Preprint
Article

Adaptive Sliding Mode Disturbance Observer and Deep Reinforcement Learning based Robust Motion Control for Micropositioners

Altmetrics

Downloads

250

Views

271

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

02 March 2022

Posted:

15 March 2022

You are already at the latest version

Alerts
Abstract
The robust control of high precision electromechanical systems, such as micropositioners, is challenging in terms of the inherent high nonlinearity, the sensitivity to external interference, and the complexity of accurate identification of the model parameters. To cope with these problems, this work investigates a disturbance observer-based deep reinforcement learning control strategy to realize high robustness and precise tracking performance. Reinforcement learning has shown great potential as optimal control scheme, however, its application in micropositioning systems is still rare. Therefore, embedded with the integral differential compensator (ID), deep deterministic policy gradient (DDPG) is utilized in this work with the ability to not only decrease the state error but also improves the transient response speed. In addition, an adaptive sliding mode disturbance observer (ASMDO) is proposed to further eliminate the collective effect caused by the lumped disturbances. The sterling performance is revealed with intensive tracking simulation experiments and demonstrates the improvement in the accuracy and response time of the controller.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated