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Abstract: The COVID-19 was described as a respiratory illness, however further studies recognize it as a complex heterogeneous multisystemic 
disorder. Global efforts have been proposed to combat COVID-19, emerging diverse therapeutic options, in which discovering new drug 
therapies, development of vaccines and drug repurposing have been considered the most promising approaches to fight the virus. This study 
aimed to repurpose known drugs for use against the COVID-19, finding better therapeutic options. Seventeen biological databases were used 
in this study. The genetic algorithm (GA) was performed for a set of drug target classes and COVID-19 proteins as input, whose drug candidates 
are obtained according to the target similarities found in the target-target similarity predictive network, resulting in a drug-target interaction 
network. Thus, recommended drugs correspond to the union of the drug subsets found during each GA execution. Twenty-eight drugs were 
indicated to be the best therapeutic targets for the virus, in special, the Cyclosporine drug was administered as adjuvant to steroid treatment for 
COVID-19 patients which showed positive outcomes, reducing mortality in moderate and severe cases. The drugs found have used to treat 
other diseases, evidencing that the COVID-19 is a multisystemic disorder and suggests that the viruses’ mechanism of action presents some 
comorbidity with other human diseases. Evidence shows that the drugs found in this research might act together to fight the virus in a broader 
fashion, however further studies including in vitro and in vivo experiments are needed to find the best combination of these drugs. 

Keywords: SARS-CoV-2; COVID-19; drug repurposing; artificial intelligence; target-target similarity network; drug-
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1. INTRODUCTION

A local outbreak of pneumonia of initially unknown causes 
was detected in December 2019 in Wuhan city, Hubei 
Province (China), a city with 11 million inhabitants. The cause 
behind this pneumonia was further determined as a new 
coronavirus, called new coronavirus 2019 (2019-nCoV), 
which in turn causes the severe acute respiratory syndrome 
coronavirus 2 infection (SARS-CoV-2), also called 
coronavirus disease (COVID-19) [1–3]. 

On March 11, 2020, the World Health Organization 
(WHO) declared COVID-19 to be a global pandemic [4, 5]. 
This highly contagious disease, transmitted between humans  

by both oral and nasal routes via activities such as talking, 
breathing, coughing, and sneezing [6–8], has spread slightly 
to more than 185 countries with over 271,963,258 confirmed 
cases and 5,331,019 confirmed deaths [9]. Symptoms can be 
life-threatening, with a higher lethality rate in the elderly and 
people with underlying health conditions [10, 11]. However, 
the most common clinical manifestations have been fever, dry 
mouth and cough, fatigue, loss of taste and smell, and 
shortness of breath [12]. 

Although early reports described the disease caused by 
SARS-CoV-2 as a respiratory illness, in some cases leading to 
viral pneumonia, further studies recognize that COVID-19 is 
a complex heterogeneous multisystemic disorder, affecting a 
variety of organs such as lung, heart, kidneys, brain, among 
others [13, 14], in addition to the fact that patients have 

different symptoms and complications, such as 
neuropsychiatric symptoms, endothelial dysfunction, hyper-
inflammatory state and thromboembolic disease [14]. 

Coronaviruses are enveloped RNA viruses belonging to 
the Coronaviridae family that upon viewing under an electron 
microscope present crown-like spikes on their surface [15–
17]. First identified in 1966 by Tyrrell and Bynoe, 
coronaviruses affect several animal species including birds, 
mammals such as bats, cattle, pigs, and humans [15, 16, 18–
20]. During pandemic outbreaks, some variants of the virus 
began infecting humans (HCoVs), including Middle East 
respiratory syndrome (MERS-CoV, 2014), Alpha (United 
Kingdom, September-2020), Beta (South Africa, May-2020), 
Gamma (Brazil, November-2020), Delta (India, 
October2020), Eta (multiple countries, December-2020), Iota 
(United States of America, November-2020), Kappa (India, 
October-2020), Lambda (Peru, December-2020), Mu 
(Colombia, January-2021) and Omicron (multiple countries, 
November-2021) [21]. 

 High rates of SARS-CoV-2 transmission, together with 
their variants have been a global threat, and many countries 
have adopted non-pharmaceutical health policy strategies, 
such as social distancing, the use of face masks and contact 
tracking as the best alternatives to reduce viral spread and 
demands on healthcare [22, 23]. Furthermore, the viruses have 
caused interruptions in healthcare systems and in business, in 
addition to other aspects related to the daily lives of the 
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population such as education, employment and transportation 
[24]. 

Global efforts have been proposed to combat COVID-19, 
the recent results of WHO’s Solidarity Clinical Trial have 
revealed some efficient treatments and recommendations for 
SARS-CoV-2, however the approved drugs have to be 
administrated in some conditionals, including systemic 
corticosteroids and tocilizumab or sarilumab with strong 
recommendations in patients with severe and critical disease, 
casirivimab and imdevimab with conditional 
recommendations in cases of seronegative status (severe and 
critical COVID-19) or highest risk of severe disease for those 
with non-severe COVID-19 [25]. 

Therapeutic options are diverse and is increasing rapidly, 
where the most significant efforts have been made in 
discovering new drug therapies, involving virus targets, host 
cell targets, adjunctive therapy, and developing vaccines [26–
30]: 

Virus targets – Use of medications to block virus 
replication, e.g., atazanavir, azvudine, lopinavir, raltegravir, 
ritonavir and vapreotide (human immunodeficiency virus – 
HIV); bismuth potassium citrate and oseltamivir 
(gastrointestinal); boceprevir, daclatasvir, ribavirin and 
sofosbuvir (hepatitis C); carmofour (antineoplastic), 
doxycycline (antibacterial) and famotidine (stomach ulcer), 
favipiravir and triazavirin (influenza); fostamatinib disodium 
(chronic immune thrombocytopenia), gliclazide (diabetes), 
memantine (Alzheimer’s), penciclovir (herpes), natural 
product platycodin D (respiratory tract and lung) and 
remdesivir (Ebola) [27, 29–33]. 

Host cell targets – Comprises drugs that interfere with 
infection and viral replication in the host cell, involving its 
functions, pathways and proteins, such as arbidol (influenza), 
azithromycin (antibacterial), camostat and nafamostat 
mesylate (pancreatitis and reflux oesophagitis); captopril and 
losartan (hypertension and renal/cardiovascular); chloroquine 
phosphate and hydroxychloroquine (malaria); ivermectin 
(anthelmintics), nitazoxanide (antiprotozoal), STI-1499 
(antibody), teicoplanin (antibacterial), and the natural product 
withanone [27, 29–33]. 

Adjunctive therapies – Molecules acting on the host’s 
immune response to reduce inflammation, being baricitinib, 
sarilumab and tocilizumab (rheumatoid arthritis), 
bevacizumab (cancer), colchicine (antigout), dexamethasone 
and methylprednisolone (corticosteroid); and vitamins C and 
D [27, 29–33]. 

Vaccines – Considered the most effective method for 
combating SARS-CoV-2. According to WHO, there are more 
than 110 vaccines in clinical and more than 184 in pre-clinical 
development distributed on various platforms, including live 
attenuated: use of weakened virus (Sinovac), nucleic acid: 
DNA or messenger RNA (mRNA) genetically modified from 
the virus used to produce viral proteins in the body (Biotech-
Pfizer); subunit: may use one or part of the virus protein, or 
even another protein similar to the virus structure (Novavax); 
and viral vectors: another genetically modified virus used to 
produce viral proteins in the body (Oxford-AstraZeneca) [30, 
32, 34, 35]. 

Although vaccines for COVID-19 were developed in 
much less time than conventional vaccines and many 
countries have already adopted mass vaccination campaigns 
[36], open questions remain regarding antigen optimization 
and the duration of immunity potential [37]. Another 
important factor is the high cost involved in the vaccine 
development process, especially with the licensing time. This 
can take many years [36], as in the case of the first Ebola 
vaccine which took 43 years after the virus was discovered to 
get approved [38–40]. 

Effectiveness of vaccines for new variants of SARS-CoV-
2 is of concern. New studies indicate a significant reduction 
in protection against the new omicron variant [41, 42]. Despite 
these studies are small and recent to know the exact level of 
protection from vaccines or previous infection with SARS-
CoV-2, these studies suggest a third dose against omicron 
[42]. Meanwhile, Pfizer-BioNTech and Moderna, mRNA 
vaccine manufacturers for COVID-19 have begun the 
development of an omicron-specific vaccine that could be 
ready for delivery within 100 days [41, 42]. In light of these 
facts and the current COVID-19 pandemic situation, drug 
repurposing is then a powerful, fast and economical 
alternative solution, which may provide evidence of new or 
complementary treatments for the virus [43]. 

Drug repurposing can identify new therapeutic approaches 
for known drugs [44]. Existing drugs under clinical 
investigation or approved are safer and their toxicities are 
known, representing less risk to patients. Time is halved and 
the financial investment is about ten times less for drug 
repositioning compared to the implementation of a new drug 
[45], in addition to the lower risk of failure and use of 
consolidated and operational pharmaceutical supply chains 
for the production and distribution of medicines [46]. Another 
encouraging fact of drug repurposing therapy is related to 
reducing dosage levels and minimizing adverse reactions. 
Moreover, this also may increase efficacy through drug 
activity or synergy [47]. 

Computational approaches have been increasingly 
employed in fighting SARS-CoV-2, offering new testable 
hypotheses for new drug targets or systematic reuse of drug 
candidates [48–54]. In contrast to in vitro and in vivo studies, 
in silico studies are cheaper and faster approaches [48, 55], 
and can be used to analyze a huge number of compounds, drug 
combinations and biomedical data available. Therefore, 
computational methods can be useful for the filtering step, and 
for thoroughly evaluating medications which warrant a more 
extensive, experimental, and clinical evaluation [43, 48, 56]. 

Computational strategies using machine learning has 
contributed to the prediction of existing drugs with greater 
potential for effectiveness COVID-19 treatment. Such an 
approach has been used to predict drug-target interactions 
(DTI) [43, 53, 57–59], indicating drug binding at the target 
site, and which binding can cause changes in target behaviors 
(most drug targets are related to the protein-coupled receptors, 
enzymes and ion channels). Basically, computational methods 
are used for DTIs involving ligand, docking and 
chemogenomic methods [60]: 
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 Ligand methods: As a rule, similar molecules are 
associated with similar protein targets [54, 60]. 

 Docking methods: Identifies drug and protein 
reactions by analyzing 3D structure [52, 60, 61].  

 Chemogenomic methods: Predictions are performed 
using data from drug and protein omics, 
encompassing machine learning methods (support 
vector machine, random forest, k-nearest neighbor, 
ensemble, artificial neural networks, and deep 
learning) [53], graphs [54, 62] and networks 
(protein-protein interactions, gene co-expression, 
drug-drug interactions, and drug-gene and drug-
disease) [51, 53, 54, 60, 63–67]. 

Although artificial intelligence techniques can contribute 
to drug repurposing, advances in pharmacogenetics and 
pharmacogenomics indicate that therapies guided by 
individual genomic profiles considerably improve the 
treatment and curing of diseases, something already practiced 
in other diseases such as in cancer [68]. Thus, host genetic 
studies playing an important role in COVID-19 can evidence 
human genetic determinants of the viruses, leading to 
personalized treatment. This represents a unique opportunity 
for drug repurposing in precision medicine [59, 69–72]. In this 
context, the present study is proposed, focusing on 
discovering new targets for existing drugs to fight COVID-19 
with high precision provided by the application of integrative 
analysis of biological datasets combined with artificial 
intelligence techniques. 

2. MATERIALS AND METHODS 

2.1. Data Sources 

 Several biological data sources were collected and 
submitted to data cleaning and wrangling for understanding 
the relationships between drugs and proteins, as well as for 
discovering new drug targets (Fig. 1A). The information 
available in biological repositories is vast and of great value, 
requiring data processing for better applicability to this study. 
This is detailed below: 

 BindingDB [73] – Got information about protein-ligand 
binding affinities, including InChI (International Chemical 
Identifier) and the biological database identifiers: BindingDB, 
ChEBI (Chemical Entities of Biological Interest) [74], 
DrugBank [75], PubChem [76] and proteins (UniProt 
accession numbers). 

