Preprint
Article

UAV Remote Sensing for High-Throughput Phenotyping and for Yield Prediction of Miscanthus by Machine Learning Techniques

Altmetrics

Downloads

254

Views

377

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

07 June 2022

Posted:

08 June 2022

You are already at the latest version

Alerts
Abstract
Miscanthus holds a great potential in the frame of the bioeconomy and yield prediction can help improving Miscanthus logistic supply chain. Breeding programs in several countries are attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration procedure was performed using simulated data from the PROSAIL model to link vegetation indices (VIs) derived from two different multispectral sensors. Random forest algorithm estimated with good accuracy yield traits (light interception, plant height, green leaf biomass and standing biomass) using VIs time series and predicted yield using peak descriptor derived from VIs time series with 2.3 Mg DM ha-1 of RMSE. The study demonstrates the potential of UAVs multispectral in HTP applications and in yield prediction for providing important information needed to increase sustainable biomass production.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated