Preprint
Article

Anisotropy of the E Effect in Ni-based Magnetoelectric Cantilevers: A Finite Element Method Analysis

Altmetrics

Downloads

187

Views

181

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 May 2022

Posted:

27 May 2022

You are already at the latest version

Alerts
Abstract
Magnetoelectric sensors based on microelectromechanical cantilevers consisting of TiN / AlN / Ni are investigated using finite element simulations in regard of the anisotropy of the E effect and its impact on the sensor sensitivity. The E effect is derived from the anisotropic magnetostriction and magnetization of single crystalline Nickel. The magnetic hardening of Nickel in saturation is demonstrated for the (110) as well as the (111) orientation. It is shown further, that magnetostrictive bending of the cantilever has a negligible impact on the eigenfrequency and thus sensitivity. The intrinsic E effect of Nickel decreases in magnitude depending on the crystal orientation when integrated into the magnetoelectric sensor design. The transitions of the individual magnetic domain states are found to be the dominant influencing factor on the sensitivity for all crystal orientations. The peak sensitivity was determined to 41.3 T-1 for (110) in-plane orientated Nickel at a magnetic bias flux of 1.78 mT. It is found, that the transition from domain wall shift to domain rotation along the hard axes yields much higher sensitivity than the transition from domain rotation to magnetization reversal. The results achieved in this work show that Nickel as hard magnetic material is able to reach almost identical sensitivities as soft magnetic materials, such as FeCoSiB.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated