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The study examines n-balls, n-simplices, and n-orthoplices in real dimensions using 

novel recurrence relations that removed indefiniteness present in known formulas. They 

show that in the negative, integer dimensions the volumes of n-balls are zero if n is even, 

positive if n = 4k  1, and negative if n = 4k  3, for natural k. The volumes and surfaces 

of n-cubes inscribed in n-balls in negative dimensions are complex, wherein for negative, 

integer dimensions they are associated with integral powers of the imaginary unit. The rela-

tions are continuous for n  ℝ and show that the constant of π is absent for 0 ≤ n < 2. For 

n < 1 self-dual n-simplices are undefined in the negative, integer dimensions and their 

volumes and surfaces are imaginary in the negative, fractional ones and divergent with de-

creasing n. In the negative, integer dimensions n-orthoplices reduce to the empty set, and 

their real volumes and imaginary surfaces are divergent in negative, fractional ones with 

decreasing n. Out of three regular, convex polytopes present in all natural dimensions, only 

n-orthoplices, n-cubes (and n-balls) are defined in the negative, integer dimensions. 
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1. Introduction 

The notion of dimension n of a set has various defini-

tions [1,2]. Natural dimensions define a minimum number 

of independent parameters (coordinates) needed to specify 

a point within Euclidean space ℝ
n
, where n = 1 is the 

dimension of the empty set, the void, having zero volume 

and undefined surface. Negatively dimensional spaces 

can be defined by analytic continuations from positive 

dimensions [3]. A spectrum, topological generalization of 

the notion of space allows for negative dimensions 

[2,4,5,6] that refer to densities, rather than to sizes, as the 

natural ones. 

Fractional (or fractal) dimensions extend the notion of 

dimension to real, including negative [7], numbers. Nega-

tive dimensions are considered in probabilistic fractal 

measures [8]. Fractal dimension and lacunarity [9,10] 

allow for an investigation of the fractal nature of prime 

sequences [11]. Fractal dimensions are verified to be 

consistent with the experimental observations and allow 

for the analysis of the transport properties, such as perme-

ability, thermal dispersion and conductivities (both ther-

mal and electrical) in multiphase fractal media [12]. The 

probability models for pore distribution and for permea-

bility of porous media can also be expressed as a function 

of fractal dimension [13]. Interestingly the dimension of 

the boundary of the Mandelbrot set equals 2 [14], and the 

generalized Mandelbrot set in higher-dimensional hyper-

complex number spaces, when the power α of the iterated 

complex variable z tends to infinity, is convergent to the 

unit (α1)-sphere [15].  

Complex dimensions can also be considered [2]. Fur-

thermore, geometric concepts (such as lengths, volumes, 

surfaces) can be related to negative, fractional, and com-

plex numbers. Complex geodesic paths emerge in the 

presence of black hole singularities [16] and when study-

ing entropic dynamics on curved statistical manifolds 

[17]. Fractional derivatives of complex functions could be 

able to describe different physical phenomena [18]. 

In ℝ
2
 there is a countably infinite number of regular, 

convex polygons; in ℝ
3
 there are five regular, convex 

Platonic solids; in ℝ
4
 there are six regular, convex poly-

topes. For n > 4, there are only three: self-dual n-simplex, 

and n-cube dual to n-orthoplex [19]. Furthermore, ℝ
n
 is 

also equipped with a perfectly regular, convex, n-ball. 

Properties of these three regular, convex polytopes in 

natural dimensions are well known [20,21,22]. Fractal 

dimensions of hyperfractals based on these polytopes in 

natural dimensions were disclosed in [23]. 

The study examines n-balls, regular n-simplices, and 

n-orthoplices in real dimensions using novel recurrence 

relations that remove indefiniteness present in known 

formulas. 

The paper is structured as follows. Section 2 presents 

known formulas for volumes and surfaces of n-balls, 

regular n-simplices and n-orthoplices in natural dimen-

sions. Section 3 defines novel recurrence relations for 

these geometric objects in real dimensions and presents 

their algebraic forms in integer dimensions. Section 4 

refers to n-balls circumscribed about and inscribed in n-

cubes in real dimensions. Finally, Section 5 summarizes 

the finding of this paper, whereas their possible applica-

tions are discussed in Section 6. 

2. Known formulas 

The volume of an n-ball (B) is known to be 
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where Γ is the Euler’s gamma function and R is the n-ball 

radius. This becomes 
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if n is even (n = 2k, k  ℕ0) and 
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if n is odd (n = 2k  1, k  ℕ). Expressed in terms of n-

ball diameter (1) is the rescaling factor between the n-

dimensional Lebesgue measure and Hausdorff measure 

for n  ℝ
+
 [24,2]. 

Another known [21] recurrence relation expresses the 

volume of an n-ball in terms of the volume of an (n  2)-

ball of the same radius 
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where V0(R)B = 1 and V1(R)B = 2R. It is also known [21] 

that the (n  1)-dimensional surface of an n-ball can be 

expressed as 
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Furthermore, it is known [25] that the sequence 

 
2

2
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satisfies the same recursion formula as (4) for unit radius.  

Volume of a regular n-simplex (S) is known [20,26] to 

be 
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where A is the edge length. A regular n-simplex has n + 1 

(n  1)-facets [21] so its surface is 
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Volume of n-orthoplex (O) is known [22] to be 
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As n-orthoplex has 2
n
 facets [21] being regular (n  1)-

simplices, its surface is 
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Formulas (1)-(3) and (7)-(10) are undefined in nega-

tive dimensions since factorial is defined only for non-

negative integers, while gamma function is undefined for 

non-positive integers. Relations (4)-(6) are undefined if 

n = 0. 

3. Novel recurrence relations 

A radius recurrence relation 
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for n  ℕ0, where f0 := 1 and f1 := 2, allows to express the 

volumes and, using (5), surfaces  of n-balls as 
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where “⌊x⌋“ denotes the floor function giving the greatest 

integer less than or equal to its argument x. 

Proof: 

If n = 2k for k  ℕ0, then by equating (2) with (12) 
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Then, with (11), e.g. for k = 3 
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For even n ≥ 0, n!! = 2
k
k!, which completes the proof. 

If n = 2k  1, k  ℕ, then by equating (3) with (12), 

we have 
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Then, with (11), e.g. for k = 4 
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For odd n ≥ 1, n!! = (2k  1)!/(2
k1

(k  1)!), which com-

pletes the proof. 

 

The sequence (11) allows for presenting n-balls vol-

ume and surface recurrence relations (12), (13) as a prod-

uct of the rational factor fn or nfn, the irrational factor 

π^⌊n/2⌋, and the metric (radius) factor R
n
 or R

n1
. The 

relation (11) can be extended into negative dimensions as 
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solving (11) for fn2 and assigning new n  ℤ as old n2. 

Thus, it is sufficient to define f1 = f0 := 1 (for the empty 

set and point dimension) to initiate (11) and (16). 

The same assignment of new n  ℤ as old n2 can be 

made in (4) solved for Vn2(R)B, yielding 
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which enables to avoid the indefiniteness of factorial and 

gamma function in negative dimensions present in formu-

las (1)-(3) and removes singularity present in relation (4). 
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Fig. 1: n-ball radius recurrence relation fn for n  ℤ (blue); even 

(yellow) and odd (black) algebraic forms of fn, and the π^⌊n/2⌋ 

factor (green); for 7 ≤ n ≤ 7, n  ℂ. 

If n ≤ 3 and odd 
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Proof: 

Set n = 2k  1, k  ℕ. Then, with (16), e.g. for k = 3 

    

       

 

7 5 5 3 3 1

3 3

7 3

2 1 2 1

5 3 1
, ,

2 2 2

5 3 1 5!!
1 1 1

2 2 2 2

1 2 1 !! 1 2 1 !

2 2 1 !

k k

k k k

f f f f f f

f

k k
f

k

     



  

     

    

   
 



. 

Also 
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since n is odd. 

 

The factorial can be expressed by the gamma function. 

Thus, for n = 2k, k  ℕ, (14) becomes 
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while for n = 2k  1, k  ℕ, (15) becomes 
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which forms are, similarly as the gamma function, defined 

for all complex numbers except the non-positive, even 

integers. 

Radius recurrence relation fn (16) is listed in Table 1 

for n  ℤ, and shown in Fig. 1 along with even algebraic 

form of fn (19), odd algebraic form of fn, and the π^⌊n/2⌋ 

factor for n  ℂ
1
, and. As shown, (19) and (20) bound the 

relation (16) for Re(n). Volumes and surfaces of n-balls 

calculated with (12) and (13) are shown in Fig. 2. 
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Fig. 2: Graphs of volumes (V) and surface areas (S) of n-balls 

of unit radius for n = 25, 24,…,15. 
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Fig. 3: Graphs of volumes (V) and surface areas (S) of n-balls 

of unit diameter for n = 10, 9,…,8. 

Table 1: Volumes and surfaces of n-balls for 11 ≤ n ≤ 9. 
n fn gn Vn(R=1)B Sn(R=1)B Vn(D=1)B Sn(D=1)B 

-11 -945/32 -60480 -0.031 0.338 -62.909 1383.997 

-9 105/16 3360 0.021 -0.193 10.980 -197.634 

-7 -15/8 -240 -0.019 0.135 -2.464 34.494 

-5 3/4 24 0.024 -0.121 0.774 -7.7404 

-3 -1/2 -4 -0.051 0.152 -0.405 2.432 

-1 1 2 0.318 -0.318 0.637 -1.273 

0 1 1 1 0 1 0 

1 2/1 1 2 2 1 2 

2 1/1 1/4 3.142 6.283 0.785 3.142 

3 4/3 1/6 4.189 12.566 0.524 3.142 

4 ½ 1/32 4.935 19.739 0.308 2.467 

5 8/15 1/60 5.264 26.319 0.164 1.645 

6 1/6 1/384 5.168 31.006 0.081 0.969 

7 16/105 1/840 4.725 33.073 0.037 0.517 

8 1/24 1/6144 4.059 32.470 0.016 0.254 

9 32/945 1/15120 3.299 29.687 0.006 0.116 

                                                           
1 For complex numbers ⌊a + bi⌋ := ⌊a⌋ + ⌊b⌋i. 
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Furthermore, for n  ℤ 
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Proof: 

If n = 2k, then 
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since fn = 0 for negative, even n. 

If n = 2k  1 then, using (15) and (18) 
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since n is odd. 

 

Furthermore, for n  ℝ, k  ℤ 
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Also the following holds for n-balls surfaces (13) 
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for n  ℤ, where 
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Proof: 

If n = 2k then 
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for k = {0, 1} and for the remaining k’s, as f2k = 0 for 

k  ℕ. Also Re(i
n1

) = 0 and Im(i
n1

) = ±1, as n is even. 
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For k = 1, using (15) 
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wherein for the remaining k’s, we shall use both (15) and 

(18) (and f1 := 1). E.g. for k = {0, 2} 

       2

3 1 3 1

4
3 1 3 1 4 4Re

3
BB

S S f f i
        , 

and further, for k ≤ 1 or k ≥ 3 

   

  
 

 

   

 

   
   

   

   

1 3 2

22 1

2 5

2 4

1 1 1

2  

2 1 ! 1 2 5 !
2 1 3 2

2 1 ! 2 3 !

1 ! 2 5 !
2 1 3 2 1 2

2 1 ! 3 !

4 1 4 4Re

B k B

kk

k

k

k n n

k
S S

k k
k k

k k

k k
k k

k k

i i













  



  
   

 

 
    

 

   

, 

since n is odd and, thus n  1 is even. 
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If n = 2k, then π
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where 0 < ε ≤ 1, ε  ℝ. For n = 2k + ε 
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k k k k 
    

             , 

while for n = 2k  ε 

 
2 1 2 1 1 0 1

k k k k 
    

               . 

 

Also the following holds for n-balls volumes (12) 

 
   1Re

2

n

nB n B

n
V V i

 


 , (27) 

for n  ℤ, n ≠ 0.#?bez n ≠ 0 

Proof: 

If n = 2k, k  ℕ, then 

 

   

 

2 2

2 22 2

2 1

2 2

2
0 Re

2

k k k k

B k kk k B

k

k k

V V f R f R

f f i
k

 



 







 

  
. 
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If n = 2k  1, k  ℕ, then 

   
1 1

2 1 1 2 2 1 1 22 1 1 2

k k

B k k k kk k B
V V f f f f    

    
  . 

For k = 1, using (15) and f1 := 1 

 
     1 0

1 11 1

2 2
Re

1 1
B B

V V f f i
 




   . 

For the remaining k’s, we shall use both (15) and (18) 

 

   

 

 

   

 

   

1

2 1 1 22 1 2 1

12 1

1

2 3

1 1 1

2 1 ! 1 2 3 !

2 1 ! 2 2 !

2 2 2
1 Re

B k kk k B

kk

k

k n n

V V f f

k k

k k

i i
n n n





  



   







  

 

  


 

   

, 

since n is odd and, thus n  1 is even. 

 

Furthermore, for n  ℝ, k  ℤ 

 
2 2

1

1 2

2

n n n k

n k
 



      




 


. (28) 

Proof: 

If n = 2k, then π
k
π
k

 = 1. Otherwise, set n = 2k ± ε, 

where 0 < ε ≤ 1, ε  ℝ. For n = 2k + ε 

 
2 2 1 1k k k k 

    
              , 

while for n = 2k  ε 

 
2 2 1 1k k k k 

    
              . 

 

One can also express the volumes and, using (5), sur-

faces of n-balls in terms of their diameters D as 

   2n n

n nB
V D g D   

, (29) 

    2 12 2
n n

n n nB B

d
S D ng D V D

dD
      , (30) 

defining diameter recurrence relation 

 
2

1

2
n ng g

n


 (31) 

having inverse 

   22 2n ng n g   , (32) 

for n  ℤ, where g1 := 2 and g0 := 1. Diameter recurrence 

relation (31) is related to radius recurrence relation (11) 

by 

 2n

n nf g . (33) 

Proof: 

By equating (12) with (29), we have 

 
2 2

2
n nn n n

n nf R g R        ,  

which completes the proof. 

 

Furthermore (proof follows from (21) and (33)) 

  1

2 4Re n

n ng g i 

   . (34) 

Diameter recurrence relation gn (32) is listed in Ta-

ble 1 for n  ℤ, and shown in Fig. 4 along with, even 

algebraic form of gn ((19) with (33)) odd algebraic form 

of gn ((20) with (33)), and the π^⌊n/2⌋ 
factor for n  ℂ. 

Volumes and surfaces of n-balls calculated with relations 

(29) and (30) are shown in Fig. 3. 

−4 −3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

Re( )n  
Fig. 4: n-ball diameter recurrence relation gn for n  ℤ (blue); 

even (yellow) and odd (black) algebraic forms of gn, and the 

π^⌊n/2⌋ factor (green) for 4 ≤ n ≤ 4, n  ℂ. 

In the case of regular n-simplices, equation (7) can be 

written as a recurrence relation, with V0(A)S := 1 

    1 3

1

2
n nS S

n
V A AV A

n



. (35) 

Proof: 

By equating (7) with (35), we have 

 

 

 
 

 
 

 

12 1 2 3 2

1 2 3 2
1

1

3 2

2

1 1

!2 2

2

!

1 1

2 1 ! ! 2

n

nn S

n

n

n S

n n

n nS n

n n
A AV A

n n

n
V A A

n

n n
V A A A

n n









 




 
 



,  

which recovers (7) and completes the proof. 

The relation (35) removes the indefiniteness of facto-

rial for n < 0 and singularity for n = 1 present in (7). 

Solving (35) for Vn1 and assigning new n  ℤ as old 

n  1, yields 

  
   

3

1 2 1

2

n

n S

V A n
V A

A n

 



, (36) 

which shows that n-simplices are indefinite only for inte-

ger n < 1, as shown in Fig. 5. The volume of an empty or 



6 

 

void (1)-simplex is V1(A)S = 0, while its surface S1(A)S 

(8) is undefined, as for the void itself. 

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5 6 n
0

0.5

1

1.5

2

2.5

3

SnVn

1.2

 
Fig. 5: Graphs of volumes (V) and surface areas (S) of regular 

n-simplices of unit edge length for n = 1,…,7. 

SnVn

-1 0 1 2 3 4 5 6 n
0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5 4.5

 
Fig. 6: Graphs of volumes (V) and surface areas (S) of 

n-orthoplices of unit edge length for n = 1,…,7. 

In the case of n-orthoplices, equation (9) can be writ-

ten as a recurrence relation 

    1

2
n nO O

V A AV A
n


, (37) 

with V0(A)O := 1. 

Proof: 

By equating (9) with (37), we have 

 

 

   

 
 

1

1 21

1

2

2 2

!

2
!

1 2
2

1 ! !

n
n

n O

nn

n O

n
n n n

n O

A AV A
n n

n
V A A

n

n
V A A A

n n












 



,  

which recovers (9) and completes the proof. 

 

The relation (37) removes the indefiniteness of facto-

rial for n < 0 present in (9). Solving (37) for Vn1 and 

assigning new n  ℤ as old n  1, yields 

    1

1

2
n nO O

n
V A V A

A



 , (38) 

which removes singularity from (37) and is zero for inte-

ger n ≤ 1 showing that for negative, integer dimensions 

volumes of n-orthoplices are zero, while their surfaces 

(10) are undefined, as shown in Fig. 6.  

4. n-balls circumscribed about and inscribed in 

n-cubes 

The edge length ACC of n-cube circumscribed (CC) 

about n-ball corresponds to the diameter D of this n-ball. 

Thus, the volume of this cube is simply Vn(D)CC = D
n
 and 

the surface is Sn(D)CC = 2nD
n1

.  

However, the edge length ACI of n-cube inscribed (CI) 

inside n-ball of diameter D is ACI = D/√n, which is singu-

lar for n = 0 and complex for n < 0. Thus, the volume of 

n-cube inscribed in n-ball is 

   2n n n

n CICI
V D A D n  , (39) 

and the surface is 

 
   

 

3 21 1

1

2 2

2

nn n

n CICI

n CI

S D nA D n

V D D n n

 



  


. (40) 

The volumes (39) and surfaces (40) are real if n ≥ 0 

(by convention 0
0
 := 1), and complex if n < 0, n  ℝ. To 

examine reflection relations we set m = n in (39) and 

(40). This  yields volume 

   2m m m

m CI
V D i D m , (41) 

and surface 

 
     

 

1 3 21

1

2

2

m mm

m CI

m CI

S D i D m

iV D D m m

  



  

 
, (42) 

which are complex for all m  ℝ.  

Volume formulas (39) and (41) correspond to each 

other for n ≤ 0, n  ℝ and for n = 2k, k  ℤ. 

Proof: 

By equating (39) with (41), we have 

 
2 2n n m m mD n i D m  . 

Setting n = m, that is reflecting (39) around zero, while 

leaving (41) intact, yields 

 

 

 

2 2

1 2 2 21

mm m m m

m
m m m m m

D m i D m

m i m i i m

  

      
 

. 

On the other hand, setting m = n 

 

 

 

22

1 22 2

2

1

1 2 ,

nn n n n

n
n n n

n

D n i D n

n i n

i n k k

 


  

 

  
 

   

. 
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Thus, the volumes (39), (41) are real if n is negative and 

even and imaginary if n is negative and odd. 

Surface formulas (40) and (42) correspond to each 

other for n ≤ 0, n  ℝ, and for n = 2k  1, k  ℤ. 

Proof: 

By equating (40) with (42), we have 

 
     3 2 1 3 21 12 2

n m mn mD n i D m
      . 

Setting n = m yields 

 

 
   

     

3 2 3 21 1 1

3
1 2 3 2 3 21

3 1 1 1

2 2

1

m mm m m

m
m mm

m m m m

D m i D m

m i m

i i i i m

     


 

   

  

   
 

     

. 

On the other hand, setting m = n, that is reflecting (42) 

around zero, while leaving (40) intact, yields 

 

   
 

     

3 23 21 1 1

3
1 23 2 3 21

1 3 2

2 2

1

1 1 2 1,

nnn n n

n
n nn

n n n

D n i D n

n i n

i i i n k k

  


 

  

  

   
 

        

. 

Thus, the surfaces (40), (42) are real if n is negative and 

odd and imaginary if n is negative and even. 
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Fig. 7: Graphs of volumes (a, b, pink) and surfaces (c, d, blue) 

of unit radius n-balls, along with volumes and surface areas of 

n-cubes circumscribed about (yellow) and inscribed in (green, 

black) these n-balls. 

Table 2: Volumes and surfaces of n-cubes inscribed in n-

balls of unit radius and diameter for 8 ≤ n ≤ 3 (rational 

fraction approximation using Matlab rats function). 
n Vn(R=1)CI Sn(R=1)CI Vn(D=1)CI Sn(D=1)CI 

-8 16 -362.0387i 4096 -185363.8i 

-7 -7.0898i -16807/128 -907.4927i -33614 

-6 -27/8 49.6022i -216 6349.077i 

-5 1.7469i 625/32 55.9017i 1250 

-4 1 -8i 16 -256i 

-3 -0.6495i -27/8 -5.1961i -54 

-2 -1/2 i√2 -2 8i√2 

-1 i/2 1/2 i 2 

0 1 0 1 0 

1 2 2 1 2 

2 2 4√2 ½ 2√2 

3 8∙3-3/2 8 3-3/2 2 

 

Volumes and surfaces of n-cubes given by formulas 

(39)-(42) are shown in Fig. 7 and listed in Table 2. This 

peculiar mixture of integer, rational, and irrational coeffi-

cients requires further research. 

 

The ratio of volume or surface of n-ball to volume or 

surface of n-cube circumscribing this n-ball can be ex-

pressed using diameter recurrence relations (29), (30) as 

 
2nnB nB

n

nCC nCC

V S
g

V S
     , (43) 
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and similarly, the ratio of volume and surface of n-ball to 

volume (39) and surface (40) of n-cube inscribed in this 

n-ball can be expressed as 

 
2 2n nnB

n

nCI

V
g n

V
    , (44) 

 
 2 1 2n nnB nB

n

nCI nCI

S V
g n

S V n


    . (45) 

5. Summary 

Novel radius recurrence relation fn (11) enables to ex-

press known recurrence relation (4) for n-ball volume and 

known relation (5) for n-ball surface as a function of 

π^⌊n/2⌋ showing that the value of π as n-ball volume and 

surface irrational factor appears only for n < 0 and n ≥ 2 

(π^⌊n/2⌋ = 1 for 0 ≤ n < 2).  

Sequence (16), inverse to sequence (11), enables for 

examination of n-ball volumes and surfaces in the nega-

tive dimensions. Since f2 = 0, in negative, even dimen-

sions n-balls have zero (void-like) volumes and zero 

(point-like) surfaces and become divergent with decreas-

ing n. Curiously, the double factorial n‼ can be extended 

to negative, odd integers by inverting its recurrence rela-

tion and is not defined for negative even integers. 

For positive dimensions n = 5 (the largest unit radius 

n-ball volume) is the largest odd n where fn > fn1, while 

n = 7 (the largest unit radius n-ball surface) is the smallest 

odd n where fn < fn1. Diameter recurrence relation gn (32) 

is related with (16) by fn = 2
n
gn. 

Algebraic forms (14), (15), (18)-(20) of the relation 

(16) were presented for even and odd dimensions. Alge-

braic forms (19), (20) for n  ℂ, expressed in terms of the 

gamma function bound the relation (16) for n  ℤ. 

Constant (21) of products of pairs of this sequence 

values for integer n and n2 reveal symmetry that is the 

additive inverse of the symmetry {n, n2} or equivalence 

of an ordinary (n2)-dimensional space to the n-

dimensional superspace [3]. Furthermore sequence (16) 

reveal symmetry {n, 2n)} (24) and {n, n} (27), respec-

tively between n-balls surfaces and volumes in integer 

dimensions. 

Sequence (16) comprises rational numbers, while all 

π^⌊n/2⌋ (for n < 0 and n ≥ 2) are most likely transcenden-

tal numbers. 

It was shown that the known formula (7) for the vol-

ume of a regular n-simplex can be expressed as a recur-

rence relation (35) to remove indefiniteness of factorial 

and further expressed as (36) to remove singularity for 

n = 0. Thus, n-simplices are undefined in the negative, 

integer dimensions if n < 1. This is congruent with the 

fact that every simplicial n-manifold inherits a natural 

topology from Euclidean space ℝ
n
 [27] and by research-

ing Euclidean space ℝ
n
 as a simplicial n-manifold topo-

logical (metric-independent) and geometrical (metric-

dependent) content of the modeled quantities are disen-

tangled [27]. Therefore, lack of n-simplices in the nega-

tive, integer dimensions excludes the notion of negatively 

dimensional Euclidean space ℝ
n
 for n < 1. Volumes and 

surfaces of regular n-simplices are imaginary in negative, 

fractional dimensions for n < 1 (surfaces also for n < 0) 

and are divergent with decreasing n. 

It was shown that the known formula (9) for the vol-

ume of n-orthoplex can be expressed as a recurrence rela-

tion (37) to remove indefiniteness of factorial and further 

expressed as (38) to remove singularity for n = 0. Thus, 

the volumes of n-orthoplices are zero in the negative, 

integer dimensions and divergent in the negative, frac-

tional ones with decreasing n. Moreover, the surfaces of 

n-orthoplices are undefined for integer n < 1 (n-

orthoplex has facets being regular simplices of the previ-

ous dimension (10), and these are undefined for integer 

n ≤ 1), imaginary for fractional n < 0, and also divergent 

with decreasing n. Peculiarly, in 1 dimension the volume 

V1(A)O := A√2 not A, as in the case of 1-simplex and 1-

cube. 

Relations (4), (5), (8), (10), (12), (13), (17), (19)-(22), 

(24), (25), (27), (29), (30), (33)-(45) are continuous on 

their domains of definitions for n  ℝ. The starting points 

for fractional dimensions can be provided e.g. using 

spline interpolation between two (or three in the case of n-

balls) subsequent integer dimensions. 

In the negative dimensions n-simplices, n-orthoplices, 

and n-balls have different properties than their positively 

dimensional counterparts, with n-cube being an exception. 

A volume Vn(A)C = A
n
 and surface Sn(A)C = 2nA

n1
 = 

2dVn(A)C/dA of n-cube are defined for any n  ℝ and are 

real if A  ℝ. Interestingly, in ℝ
3
, the fractal dimension of 

the Sierpiński 3-simplex is 2, of the Sierpiński 3-

orthoplex is 2.585, and only the Sierpiński 3-cube retains 

its regular dimension [28]. 

Out of three regular, convex polytopes (and n-balls) 

present in all non-negative dimensions [19] only n-cubes, 

n-orthoplices, and n-balls are defined in the negative, 

integer dimensions with n-cubes being dual to the void. 

This should not be surprising. There are no 0-dimensional 

points in negative dimensions. 

6. Discussion 

Once upon a time, there was a (1)-dimensional void 

of volume zero and undefined surface. Then a 0-

dimensional point of unit volume and null surface some-

how appeared in this void. This first point is now called 

primordial Big Bang singularity. The existence of the first 

point implied a countably infinite number of other labeled 

points forming various relations among each other. And 

thus, the void expanded into real and imaginary dimen-

sionalities. 

Presented recurrence relations remove indefiniteness 

and singularities present in known formulas revealing the 

properties of the relevant geometric objects in negative 

and real dimensions. 

The results of this study could perhaps be applied in 

linguistic statistics, where the dimension in the distribu-

tion for frequency dictionaries is chosen to be negative 

[4], and in fog computing, where n-simplex is related to a 

full mesh pattern, n-orthoplex is linked to a quasi-full 

mesh structure and n-cube is referred to as a certain type 

of partial mesh layout [29]. 

Another possible application of the results of this 

study could be molecular physics and crystallography. 

There are countably infinitely many spherical harmonics, 

but nature uses only the first four as subshells of s, p, d, 



9 

 

and f electron shells that can hold 2, 6, 10, and 14 elec-

trons, respectively. Further subshells are not populated in 

the ground states of all the observed elements. The first 

element that would require a g subshell (18 electrons) 

would have an atomic number of 121, while the heaviest 

element synthesized is Oganesson, with an atomic number 

of 118 and a half-life of about 1/1000 of a second. Per-

haps this is linked with properties of the unit radius n-

balls in negative dimensions, as illustrated in Fig. 2. The 

“flattening” occurring between dimensions 14 and 2 is 

intriguing. Dimensions 2, 6, 10, and 14 are bounded 

from both sides, with 14, which would represent the f 

subshell, already at the onset of divergence. In nature, the 

f subshell occurs essentially only in lanthanides and acti-

nides. A simple and approximate formula for a spherical 

nuclear radius that generates very precise results in quan-

tum and nuclear techniques is R = r0A
1/3

, where A is the 

atomic number and r0 = 1.25 ± 0.2 fm. 
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