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Abstract: Cell migration is essential for physiological, pathological and biomedical processes such
as, in embryogenesis, wound healing, immune response, cancer metastasis, tumour invasion and
inflammation. In light of this, quantifying mechanical properties during the process of cell migration
is of great interest in experimental sciences, yet few theoretical approaches in this direction have
been studied. In this work, we propose a theoretical and computational approach based on the
optimal control of geometric partial differential equations to estimate cell membrane forces associated
with cell polarisation during migration. Specifically, cell membrane forces are inferred or estimated
by fitting a m athematical model to a sequence o f i mages, allowing us to capture d ynamics of
the cell migration. Our approach offers a robust and potentially accurate framework to compute
geometric mechanical membrane forces associated with cell polarisation during migration and also
yields geometric information of independent interest, we illustrate one such example that involves
quantifying cell proliferation levels which are associated with cell division, cell fusion or cell death.

Keywords: cell migration; optimal control; geometric partial differential equations; mechanical
membrane forces; cell polarisation

1. Introduction

Cell migration is a fundamental cellular process that is essential to life and is linked
to many important physiological and pathological events such as the immune response,
wound healing, tissue differentiation, embryogenesis, and tumour invasion [1-7].

During migration, mechanical processes play a pivotal role, for example cellular
biomechanics direct its physical behaviour, as well as its cellular functions in the biological
context of health and disease [8-10]. Cells also physically interact with their extracellular
environments via mechanical forces, for example, cell division, apoptosis, bleb and mitosis
[11-13]. The strength of the forces varies as the sensitivity of a cell evolves with surrounding
biomechanical and biochemical stimulus [11].

A key determinant of cellular biomechanics is the actin cytoskeleton [8]. It contains
dynamic actin architectures that continuously re-arrange and turnover. The cytoskeletal
forces are exerted on a plasma membrane, which define and insure the stability of the
interior of the cell [14]. At the leading edge, a protrusion force is generated by actin
architectures. Membrane tension balances these locally imposed forces and ensures rear
retraction [10]. The characteristic time scale is short, often sub-seconds. The measured
forces suggest they may range from Pico-Newtons (pN) to Micro-Newtons (uN) [10,14].
The cellular force generation intertwines with many other processes, forming a complex
system. In addition, a noticeable change in a single cell behaviour may lead to a significant
event on a tissue scale, so unravelling the mutual interplay between physical interactions
such as protrusion and retraction forces are essential to understanding cell dynamics [10].

According to the research by Lieber et al. in 2013 [10] and Barbieri et al. in 2021 [8],
there is very little understanding and limited ways to quantify cellular forces. The former
claims a hypothesis on how membrane tension is set and regulated by cells, but states there
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is very little evidence to either support or disprove it; the latter describes challenges in
quantification due to technical constraints.

Traditionally, our understanding of cell dynamics often comes from visual inspection
using high-throughput, high-resolution microscopy and related imaging techniques [8,15].
Phase-contrast microscopes utilise partially coherent illumination to extract quantitative
phase data [16,17]. Interferometric-based techniques make use of the Fourier decomposition
[18,19]. Other alternative techniques include optical coherence tomography [20] and digital
holographic microscopy [15,21]. Additionally to imaging, Simson et al. in [9] reports an
interferometric technique to measure bending modulus, membrane tension and adhesion
energy. A mechanic-optical biosensor is described in [22] to sense local cell adhesive forces.
In [10] the authors discuss about membrane fluctuations and [23] summarises soft polymers
that are typically used to measure cellular forces.

In this study, we propose an alternative theoretical and computational approach
whereby, instead of measuring physical quantities in experiments, we describe the underly-
ing rules (and often hypotheses) using mathematical equations, thereby obtaining a model
for a migrating cell which incorporates certain assumptions on the physics underlying mi-
gration. There have been a number of studies carried out using simulations of such models
to model cell migration, e.g. in [24] and subsequent related works, a phase-field model for
keratocyte migrations is developed, in [25], some quantitative predictions are derived on
how adhesion geometry and stiffness change cell behaviour. In this paper, we approach the
problem of membrane force estimation during cell migration as the problem of computing
forces such that we fit an established model of cell migration [26,27] to microscopy data
that provides the cell membrane position at a series of time points. Specifically, we use the
frames of imaging data to extract the position of the cell membrane at a series of times and
use this data in an optimal control model as our target positions for the position of the cells
under our mathematical model at the corresponding times. The control which is computed
to minimise the difference between the cell positions generated computationally and the
data corresponds to the protrusive force active at the cell membrane. This approach, i.e.,
the optimal control of phase field models albeit in a different context has received recent
interest e.g., [28]. Computational simulations also help to build devices which can then be
used to directly measure cellular properties, such as the microsystems summarised in [11].

This paper is organised as follows. In Section 2, we describe our theoretical and
computational modelling approach. We take experimental observations of cell migration
from three different cell types: keratocyte in [29], epithelial bladder cancer cell from the T24
cell line in [30], and epithelial kidney cancer cell from the MDCK cell line in [31]. Using our
theoretical model, we re-create the corresponding computational cells and compute the
predicted membrane forces. In Section 3, we present our results. We conclude our results
in Section 5.

2. Materials and Methods
2.1. Mathematical model for membrane force estimation

We consider a volume-constrained Allen-Cahn equation with forcing as the “forward
model” in an optimal control approach to whole cell tracking. The model arises from
considering a simplified force balance on the cell membrane, further details on the model,
the corresponding sharp interface formulation and its physical justification are provided
in [26]. The volume constrained Allen-Cahn equation with forcing, a diffuse interface
approximation to forced mean curvature flow, is stated as follows

eToy (¥, 1) = de AP(%,t) — G/ (p(Z,1)) + (X, t) + A(t) inQ x (0,T],
P(x,0) = ¢°(X) in Q, 1)
V(X t) -va(X) =0 on 0Q.

In the above model, ¢ (¥, t) is a phase field variable whose zero level set corresponds to
the cell membrane; ¢, satisfying 0 < € < 11is a parameter governing the interfacial width of
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the diffuse interface, G(¢) = 1(1 — ¢?)? is a double well potential which has minima at +1
and A is a time-dependent constraint on the mass of the cell that models a volume constraint
[32]. In practice our constraint differs from conservation of mass since the target data may
have differing ‘mass’ (effectively cell area) from image to image. Without loss of generality
we assume the domain Q) = [0, L]?and v, is the outward normal to 9Q). Biologically, ¢ can
be viewed as a volume fraction (¢ ~ 1 in the cell bulk, ¢ ~ —1 in the extracellular matrix,
¢ ~ 0 on the cell membrane), € as the thickness of cell membrane, 7 is an effective friction
due to the interaction with the extracellular matrix, ¢ is the surface tension and since we
focus on the two-dimensional, rather than three-dimensional cases, we average assuming a
constant cell height of 0.1 pm.

In our modelling framework, 77(¥, ) is a membrane force generated by the cell during
migration. A positive # indicates a protrusive force that drives the cell forward, while a
negative force corresponds to a retractive force that allows the cell to contract enabling the
cell to dislocate from the substrate to move its body forward. We make the assumption that
the cells move as a result of forces that are only exerted in a region close to the membrane
which is biologically reasonable since forces leading to migration are primarily exerted in
the the actin cortex which is a thin region close to the membrane [26,27].

The physical interpretation of the model variables in Equation (1) is given in Table 1
below.

Parameter Description
€ Membrane thickness
Friction
Volume fraction
Spatial coordinate
Time variable
Domain length
Time of entire experiment
Surface tension
Forcing exerted on cell membrane

= o RS A

Table 1. Physical interpretation of the model variables in Equation (1).

Next we give the interested reader a full appreciation of the model physical units, their
balance can be interpreted as follows

pN
= 1) A — G A
€ T ¢ € ¢+ - (¢) —+ no+
Mo pNs/pm® 175 PN B e s pN/pm  PN/pm

@)
In the above equation, the units are yum : micrometer, s :second, pN : pico-newton.
In Table 2 we present the values we use, together with the references that gave rise to
the these choices, for the parameters in the model.

Parameter Description Value
) Surface tension 1-10 pN [14,24]
[33]
T Friction force ~ 2.62 pNs/um? [24]
€ Membrane thickness ~ 1.0 ym [24]
1 Forcing exerted on cell membrane | Fitting variable to be computed
in the remainder of this paper

Table 2. Values of physical parameters in our model.
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From here onwards, we wish to work with a unit-free model, and to this end, we
introduce the dimensionless variables:

- X _ € - t B n ) _ T
Tt T T TR P TR/ )
where the characteristic scale F is related to the kinetic scaling.
Applying the above scaling, we obtain the dimensionless model
ef?‘i’g;?ff) = 3eAP(F,D) + LG (9(E D) + 7(EH +AD) inQx],
9(%,0) = ¢°(¥) inQ, )
V(X F)-vq(X) =0 on 90},

where O = [0,1]> and T = (0, 1].

2.2. Formulation of the optimal control problem and its approximation

The main objective at this stage is to find 7 (¥, f) of Equation (4) such that the model
best-fits the images. In [26], 77(¥,f) is denoted a control function that depends both in
space and time, and must be computed for all times. The main task in solving the control
problem is approximating the solution to Equation (1) which (typically) must be carried out
a number of times. We refer the reader to [34-36] and references within for more details on
phase-field models and their solution methods. We previously developed two approaches
for the approximation of the optimal control problem, a finite element approach in [26] and
an adaptive, parallel finite difference approach in [27]. The computational cost in fitting to
the multiple datasets that we consider below prompts us to use the more efficient approach
of [27] in this work and we refer to [27] for further details on the space-time discretisation.
For completeness, we briefly describe our approach for obtaining the results presented in
this paper in the Supplementary Material.

2.3. Model parameters for the different biological datasets

In Table 3 we give the spatial and temporal settings associated with the three cell types
to which we apply our model: keratocyte in [29], epithelial bladder cancer cell from the
T24 cell line in [30], and epithelial kidney cancer cell from the MDCK cell line in [31].

3. Results

For each of the biological datasets considered, we treat the initial frame of the video
as data used to generate the initial conditions for the model. The remaining frames in the
dataset are the target data we seek to fit the model to. Further details on our approach to
extracting a phase field representation of the cell from imaging data are given in [26,27]. Our
approach gives us the computed cell positions together with the estimated force such that
the motion of the cells under our model recreates the observed motion from the imaging
data. We use Figure 1 to illustrate our model when applied to experimental data from T24
cell line [30]. There is an 8-minute gap between two adjacent frames in this experiment, and
we take frames 3 and 4, for example. Our discretisation yields 10 time steps between these
two frames. The first row in Figure 1 has two adjacent frames from the experimental data,
and the second row shows the initial computed cell outline (obtained from the previous
computation covering frames 2 to 3) and solutions at the 10 time steps with the computed
optimal force. The solution from the 10th time step would then be used as the initial shape
to compute the next stretch between frames 4 and 5. The dark shadow in the background
shows the target shape as the objective, which is the shape of the cell from frame 4. This
process continues successively throughout the full dataset.

As an example in Figure 2, we present the first frame of our results on T24. We show
the original image from T24 experiment [30] on the top-left; our segmentation of the shape
of the T24 cancer cell on the top-right (this segmentation technique is a combination of
Otsu and edge detection, we refer the reader to [27,37] for more details); on the bottom-left,
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| Parameter | Description | Value |
keratocyte
x Domain length in x axis 81.5 um
v Domain length in y axis 81.5 ym
t Length of time 360s
Ty Time interval between frames in the video 20s
L Characteristic length 81.5 ym
Y Characteristic time 360s
F Characteristic force for surface tension 10 pN
T (Dimensionless) friction force 4.85
é Numerical interfacial width 0.01
RTS No. Reconstructed Time Steps between frames 10
T24
x Domain length in x axis 170 ym
y Domain length in y axis 170 ym
t Length of time 1920s
T Time interval between frames in the video 480s
L Characteristic length 170 ym
Y Characteristic time 1920s
F Characteristic force for surface tension 10 pN
T (Dimensionless) friction force 3.16
é Numerical interfacial width 0.005
RTS No. Reconstructed Time Steps between frames 10
MDCK
x Domain length in x axis 220 um
y Domain length in y axis 220 pum
t Length of time 1800s
Ty Time interval between frames in the video 300s
L Characteristic length 220 um
Y Characteristic time 1800s
F Characteristic force for surface tension 10 pN
T (Dimensionless) friction force 7.04
é Numerical interfacial width 0.05
RTS No. Reconstructed Time Steps between frames 5
Table 3. Model parameters for the three different biological datasets.
T24 frame 3 T24 frame 4

RTS: initial 1
Figure 1. The first row illustrates two adjacent frames from the T24 experimental data [30] that
were taken 8 minutes apart. The second row shows the initial shape and computed solutions at 10

intermediate time steps accordingly. The dark shadow in the background shows the targeted shape
as the objective, which is the shape of the cell from frame 4. Bars indicate 20 pm.
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we demonstrate the interfacial region of the cell, its centroid position, and we continually
overlay the cell shapes as the cell migrates. On the bottom right, we show the exerted
forces where we use colour coding (red as protrusion and blue as retraction) to illustrate
the location and amount of forces exerted on the cellular interfacial region, representing
the cell membrane.

1 (pN/pm)

Figure 2. Top-left: the original image from experimental observation; top-right, our segmentation of
the T24 cancer cell from the image; bottom-left: we define the interfacial region of the cell and its
centroid position. Within this sub-figure, we continually overlay the cell shapes and positions as the
cell migrates; bottom-right: we use colour coding to identify red as protrusion and blue as retraction
forces and the locations they are exerted on the cellular interfacial region. Bars indicate 20 yum.

In Table 4, we summarise both protrusion and retraction forces re-created during
the simulations of keratocyte migration (shown in Figure 2 and supplementary video).
Each experimental image serves as a starting position or a goal. Our estimated forces are
evaluated between adjacent frames. For the keratocyte [29], the actual real-world time
between frames is 20 seconds. In Table 4, we show the average cell membrane length
from our simulation in um, the accumulated forces, the number of Reconstructed Time
Steps RT'S, and the percentage of cell membrane where protrusion or retraction forces are
exerted.
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Time Duration. || Avg. C. M. | Total Protrusion Over % of | Total Retraction Over % of

between Frames || Len. (um) Force (pN) C.M. Force (pN) C. M.
1-2 (20 sec) 94 33,480 75.3 5,637 24.7
2-3 (20 sec) 97 34,457 70.0 8,253 30.0
3-4 (20 sec) 97 37,047 73.8 7,999 26.2
4-5 (20 sec) 98 36,450 70.0 9,301 30.0
5-6 (20 sec) 98 37,076 70.3 10,334 29.7
6-7 (20 sec) 99 36,338 70.2 10,688 29.8
7-8 (20 sec) 100 36,076 70.5 10,722 29.5
8-9 (20 sec) 101 38,377 71.6 9,625 28.4
9-10(20 sec) 101 38,553 68.9 10,630 31.1
10-11(20 sec) 102 38,768 72.2 9,723 27.8
11-12(20 sec) 88 37,751 68.2 10,788 31.8
12-13(20 sec) 90 36,796 70.4 10,001 29.6
13-14(20 sec) 89 40,149 724 9,289 27.6
14-15(20 sec) 90 38,893 68.6 10,743 314
15-16(20 sec) 91 39,012 69.0 11,296 31.0
16-17(20 sec) 92 42,167 711 11,013 28.9
17-18(20 sec) 92 39,910 69.7 10,920 30.3
18-19(20 sec) 93 39,074 67.8 11,753 32.2

Table 4. Details of estimating the membrane forces and its evolution through cell morphology
reconstruction of the keratocyte. C. M. is an abbreviation for cell membrane. We note here that the
Lagrange multiplier A(t) in (1) is in effect a global spatially constant retractive or protrusive force
which is not included in the totals stated above.

Our results on the epithelial bladder cancer cell T24 [30] are shown in Table 5. The
layout of the table and its corresponding supplementary video are very similar to the
keratocyte simulation.

Time Duration. || Avg. C. M. | Total Protrusion Over % of | Total Retraction Over % of

between Frames || Len. (um) Force (pN) C.M. Force (pN) C.M.
1-2 (8 mins) 224 165,361 43.8 134,424 56.2
2-3 (8 mins) 178 212,371 55.6 48,428 444
3-4 (8 mins) 191 161,132 57.6 37,831 424
4-5 (8 mins) 175 173,554 51.0 45,541 49.0

Table 5. Details of estimating the membrane forces and its evolution through cell morphology
reconstruction of the T24. C. M. is an abbreviation for cell membrane. We note here that the Lagrange
multiplier A(#) in (1) is in effect a global spatially constant retractive or protrusive force which is not
included in the totals stated above.

The results of the epithelial kidney cancer cell MDCK [31] are shown in Table 6
and are presented in the similar manner, apart from an additional diagram shown in the
corresponding supplementary video on the right-hand side.
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Time Duration. || Avg. C. M. | Total Protrusion Over % of | Total Retraction Over % of

between Frames || Len. (um) Force (pN) C. M. Force (pN) C. M.
1-2 (5 mins) 427 256,865 48.7 186,380 51.3
2-3 (5 mins) 730 617,225 69.0 183,354 31.0
3-4 (5 mins) 1,063 692,221 61.9 466,208 38.1
4-5 (5 mins) 1,066 566,266 54.8 465,805 45.2
5-6 (5 mins) 1,022 537,507 56.7 310,618 43.3
6-7 (5 mins) 1,077 655,875 60.0 340,670 40.0

Table 6. Details of estimating the membrane forces and its evolution through cell morphology
reconstruction of the MDCK. C. M. is an abbreviation for cell membrane. We note here that the
Lagrange multiplier A(t) in (1) is in effect a global spatially constant retractive or protrusive force
which is not included in the totals stated above.

3.1. Geometric quantities that are of biological interest

Based on the computed phase field information, we can compute important and
biologically relevant geometric information that is of significant interest to experimentalists.
Through simple post-processing of the model outputs, we may obtain geometric quantities
such as circularity, curvature and elastic energy of the membrane. We demonstrate one
such post-processed quantity of interest by considering a dataset that consists of multiple
cells undergoing division and demonstrating how our approach allows us to quantify
cell proliferation rates, and also demonstrate geometrically, the cell division process. To
proceed, we first state how to compute the Euler number of the cell membranes which in
effect corresponds to the total number of cells present in the simulation. The Euler number,
in two dimensions in the phase-field formulation is given by [38]

1 V|V¢52-V¢e) .
Ne= — A + YTl V¥ ) gy, 5
¢ 2%6/{¢s<c}< et T ' ©)

Here ¢. is the computed phase-field function. As this number corresponds to the number
of cells present, it is extremely useful as it gives us the means to automatically track events
such cell division and cell fusion during the process of cell migration. This approach is
extremely valuable as it could automate an otherwise laborious task of counting division,
fusion or death events and removes the need for genetic manipulations which would be
required to highlight such events. We illustrate this in the supplementary video related to
the kidney cancer cell MDCK [31] where a number of cell divisions occur during the video
and these are tracked accurately by the Euler number of the computed phase field.

For completeness, we include the final frame of the result video on the kidney cancer
cell MDCK in Figure 3. The first image on the first row: the original image from exper-
imental observation and our choice of three cells which are used in our simulation; the
second image on the first row: our segmentation of the cells from the image on the left; the
first image on the second row: we define the interfacial region of the cell and its centroid
position, within this sub-figure, we continually overlay the cell shapes and positions as
it migrates; the second image on the second row: we use colour coding to identify red as
protrusion, and blue as retraction forces and the locations they are exerted on the cellular
interfacial region, the dark shadows in the background illustrate the targeted shapes that
our model is trying to replicate, the bar on the right-hand side shows the maximum and
minimum amount of forcing that the colour coding is illustrating.; the third image on the
second row: we show our Euler number from Equation (5) computed at each RTS and red
circles indicate the events of cell division.

4. Discussion

Single or population cell migration is essential for many biological processes such as
immune response, embryogenesis, gastrulation, wound repair, cancer metastasis, tumour
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5 10 15 20 25 30
Reconstructed frames

Figure 3. The first image on the first row: the original image from experimental observation and
our choice of three cells which are used in our simulation; the second image on the first row: our
segmentation of the cells from the image on the left; the first image on the second row: we define the
interfacial region of the cell and its centroid position, within this sub-figure, we continually overlay
the cell shapes and positions as it migrates; the second image on the second row: we use colour
coding to identify red as protrusion, and blue as retraction forces and the locations they are exerted on
the cellular interfacial region, the dark shadows in the background illustrate the targeted shapes that
our model is trying to replicate, the bar on the right-hand side shows the maximum and minimum
amount of forcing that the colour coding is illustrating.; the third image on the second row: we
show our Euler number from Equation (5) computed at each RTS and red circles indicate the events
of cell division. Bars indicate 20 um.
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invasion, inflammation and tissue homeostasis. However, aberrant or defects in cell
migration lead to various abnormalities and life-threatening medical conditions [39-41].
Increasing our knowledge on cell migration can help abate the spread of highly malignant
cancer cells, reduce the invasion of white cells in the inflammatory process, enhance the
healing of wounds and reduce congenital defects in brain development that lead to mental
disorders. While single-cell sequencing has accelerated breakthroughs in cancer research
and transformed our understanding of tumour biology, leading to significant impacts for
cancer treatments, understanding and quantifying membrane force generation associated
with cell migration remains an open problem, in this study we have exploited our modelling
approach of using optimal control of surface geometric partial differential equations posed
on the cell membrane to predict and estimate biological quantities of interest, such as
protrusion and retraction forces. Our approach is substantially different from current-
state-of-the-art modelling of such forces, it sets premises to study cell migration through
complex multi-dimensional environments where force generation between the cell and the
extracellular matrix is critical [39-41].

5. Conclusion

A number of recent studies such as [10] remark that small changes in mechanical
forces generated from individual cells can lead to fundamental changes at tissue levels.
However, as [8] indicates, it is technologically challenging to simply measure those forces
during experiments, such as during the process of cell migration.

In this work, we estimate the forces exerted by migrating cells by computing ‘optimal’
forces such that a mathematical model for cell migration best fits observed imaging data.
In this paper, we took experimental data of three different cell types: keratocyte in [29],
epithelial bladder cancer cell from the T24 cell line in [30], and epithelial kidney cancer
cell from the MDCK cell line in [31]. For each case, we demonstrate how we re-create the
observed cell migration and summarise the protrusion and retraction forces generated
under our model. We also note our approach is applicable to multiple cells and can be
applied in three dimensions, given appropriate datasets in 3D. Our approach could also
allow us to access biologically relevant quantities such as membrane length, circularity
and curvatures. We demonstrate one example using the MDCK cell line dataset [31]
in which a number of cell divisions occur during the evolution. Our approach deals
robustly with this setting allowing accurate quantification of cell proliferation rates which
is generally cumbersome if carried out manually. Moreover, we provide a means of tracking
(automatically) the number of cells present which could be of practical use if one wishes to
measure the rate of cell divisions, cell death or cell fusion.

Our proposed approach is amenable to further improvements and these include
computing more accurate measurements of parameters such as friction force and surface
tension as well as more refined modelling of migration itself. We note that it would be
relatively straightforward to extend our simulations to three space dimensions, which
would enable the recreation of more accurate cells and their environments [27] but a
major challenge in this case is obtaining sufficiently high-resolution imaging data. As [42]
states, cell-matrix adhesions and cytoskeletal organisation could be different in 2D and 3D
measurements, and may alter key cell responses, including morphology, migration and
proliferation. We also note that in principle this approach can be adapted to more complex
models of cell migration and this is merely a proof-of-concept study illustrating the utility
of our approach.

Supplementary materials

e  File link for “keratocyte.avi”:
https:/ /www.dropbox.com/s/pbcyoslvogimx2x/keratocyte.avi?dl=0
Caption for media file with file name “keratocyte.avi”:
Top-left: the original image from experimental observation; top-right, our segmen-
tation of the keratocyte from the image; bottom-left: we define the interfacial region
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of the cell and its centroid position, within this sub-figure, we continually overlay
the cell shapes and positions as it migrates; bottom-right: we use colour coding to
identify red as protrusion and blue as retraction forces and the locations where they
are exerted on the cellular interfacial region, the bar on the right-hand side shows the
maximum and minimum amount of forcing that the colour coding is illustrating. Bars
indicate 20 um.

¢  File link for “T24.avi”:
https:/ /www.dropbox.com/s/t0te420wx7niyOp / T24.avi?d1=0
Caption for media file with file name “T24.avi":
Top-left: the original image from experimental observation; top-right, our segmenta-
tion of the T24 cancer cell from the image; bottom-left: we define the interfacial region
of the cell and its centroid position, within this sub-figure, we continually overlay
the cell shapes and positions as it migrates; bottom-right: we use colour coding to
identify red as protrusion, and blue as retraction forces and the locations where they
are exerted on the cellular interfacial region, the dark shadows in the background
illustrate the targeted shapes that our model is trying to replicate, the bar on the
right-hand side shows the maximum and minimum amount of forcing that the colour
coding is illustrating. Bars indicate 20 pum.

¢  File link for “MDCK.avi”:
https:/ /www.dropbox.com/s/tj5ggtsq37tlly7 /MDCK.avi?d1=0
Caption for media file with file name “MDCK.avi”:
The first image on the first row: the original image from experimental observation
and our choice of three cells which are used in our simulation; the second image
on the first row: our segmentation of the cells from the image on the left; the first
image on the second row: we define the interfacial region of the cell and its centroid
position, within this sub-figure, we continually overlay the cell shapes and positions as
it migrates; the second image on the second row: we use colour coding to identify red
as protrusion, and blue as retraction forces and the locations they are exerted on the
cellular interfacial region, the dark shadows in the background illustrate the targeted
shapes that our model is trying to replicate, the bar on the right-hand side shows
the maximum and minimum amount of forcing that the colour coding is illustrating.;
the third image on the second row: we show our Euler number from Equation (5)
computed at each RTS and red circles indicate the events of cell division. Bars indicate
20 um.

*  Our approach to present simulation results
The mathematical model in Equation (1) and its dimensionless form (i.e. Equation
(4)) exit continuously in both space and time in the closed domain (). We apply
discretisation schemes to obtain a discrete system at each reconstructed time step
(RTS). For example, the situation presented in Figure 1 has been discretised into 10
time steps. Solving such a system yields its simulation result at its corresponding
reconstructed time step. We use ¢; and #; to represent the discrete solutions on a grid
point i where there are N grid points, and () is the number of grid points on one axis
of the square domain Q).
¢; describes the evolution of the cell shape and takes values either —1 or 1 in- or outside
of the cell. When ¢; is between —1 and 1, it illustrates the phase-field interfacial region
and the cell shape. For simplicity, we define grid points i that has values of ¢; between
—0.02 and 0.02 as the cell membrane. We evaluate the average length of the cell
membrane on the interval I, where I = T using the formula,

[):I*RTS kv T { | —0.02 < gk < 0.02}] /RTS.

1; is the forcmg, and we are interested in these exerted closely around the cell mem-
brane. The total protrusion force on the interval I is evaluated using the formula,
i errs 11 Tivy {0F] =002 < ¢f < 0.02 and 4 > 0}.

The total retraction force on interval I is evaluated usmg the formula,

LA 1 ekrs 11 Tt {7 —0.02 < ¢F < 0.02 and 7f < 0}.


https://www.dropbox.com/s/t0te420wx7niy0p/T24.avi?dl=0
https://www.dropbox.com/s/tj5ggtsq37tlly7/MDCK.avi?dl=0
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The choice of RTS affects the stability of the solution methods, and we refer the reader
to [34-36] for the computational details.
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