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The study examines n-balls, n-simplices, and n-orthoplices in real dimensions using
novel recurrence relations that removed indefiniteness present in known formulas. They
show that in the negative, integer dimensions the volumes of n-balls are zero if n is even,
positive if n = -4k — 1, and negative if n = -4k — 3, for natural k. The volumes and surfaces
of n-cubes inscribed in n-balls in negative dimensions are complex, wherein for negative,
integer dimensions they are associated with integral powers of the imaginary unit. The rela-
tions are continuous for n € R and show that the constant of x is absent for 0 <n < 2. For
n < -1 self-dual n-simplices are undefined in the negative, integer dimensions and their
volumes and surfaces are imaginary in the negative, fractional ones and divergent with de-
creasing n. In the negative, integer dimensions n-orthoplices reduce to the empty set, and
their real volumes and imaginary surfaces are divergent in negative, fractional ones with
decreasing n. Out of three regular, convex polytopes present in all natural dimensions, only
n-orthoplices, n-cubes (and n-balls) are defined in the negative, integer dimensions.
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1. Introduction

The notion of dimension n of a set has various defini-
tions [1,2]. Natural dimensions define a minimum number
of independent parameters (coordinates) needed to specify
a point within Euclidean space R", where n=-1 is the
dimension of the empty set, the void, having zero volume
and undefined surface. Negatively dimensional spaces
can be defined by analytic continuations from positive
dimensions [3]. A spectrum, topological generalization of
the notion of space allows for negative dimensions
[2,4,5,6] that refer to densities, rather than to sizes, as the
natural ones.

Fractional (or fractal) dimensions extend the notion of
dimension to real, including negative [7], numbers. Nega-
tive dimensions are considered in probabilistic fractal
measures [8]. Fractal dimension and lacunarity [9,10]
allow for an investigation of the fractal nature of prime
sequences [11]. Fractal dimensions are verified to be
consistent with the experimental observations and allow
for the analysis of the transport properties, such as perme-
ability, thermal dispersion and conductivities (both ther-
mal and electrical) in multiphase fractal media [12]. The
probability models for pore distribution and for permea-
bility of porous media can also be expressed as a function
of fractal dimension [13]. Interestingly the dimension of
the boundary of the Mandelbrot set equals 2 [14], and the
generalized Mandelbrot set in higher-dimensional hyper-
complex number spaces, when the power « of the iterated
complex variable z tends to infinity, is convergent to the
unit (a—1)-sphere [15].

Complex dimensions can also be considered [2]. Fur-
thermore, geometric concepts (such as lengths, volumes,
surfaces) can be related to negative, fractional, and com-
plex numbers. Complex geodesic paths emerge in the
presence of black hole singularities [16] and when study-
ing entropic dynamics on curved statistical manifolds
[17]. Fractional derivatives of complex functions could be
able to describe different physical phenomena [18].

In R? there is a countably infinite number of regular,
convex polygons; in R® there are five regular, convex
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Platonic solids; in R* there are six regular, convex poly-
topes. For n > 4, there are only three: self-dual n-simplex,
and n-cube dual to n-orthoplex [19]. Furthermore, R" is
also equipped with a perfectly regular, convex, n-ball.
Properties of these three regular, convex polytopes in
natural dimensions are well known [20,21,22]. Fractal
dimensions of hyperfractals based on these polytopes in
natural dimensions were disclosed in [23].

The study examines n-balls, regular n-simplices, and
n-orthoplices in real dimensions using novel recurrence
relations that remove indefiniteness present in known
formulas.

The paper is structured as follows. Section 2 presents
known formulas for volumes and surfaces of n-balls,
regular n-simplices and n-orthoplices in natural dimen-
sions. Section 3 defines novel recurrence relations for
these geometric objects in real dimensions and presents
their algebraic forms in integer dimensions. Section 4
refers to n-balls circumscribed about and inscribed in n-
cubes in real dimensions. Finally, Section 5 summarizes
the finding of this paper, whereas their possible applica-
tions are discussed in Section 6.

2. Known formulas
The volume of an n-ball (B) is known to be

2
" .

V(R = r R (1’

where I is the Euler’s gamma function and R is the n-ball
radius. This becomes
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if nis odd (n=2k -1, k € N). Expressed in terms of n-
ball diameter (1) is the rescaling factor between the n-
dimensional Lebesgue measure and Hausdorff measure
forn e R* [24,2].

Another known [21] recurrence relation expresses the
volume of an n-ball in terms of the volume of an (n — 2)-
ball of the same radius

27R?
Vi (R)B = n

where Vo(R)s =1 and Vi(R)g = 2R. It is also known [21]
that the (n — 1)-dimensional surface of an n-ball can be
expressed as

Vn—Z (R)B’ *)

n
S,(R), ==V, (R),. ®
Furthermore, it is known [25] that the sequence
f = oz f, (6)
n

satisfies the same recursion formula as (4) for unit radius.
Volume of a regular n-simplex (S) is known [20,26] to

be
v, (A), = “'” +21 A" @
nt

where A is the edge length. A regular n-simplex has n + 1
(n — 1)-facets [21] so its surface is

S, (A), =(n+1)V,, (A),. ®)

Volume of n-orthoplex (O) is known [22] to be

Vn(A)O:FAn' (9)

As n-orthoplex has 2" facets [21] being regular (n — 1)-
simplices, its surface is

S, (A), =2"V,, (A),. (10)

Formulas (1)-(3) and (7)-(10) are undefined in nega-
tive dimensions since factorial is defined only for non-
negative integers, while gamma function is undefined for
non-positive integers. Relations (4)-(6) are undefined if
n=0.

3. Novel recurrence relations
A radius recurrence relation

.2
f = - f (11)
for n € Ny, where fy := 1 and f; := 2, allows to express the
volumes and, using (5), surfaces of n-balls as

V,(R), = f,z"*R", (12)

S, (R), = nf z"?R"* = ;—Rvn (R),. @9

where “|x|“ denotes the floor function giving the greatest
integer less than or equal to its argument x.

Proof:

If n = 2k for k € Ny, then by equating (2) with (12)
TR K 2k 1 1
T TR < 1, _E_—(n/Z)!' (14)

Then, with (11), e.g. fork =3

2 2 2

f6:€f4, f4zzf2, fZZEfO

(222, 2 s

o (2k)1 2kt

For even n > 0, n!! = 2%!, which completes the proof.
If n=2k-1, k € N, then by equating (3) with (12),
we have
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[ 2222, 2 __ 2
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For odd n>1, n!t = (2k — 1)1/(2*(k — 1)!), which com-
pletes the proof.

The sequence (11) allows for presenting n-balls vol-
ume and surface recurrence relations (12), (13) as a prod-
uct of the rational factor f, or nf,, the irrational factor
7|nf2], and the metric (radius) factor R" or R"™. The
relation (11) can be extended into negative dimensions as

f =nL2f , (16)

n 2 n+2
solving (11) for f,_, and assigning new n € Z as old n-2.
Thus, it is sufficient to define f; =f,:= 1 (for the empty
set and point dimension) to initiate (11) and (16).
The same assignment of new n € Z as old n-2 can be
made in (4) solved for V, »(R)g, yielding

n+2
Va(R)y =5 —=3Vaa (R). an)



which enables to avoid the indefiniteness of factorial and
gamma function in negative dimensions present in formu-
las (1)-(3) and removes singularity present in relation (4).
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Fig. 1: n-ball radius recurrence relation f, for n € Z (blue); even
(yellow) and odd (black) algebraic forms of f,, and the z*|n/2|
factor (green); for—7<n<7,n e C.

If n<-3and odd

1 27 (-n-2)!
" (—n—3j| '
> !
Proof:

Setn=-2k — 1, k € N. Then, with (16), e.g. fork =3

f _n+l (18)
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Also

(o == | e

since n is odd.

The factorial can be expressed by the gamma function.
Thus, for n = 2k, k € N, (14) becomes

1 1

f, = = : 9
2 (n2)! T(n/2+1) w)
while forn=2k -1, k € N, (15) becomes
n I
2 n.\/; B «/; 20)

fo = r(n+1)2"(n/2)! [(n/2+1)’

3

which forms are, similarly as the gamma function, defined
for all complex numbers except the non-positive, even
integers.

Radius recurrence relation f, (16) is listed in Table 1
for n € Z, and shown in Fig. 1 along with even algebraic
form of f, (19), odd algebraic form of f,,, and the z"|n/2]
factor for n e C*, and. As shown, (19) and (20) bound the
relation (16) for Re(n). Volumes and surfaces of n-balls
calculated with (12) and (13) are shown in Fig. 2.

2

/N
6 30

1118 4
4 ANND

W
\l

[
|
|
|
|
|
I
|
[
|
|
|
|
7

'-125_ -20 -15 -10 5 0 5 10 n’
Fig. 2: Graphs of volumes (V) and surface areas (S) of n-balls
of unit radius for n = -25, -24,...,15.
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Fig. 3: Graphs of volumes (V) and surface areas (S) of n-balls
of unit diameter for n =-10, -9,...,8.

Table 1: Volumes and surfaces of n-balls for -11 <n <?9.

n fn On Vn(Rzl)B Sn(Rzl)B Vn(Dzl)B Sn(Dzl)B
-11| -945/32 | -60480 | -0.031 0.338 -62.909 | 1383.997
-9 | 105/16 | 3360 0.021 -0.193 10.980 | -197.634
-7 | -15/8 -240 -0.019 0.135 -2.464 34.494
-5 134 24 0.024 -0.121 0.774 -7.7404
-3 [ -1/2 -4 -0.051 0.152 -0.405 2432
-1 )1 2 0.318 -0.318 0.637 -1.273
0 1 1 1 0 1 0
1 |21 1 2 2 1 2
2 1/1 1/4 3.142 6.283 0.785 3.142
3 |41 1/6 4.189 12.566 0.524 3.142
4 | % 1/32 4.935 19.739 0.308 2.467
5 |8/15 1/60 5.264 26.319 0.164 1.645
6 |1/6 1/384 5.168 31.006 0.081 0.969
7 | 16/105 | 1/840 4.725 33.073 0.037 0.517
8 | 1/24 1/6144 | 4.059 32.470 0.016 0.254
9 |32/945 | 1/15120 | 3.299 29.687 0.006 0.116

! For complex numbers |a + bi| := |a] + |bl]i.



Furthermore, forn € Z
ff = Re(i"”) =C0S [Z(n +1)j, @1)
2

where

in+1 — eizr(n+l)/2 —

- cos(%(n +1)]+i5in(%(n+1)j' 22)

Proof:
If n = 2k, then

fof =1, f,,=0=Re(i"™),

since f, = 0 for negative, even n.
If n = 2k — 1 then, using (15) and (18)

fofne=faafan=
~ 22k‘1(k—1)!(_ . (2k-1)r
T (2k-)! 22 (k-1)1

_ (_1)k _ (_1)('”1)/2 LR Re(iml)
since n is odd.

Furthermore, forn e R, k € Z

-1 _
ﬂ-Ln/ZJﬂ-L(_n_Z)/ZJ — {ﬂ. ) n= 2k (23)

7?2 nz2k

Proof:
If n =2k, then 7z %! = 7%, Otherwise, set n = 2k + ¢,
where0<e<l,eeR.Forn=2k+¢

7Z_Lk+g/2J7z_L—k—g/2—1J — k2 = ”727
while forn=2k —¢
ﬂ_Lk—g/Zjﬂ_L—kJra/Z—lj B

Also the following holds for n-balls surfaces (13)
in-1
Su6Sizme =N(2-N) ff, , =4Re(i"*), @9
forn e Z, where

infl — eiﬂ(n—l)/Z _

- COS(%(n —1)j+ [ sin[%(n —1)) =™ @)

Proof:
If n = 2k then

S(2k)BS
= 2kf, T R¥* (2= 2k) f, RV =,
=4k (1-K) f, f, 4z =0=4Re(i"")

(2-2k)B —

4

for k=40, 1} and for the remaining k’s, as f =0 for
k € N. Also Re(i"™) = 0 and Im(i"™) = £1, as n is even.
If n =2k — 1 then

S S

(2k-1)BO(3-2k)B
— (2K =1)(3—2K) f_ Fy pr /2 AlE22)
= (2k—1)(3=2K) Fpy 4,y = |
=(2k-1)(3-2k) fp , f5
For k =1, using (15)
SueSue = fi' =4=4Re(i’).
wherein for the remaining k’s, we shall use both (15) and

(18) (and f_4 := 1). E.g. for k = {0, 2}

4 )
@eSye =3(-1) fif = —3jl=-4= 4Re(i’),

and further, fork<-1ork>3

S(Zk—l)BS(S—Zk)B =

2% (k—=1)!(-2) " (2k -5)!
(2k-1)r 2% (k-3)1

(k=1)1(2k=5)!

(2k-1)(k-3)!

=4(-1)"" =4i"" =4Re(i"?)

since n is odd and, thus n — 1 is even.

= (2k -1)(3-2k)

=(2k-1)(3-2k)(-1) " 2*

Furthermore, forn e R, k e Z

n n =2k
el lenyz) _ {”

. 26
1 n=2k (26)

Proof:
If n=2k, then 7z %=z Otherwise, set n=2k+e¢,
where0<e<l,eeR.Forn=2k+¢

7[Lk+g/2J7z_Ll—k—€/2J _ 7Z'k —k 0 17

while forn=2k —¢

7Z_Lk—g/2Jﬂ_L1—k+5/2J _ ﬂ_k—l —k+1

Also the following holds for n-balls volumes (12)

%”vnan)B = Re(i"Y),

( (27)

forne Z,n#0.#%bezn+#0
Proof:
If n =2k, k € N, then
k o2k —k -2k
V(Zk)BV(—Zk)B = fy ' Rz R™ =

=, f, =0=%Re(i2k—l)



Ifn=2k-1,k e N, then

V(2k—1)BV(1—2k)B = fpa? ™ = f fipr™

Fork =1, using (15) and f ; := 1

L2 2
\@Mm=nuw=E=ERWﬂ

For the remaining k’s, we shall use both (15) and (18)
V \/

(2k-1)BY (~2k+1)B —

22k71(k _1)! (_1)k‘1(2k —3)! 1

,1 _
fpafioamr =

(2k-1)1  2%3(k-2)!

12 2. 2 o
— _1kl_=_ n—l=_R n-1
( ) nrz n7zI nrz e(l )

since n is odd and, thus n — 1 is even.

Furthermore, forn e R, k e Z

1 n=2k
Vel gl 2] :{ L (28)

7t n#2k

Proof:
If n=2k, then 77 *=1. Otherwise, set n=2k+e¢,
where0<e<l,eeR.Forn=2k+¢

lkrer2) lkeal2) ke zt

while forn=2k —¢

ﬂ_tk—g/ZJﬂ_L—khﬂ,‘/ZJ — 7Z'k 1

1k -1
T = .

VA

One can also express the volumes and, using (5), sur-
faces of n-balls in terms of their diameters D as

V, (D), = g,7""*D", (29)
S,(D) £2ngn7rL”/2JD”’1 :Zivn(D) , (30)
B dD B

defining diameter recurrence relation

g*ig (31)
n 2n n-2
having inverse

gn :2(n+2)gn+2’ (32)

forn € Z, where g_; := 2 and go := 1. Diameter recurrence
relation (31) is related to radius recurrence relation (11)

by
f =2"g,. 33

Proof:
By equating (12) with (29), we have

f 7V2R" =g 7"H2"R",

which completes the proof.

Furthermore (proof follows from (21) and (33))
9.9.,, =4Re(i"). (34)

Diameter recurrence relation g, (32) is listed in Ta-
ble 1 for n € Z, and shown in Fig. 4 along with, even
algebraic form of g, ((19) with (33)) odd algebraic form
of g, ((20) with (33)), and the #*|n/2| factor for n e C.
Volumes and surfaces of n-balls calculated with relations
(29) and (30) are shown in Fig. 3.

i I i I i i
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Fig. 4: n-ball diameter recurrence relation g, for n € Z (blue);

even (yellow) and odd (black) algebraic forms of g, and the
7"|n/2] factor (green) for -4 <n<4,n e C.

In the case of regular n-simplices, equation (7) can be
written as a recurrence relation, with Vy(A)s =1

n+1
S 2n3 :

v (A)s = Avnfl (A)

n

(35)

Proof:
By equating (7) with (35), we have

Jn+1 \/n +1

iz = AV (R)s g
o1-)/2 372 N
anl (A)S = T A !
3/2
(n+1) A" Jn+1 A"

V = =
(A); 2% (n+1)! niy/2"

which recovers (7) and completes the proof.

The relation (35) removes the indefiniteness of facto-
rial for n <0 and singularity for n=-1 present in (7).
Solving (35) for V,_; and assigning new n e Z as old
n—1,yields

V.. (A) [2(n+1)
T

which shows that n-simplices are indefinite only for inte-
ger n < -1, as shown in Fig. 5. The volume of an empty or




void (-1)-simplex is V_;(A)s = 0, while its surface S_;(A)s
(8) is undefined, as for the void itself.
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Fig. 5: Graphs of volumes (V) and surface areas (S) of regular
n-simplices of unit edge length forn =—1,...,7.
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Fig. 6: Graphs of volumes (V) and surface areas (S) of
n-orthoplices of unit edge length forn=-1,...,7.

In the case of n-orthoplices, equation (9) can be writ-
ten as a recurrence relation

V,(A), =AV,,(A), X5, @7

with Vo(A)o =1,
Proof:
By equating (9) with (37), we have

V2 V2

A= AV (A),

V,i(A), = T AT ,
v, (A), =" PRI
"% (n+1) n!

which recovers (9) and completes the proof.

The relation (37) removes the indefiniteness of facto-
rial for n <0 present in (9). Solving (37) for V,; and
assigning new n € Z as old n — 1, yields

n+1
Vn (A)o :Vn+1(A)o A\/E’ (38)
which removes singularity from (37) and is zero for inte-
ger n < -1 showing that for negative, integer dimensions
volumes of n-orthoplices are zero, while their surfaces
(10) are undefined, as shown in Fig. 6.

4. n-balls circumscribed about and inscribed in
n-cubes

The edge length Acc of n-cube circumscribed (CC)
about n-ball corresponds to the diameter D of this n-ball.
Thus, the volume of this cube is simply V,(D)cc = D" and
the surface is Sy(D)cc = 2nD™ 2.

However, the edge length A¢, of n-cube inscribed (CI)
inside n-ball of diameter D is Ac, = D/</n, which is singu-
lar for n =0 and complex for n < 0. Thus, the volume of
n-cube inscribed in n-ball is

V, (D), =A, =D"n™"2, (39)
and the surface is
S,(D),, =2nA" =2D" "2 =
=2v,(D), D'nvn

The volumes (39) and surfaces (40) are real if n>0
(by convention 0°:= 1), and complex if n<0, n € R. To
examine reflection relations we set m=-n in (39) and
(40). This yields volume
V, (D), =i"D""m™?, (41)

m

(40)

and surface
Sm (D)CI — _2im+1D—(m+l)m(3+m)/2 —
=-2iV, (D), D'mym

which are complex for all m € R.

Volume formulas (39) and (41) correspond to each
other forn<0,n e Rand forn=2k, k € Z.
Proof:

By equating (39) with (41), we have

Dnn—n/z — imD—mmm/Z .

Setting n = —m, that is reflecting (39) around zero, while
leaving (41) intact, yields

D—m (_m) — imD—mmm/Z

(42)

m/2

m .
[(—1)]/2} m" =i"m"? < i"=i"VmeR
On the other hand, setting m = —n
Dnn—n/z —ji"p" (_n)*n/2
n—n/2 —j™" [(_1)1/2 :|‘” n,n/Z .

i"=leon=2k,keZ



Thus, the volumes (39), (41) are real if n is negative and
even and imaginary if n is negative and odd.

Surface formulas (40) and (42) correspond to each
other forn<0,n e R,and forn=2k -1,k e Z.
Proof:

By equating (40) with (42), we have

2D" G2 = _gjmip (M ImE ™2,
Setting n = —m yields

2D (—m)

[(_1)1/2 T‘*m m(@ M2 _ _mi o (3em)/2

i3+m — _i1+m P il+m — i1+m Vm c R

M2 _ _oimedpy-m-1o(3+m)/2

On the other hand, setting m = —n, that is reflecting (42)
around zero, while leaving (40) intact, yields

2 Dn—ln(?:—n)/z — _2i1—n Dn—l (_n)(S—n)/Z
n(3_”)/2 _ _il—n |:(_1)J/2 J3_n n(s_”)/z

1=—i"*" <o i =-1eon=2k-LkeZ

Thus, the surfaces (40), (42) are real if n is negative and
odd and imaginary if n is negative and even.
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Fig. 7: Graphs of volumes (a, b, pink) and surfaces (c, d, blue)
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of unit radius n-balls, along with volumes and surface areas of
n-cubes circumscribed about (yellow) and inscribed in (green,
black) these n-balls.

Table 2: Volumes and surfaces of n-cubes inscribed in n-
balls of unit radius and diameter for -8 <n <3 (rational

fraction approximation using Matlab rats function).

n Vn(Rzl)m Sn(R:].)u Vn(Dzl)u Sn(Dzl)u
-8 16 -362.0387i | 4096 -185363.8i
-7 -7.0898i -16807/128 | -907.4927i | -33614
-6 -27/8 49.6022i -216 6349.077i
-5 1.7469i 625/32 55.9017i 1250
-4 1 -8i 16 -256i
-3 -0.6495i -27/8 -5.1961i -54
-2 12 iV2 -2 8iV2
-1 i2 1/2 i 2
0 1 0 1 0
1 2 2 1 2
2 2 4\2 A 2\2
3 8'3_3/2 8 3-3/2 2

Volumes and surfaces of n-cubes given by formulas
(39)-(42) are shown in Fig. 7 and listed in Table 2. This
peculiar mixture of integer, rational, and irrational coeffi-
cients requires further research.

The ratio of volume or surface of n-ball to volume or
surface of n-cube circumscribing this n-ball can be ex-
pressed using diameter recurrence relations (29), (30) as

Vie _ Sw _ o 2]
VoS T
nCC

(43)
SnCC



and similarly, the ratio of volume and surface of n-ball to
volume (39) and surface (40) of n-cube inscribed in this
n-ball can be expressed as

Vis _ g, 7" "2, (44)
VnCI
S _g ez Ve g
SnCI VnCI \/ﬁ
5. Summary

Novel radius recurrence relation f, (11) enables to ex-
press known recurrence relation (4) for n-ball volume and
known relation (5) for n-ball surface as a function of
7\[n/2] showing that the value of = as n-ball volume and
surface irrational factor appears only for n<0 and n>2
(@m"|nf2] =1for0<n<2).

Sequence (16), inverse to sequence (11), enables for
examination of n-ball volumes and surfaces in the nega-
tive dimensions. Since f, =0, in negative, even dimen-
sions n-balls have zero (void-like) volumes and zero
(point-like) surfaces and become divergent with decreas-
ing n. Curiously, the double factorial n!! can be extended
to negative, odd integers by inverting its recurrence rela-
tion and is not defined for negative even integers.

For positive dimensions n =5 (the largest unit radius
n-ball volume) is the largest odd n where f, > f,_;, while
n =7 (the largest unit radius n-ball surface) is the smallest
odd n where f, < f,_;. Diameter recurrence relation g, (32)
is related with (16) by f, = 2"g,..

Algebraic forms (14), (15), (18)-(20) of the relation
(16) were presented for even and odd dimensions. Alge-
braic forms (19), (20) for n € C, expressed in terms of the
gamma function bound the relation (16) for n € Z.

Constant (21) of products of pairs of this sequence
values for integer n and —n—2 reveal symmetry that is the
additive inverse of the symmetry {n, n-2} or equivalence
of an ordinary (n-2)-dimensional space to the n-
dimensional superspace [3]. Furthermore sequence (16)
reveal symmetry {n, 2-n)} (24) and {n, —n} (27), respec-
tively between n-balls surfaces and volumes in integer
dimensions.

Sequence (16) comprises rational numbers, while all
7|n/2] (for n <0 and n > 2) are most likely transcenden-
tal numbers.

It was shown that the known formula (7) for the vol-
ume of a regular n-simplex can be expressed as a recur-
rence relation (35) to remove indefiniteness of factorial
and further expressed as (36) to remove singularity for
n=0. Thus, n-simplices are undefined in the negative,
integer dimensions if n <-1. This is congruent with the
fact that every simplicial n-manifold inherits a natural
topology from Euclidean space R" [27] and by research-
ing Euclidean space R" as a simplicial n-manifold topo-
logical (metric-independent) and geometrical (metric-
dependent) content of the modeled quantities are disen-
tangled [27]. Therefore, lack of n-simplices in the nega-
tive, integer dimensions excludes the notion of negatively
dimensional Euclidean space R" for n < —1. Volumes and
surfaces of regular n-simplices are imaginary in negative,

8

fractional dimensions for n < -1 (surfaces also for n < 0)
and are divergent with decreasing n.

It was shown that the known formula (9) for the vol-
ume of n-orthoplex can be expressed as a recurrence rela-
tion (37) to remove indefiniteness of factorial and further
expressed as (38) to remove singularity for n = 0. Thus,
the volumes of n-orthoplices are zero in the negative,
integer dimensions and divergent in the negative, frac-
tional ones with decreasing n. Moreover, the surfaces of
n-orthoplices are undefined for integer n<-1 (n-
orthoplex has facets being regular simplices of the previ-
ous dimension (10), and these are undefined for integer
n <-1), imaginary for fractional n <0, and also divergent
with decreasing n. Peculiarly, in 1 dimension the volume
Vi(A)o := AV2 not A, as in the case of 1-simplex and 1-
cube.

Relations (4), (5), (8), (10), (12), (13), (17), (19)-(22),
(24), (25), (27), (29), (30), (33)-(45) are continuous on
their domains of definitions for n € R. The starting points
for fractional dimensions can be provided e.g. using
spline interpolation between two (or three in the case of n-
balls) subsequent integer dimensions.

In the negative dimensions n-simplices, n-orthoplices,
and n-balls have different properties than their positively
dimensional counterparts, with n-cube being an exception.
A volume V,(A)c=A" and surface S,(A)c =2nA""=
2dV,(A)c/dA of n-cube are defined for any n € R and are
real if A € R. Interestingly, in R?, the fractal dimension of
the Sierpinski 3-simplex is 2, of the Sierpinski 3-
orthoplex is 2.585, and only the Sierpinski 3-cube retains
its regular dimension [28].

Out of three regular, convex polytopes (and n-balls)
present in all non-negative dimensions [19] only n-cubes,
n-orthoplices, and n-balls are defined in the negative,
integer dimensions with n-cubes being dual to the void.
This should not be surprising. There are no 0-dimensional
points in negative dimensions.

6. Discussion

Once upon a time, there was a (—1)-dimensional void
of volume zero and undefined surface. Then a O0-
dimensional point of unit volume and null surface some-
how appeared in this void. This first point is now called
primordial Big Bang singularity. The existence of the first
point implied a countably infinite number of other labeled
points forming various relations among each other. And
thus, the void expanded into real and imaginary dimen-
sionalities.

Presented recurrence relations remove indefiniteness
and singularities present in known formulas revealing the
properties of the relevant geometric objects in negative
and real dimensions.

The results of this study could perhaps be applied in
linguistic statistics, where the dimension in the distribu-
tion for frequency dictionaries is chosen to be negative
[4], and in fog computing, where n-simplex is related to a
full mesh pattern, n-orthoplex is linked to a quasi-full
mesh structure and n-cube is referred to as a certain type
of partial mesh layout [29].

Another possible application of the results of this
study could be molecular physics and crystallography.
There are countably infinitely many spherical harmonics,
but nature uses only the first four as subshells of s, p, d,



and f electron shells that can hold 2, 6, 10, and 14 elec-
trons, respectively. Further subshells are not populated in
the ground states of all the observed elements. The first
element that would require a g subshell (18 electrons)
would have an atomic number of 121, while the heaviest
element synthesized is Oganesson, with an atomic number
of 118 and a half-life of about 1/1000 of a second. Per-
haps this is linked with properties of the unit radius n-
balls in negative dimensions, as illustrated in Fig. 2. The
“flattening” occurring between dimensions —14 and -2 is
intriguing. Dimensions —2, —6, —10, and —14 are bounded
from both sides, with —14, which would represent the f
subshell, already at the onset of divergence. In nature, the
f subshell occurs essentially only in lanthanides and acti-
nides. A simple and approximate formula for a spherical
nuclear radius that generates very precise results in quan-
tum and nuclear techniques is R = r,A¥, where A is the
atomic number and ro=1.25 £ 0.2 fm.
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