Preprint
Article

LumbarNet: A Deep Learning Network for the Automated Detection of Lumbar Spondylolisthesis From X-Ray Images

Altmetrics

Downloads

480

Views

358

Comments

0

Submitted:

02 June 2022

Posted:

03 June 2022

You are already at the latest version

Alerts
Abstract
A common spinal condition, spondylolisthesis is the presence of a relative back or forth displacement between the upper and lower vertebra due to one vertebra being oriented away from the smooth curvature of a normal spine. Aging-related illnesses such as degenerative spondylolisthesis are especially burdensome on social welfare and health-care systems in an aging society, especially radiologists and clinical physicians. Therefore, we proposed a computer aided diagnosis algorithm, named LumbarNet, for vertebral slippage detection on clinical X-ray images. Collaborating with i) a P-grade, ii) a piecewise slope detection scheme, and iii) a dynamic shift detection routine, LumbarNet was thus specialized for analyzing complex structural patterns in lumbar spine X-ray images and outcompeted other U-Net based methods. Extensive experiments on lumbar spine X-ray images in standard clinical practices showed that LumbarNet achieved a mean intersection over union value of 0.88 in vertebral region detection and an accuracy of 88.83% in vertebral slippage detection.
Keywords: 
Subject: Medicine and Pharmacology  -   Orthopedics and Sports Medicine
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated