Preprint
Article

Privacy Concerns in Machine Learning Fall Prediction Models: Implications for Geriatric Care and the Internet of Medical Things

Altmetrics

Downloads

287

Views

268

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

12 March 2022

Posted:

15 March 2022

You are already at the latest version

Alerts
Abstract
Fall prediction using machine learning has become one of the most fruitful and socially relevant applications of computer vision in gerontological research. Since its inception in the early 2000s, this subfield has proliferated into a robust body of research underpinned by various machine learning algorithms (including neural networks, support vector machines, and decision trees) as well as statistical modeling approaches (Markov chains, Gaussian mixture models, and hidden Markov models). Furthermore, some advancements have been translated into commercial and clinical practice, with companies in various stages of development capitalizing on the aging population to develop new commercially available products. Yet despite the marvel of modern machine learning-enabled fall prediction, little research has been conducted to shed light on the security and privacy concerns that such systems pose for older adults. The present study employs an interdisciplinary lens in examining privacy issues associated with machine learning fall prediction and exploring the implications of these models in elderly care and the Internet of Medical Things (IoMT). Ultimately, a justice-informed set of best practices rooted in social geroscience is suggested to help fall prediction researchers and companies continue to advance the field while preserving elderly privacy and autonomy.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated