Preprint
Article

Context-Aware Complex Human Activity Recognition using Hybrid Deep Learning Models

Altmetrics

Downloads

316

Views

251

Comments

0

This version is not peer-reviewed

Submitted:

24 March 2022

Posted:

28 March 2022

You are already at the latest version

Alerts
Abstract
Smart devices such as smartphones, smartwatches, etc. are promising platforms that are being used for automatic recognition of human activities. However, it is difficult to accurately monitor complex human activities due to inter-class pattern similarity, which occurs when different human activities exhibit similar signal patterns or characteristics. Current smartphone-based recognition systems depend on the traditional sensors such as accelerometer and gyroscope, which are inbuilt in these devices. Therefore, apart from using information from the traditional sensors, these systems lack contextual information to support automatic activity recognition. In this article, we explore environment contexts such as illumination(light conditions) and noise level to support sensory data obtained from the traditional sensors using a hybrid of Convolutional Neural Networks and Long Short Time Memory(CNN_LSTM) learning models. The models performed sensor fusion by augmenting the low-level sensor signals with rich contextual data to improve recognition and generalisation ability of the proposed solution. Two sets of experiments were performed to validate the proposed solution. The first set of experiments used inertial sensing data whilst the second set of extensive experiments combined inertial signals with contextual information from environment sensing data. Obtained results demonstrate that contextual information such as environment noise level and illumination using hybrid deep learning models achieved better recognition accuracy than the traditional activity recognition models without contextual information.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated