Preprint
Article

Modeling of Energy and Exergy Efficiencies in High Vacuum Flat Plate Photovoltaic Thermal (PV-T) Collectors

Altmetrics

Downloads

210

Views

192

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 May 2022

Posted:

26 May 2022

You are already at the latest version

Alerts
Abstract
This work deals with the performance evaluation of novel flat photovoltaic-thermal (PV-T) modules under vacuum. Through a 1D (dimensional) steady-state-energy-balance numerical model developed in MATLAB, two different layouts are studied: the first consisting of a photovoltaic (PV) cell installed just below the glass encapsulating the flat panel, and the second where the PV cell is placed on the selective solar absorber (SSA). In both cases the thermal and electrical efficiencies have been evaluated at different SSA operating temperatures, in the range of 323 K to 423 K. The analysis has been conducted at different energy bandgap (Ebg) of the PV cell and assuming a variable transmittance or emittance of the PV cell, depending on the design. The two systems efficiency comparison has been carried out at the same operating temperature. Overall, this work highlights the importance of high vacuum insulation, which guarantees the reduction of convective thermal losses, and shows that the maximum energy is produced for PV cells with Ebg ≈1.5-1.7 eV, depending on layout and operating temperature, by including the thermal output in the PV-T optimization. The energy and exergy efficiencies obtainable using the proposed PV-T systems are considerably improved compared to the results previously reported in the literature.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated