To investigate the dynamics of land surface temperature (LST) in Afghanistan in the period 2000-2021 and to assess the impact of such factors as soil moisture, precipitation, and vegetation coverage on it, remotely sensed soil moisture data from Land Data Assimilation System (FLDAS), precipitation data from Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), and NDVI and LST from Moderate Resolution Imaging Spectroradiometer (MODIS) were downloaded and correlations between them were analyzed using the regression method. The result shows that the LST in Afghanistan has a slightly decreasing, but insignificant trend during the study period (R=0.2, p-value=0.25), while vegetation coverage, precipitation, and soil moisture had an increasing trend. It was revealed that soil moisture has the highest impact on LST (R=0.7, p-value=0.0007), and the soil moisture, precipitation, and vegetation coverage explain almost 80% of spring (R2=0.73) and summer (R2=0.76) LST variability in Afghanistan. The LST variability analysis done separately for Afghanistan’s rivers subbasins shows that the LST of the Amu Darya subbasin had an upward trend in the study period, while for the Kabul subbasin the trend was downward.
Keywords:
Subject: Environmental and Earth Sciences - Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.