Preprint
Article

Machine Learning in Ratemaking, an Application in Commercial Auto Insurance

Altmetrics

Downloads

296

Views

221

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

11 March 2022

Posted:

15 March 2022

You are already at the latest version

Alerts
Abstract
This paper explores the tuning and results of two-part models on rich datasets provided through the Casualty Actuarial Society (CAS). These data sets include BI (bodily injury), PD (property damage) and COLL (collision) coverage, each documenting policy characteristics and claims across a four year period. The datasets are explored, including summaries of all variables, then the methods for modeling are set forth. Models are tuned and the tuning results are displayed, after which we train the final models and seek to explain select predictions. All of the code will be made available on GitHub. Data was provided by a private insurance carrier to the CAS after anonymizing the data set. This data is available to actuarial researchers for well-defined research projects that have universal benefit to the insurance industry and the public. Our hope is that the methods demonstrated here can be a good foundation for future ratemaking models to be developed and tested more efficiently.
Keywords: 
Subject: Computer Science and Mathematics  -   Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated