Preprint
Article

Towards Clinical Practice: Design and Implementation of Convolutional Neural Network-Based Assistive Diagnosis System for COVID-19 Case Detection from Chest X-Ray Images

Altmetrics

Downloads

171

Views

225

Comments

0

This version is not peer-reviewed

Submitted:

20 March 2022

Posted:

22 March 2022

You are already at the latest version

Alerts
Abstract
One of the critical tools for early detection and subsequent evaluation of the incidence of lung diseases is chest radiography. This study presents a real-world implementation of a convolutional neural network (CNN) based Carebot Covid app to detect COVID-19 from chest X-ray (CXR) images. Our proposed model takes the form of a simple and intuitive application. Used CNN can be deployed as a STOW-RS prediction endpoint for direct implementation into DICOM viewers. The results of this study show that the deep learning model based on DenseNet and ResNet architecture can detect SARS-CoV-2 from CXR images with precision of 0.981, recall of 0.962 and AP of 0.993.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated