Preprint
Article

Digital Triage Tool Using Artificial Intelligence and Patient History for Detecting Selected Neurological Diseases and Sensing the Bottleneck between Symptoms, Diagnosis, and Therapy

Altmetrics

Downloads

233

Views

266

Comments

0

This version is not peer-reviewed

Submitted:

12 March 2022

Posted:

14 March 2022

You are already at the latest version

Alerts
Abstract
During the COVID-19 pandemic, individuals with symptoms other than cough or fever have refrained from seeking medical advice. However, a delay in treatment might lead to serious consequences. At the same time, digital health initiatives have emerged to overcome this bottleneck of healthcare. Herein, we report the results of a multi-center initiative using a combination of patient history and artificial intelligence (AI) to identify individuals with rare neuromuscular diseases. First, a questionnaire with 46 items was developed by interviewing patients with muscular dystrophies, amyotrophic lateral sclerosis, Morbus Pompe, neuropathies, and myasthenia gravis. Second, patients with proven neurological diseases answered the questionnaire. Third, a combination of classifiers (artificial neural network, support vector, and random forest) was trained and, finally, the system was challenged with new questionnaires. Users with an abnormal questionnaire pattern received a unique code for data privacy and contact details for a neurologist for further advice. The neurologists confirmed or refuted the AI-based diagnosis. The questionnaire was accessed 3122 times, leading to 853 unique codes. Only for a few patients the computer-based diagnoses and the confirmed final diagnoses were reported to us. However, for these few patients, the genetic testing and high CK levels finally ended their long-lasting diagnostic odyssey.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated