

tors selective activate specific uptake mechanisms? Additional work on ligandins and ves-

icle transport could help to achieve a more controlled anthocyanin and PA accumulation 

in crops. Engineering the flavonoid transport, a potential switch between two competing 

pathways, could help to increase the nutritional value or the pathogen tolerance of crops. 

A better understanding could also facilitate the development of ornamental plants with 

novel pigmentation patterns. 

Many transport mechanisms were only observed in a single species or in a small 

number of species. Results of different studies seem to contradict each other. Systematic 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 March 2022                   doi:10.20944/preprints202203.0124.v2

https://doi.org/10.20944/preprints202203.0124.v2


 15 of 28 
 

 

comparative studies could provide additional support for these observations and the re-

sulting hypothesis. Since some of the transport mechanisms appear to be specific to certain 

cell types, the rapid progress in single cell RNA-seq could help to better understand the 

activity of different players in this process via high-throughput analyses. This technology 

could enable experiments that distinguish the pathways leading to anthocyanin and pro-

anthocyanin accumulation, respectively. These differences between cell types also empha-

size the importance of precise information about the studied material to allow validation 

by others. 

 

Supplementary Materials: The following are available online. Table S1: LogP-values of various 

flavonoids. Table S2: LogP-values of various flavonoid-glycosides. 
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