Deep neural networks (DNNs), founded on the brain's neuronal organization, can extract higher-level features from raw input. However, complex intellect via autonomous decision-making is way beyond current AI design. Here we propose an autonomous AI inspired by the thermodynamic cycle of sensory perception, operating between two information density reservoirs. Stimulus unbalances the high entropy resting state and triggers a thermodynamic cycle. By recovering the initial conditions, self-regulation generates a response while accumulating an orthogonal, holographic potential. The resulting high-density manifold is a stable memory and experience field, which increases future freedom of action via intelligent decision-making.
Keywords:
Subject: Computer Science and Mathematics - Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.