 Brenda [77] – Got information about enzyme classes with 
UniProt accession numbers. 

 ChEBI – Got information about ontological chemical 
entities and biological database identifiers: ChEBI, DrugBank 
accession number, KEGG (Kyoto Encyclopedia of Genes and 
Genomes) Compound [78] and KEGG Drug [79]. 

 DrugBank – Got information about the drugs, including 
DrugBank identifiers (primary and secondary accession 
numbers), name, name synonyms, status, molecular formula, 
UNII (Unique Ingredient Identifier), CAS Registry Number, 
SMILES (canonical simplified molecular), IUPAC name 

(International Union of Pure and Applied Chemistry), InChl, 
InChl Key, ATC codes (Anatomical Therapeutic Chemical) 
and biological repository identifiers: BindingDB, ChEBI, 
PharmGKB [80], KEGG Compound, KEGG Drug, PubChem 
Compound, RxNorm [81] and TTD (Therapeutic Target 
Database) [82]. 

 Ensembl [83] – Got information about genes, such as 
names, symbols and biological database identifiers: Ensembl 
and HGNC (Human Gene Nomenclature) [84]. 

 Gene Ontology [85] – Information about gene annotations 
and mapping between gene ontology terms and proteins 
(UniProt accession numbers). 

 HGNC – Got information about genes, such as names, 
name synonyms, symbols, symbol synonyms, and biological 
repository identifiers: Ensembl, HGNC e NCBI (National 
Center for Biotechnology) [86]. 

 HPRD (Human Protein Reference Database) [87] – 
Information about the proteins and their interactions (UniProt 
accession number). 

 KEGG Brite [88] – Got information about target-based 
classification of drugs (KEGG Drug identifiers). 

 OFFSIDES [89] – Got information about adverse drug 
reactions: MedDRA (Medical Dictionary for Regulatory 
Activities) [90], RxNorm identifiers and frequency. 

 NCBI – Got information about genes, including names, 
name synonyms, symbols, symbol synonyms and biological 
database identifiers: Ensembl and NCBI.  

 Pfam [91] – Got information about protein domains: Pfam 
identifiers. 

 PathBank [92] – Got information about pathways through 
which drugs act: species (homo sapiens). 

Reactome [93] – Got information about pathways through 
which drugs act: species Reactome [93] – Got information 
about pathways through which drugs act: species (homo 
sapiens), ChEBI, DrugBank, PathBank and Reactome 
identifiers. 

 Sider [94] – Got information about adverse drug reactions, 
including mappings and frequencies of side effects. The 
mapping is between UMLS (Unified Medical Language 
System) concept [95] and MedDRA identifiers, choosing only 
mappings with the term PT (preferred term). Additionally, 
only frequencies of side effects with the term PT containing 
the following fields: stitch stereo identifier, description of 
frequency (very frequent, very common, frequent, common, 
uncommon, infrequent, rare, very rare and postmarketing), 
lower and upper frequencies, and UMLS concept identifiers 
and side effect name. UMLs concept identifiers were 
converted to MedDRA identifiers, and the resulting frequency 
is according to whether there is a description of frequency, 
assigning the value 0.9 for very frequent or very common, 0.1 
– frequent or common, 0.01 – uncommon or infrequent, 0.001 
– rare or postmarketing and 0.0001 – very rare. If there is no 
description of frequency, then the mean between lower and 
upper frequencies is obtained. 
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 Stitch [96] – Got information between Stitch identifiers 
and other biological repositories, such as BindingDB, ChEBI, 
DrugBank and PubChem identifiers (homo sapiens). 
Additional information includes chemical-chemical 
connections (homo sapiens) – two chemical identifiers, values 
of similarity, experimental, database and a combined score. 
The final score from the connection between the two 
chemicals is given as a combined score, where values are 
greater than or equal to 850. 

  UniProt [97] – Got information about proteins, such as 
accession numbers, names, recommended names, alternative 
names, enzyme commission numbers, genes (symbol and 
Ensembl, HGNC, NCBI identifiers), gene ontology terms 
(biological process, molecular function and cellular 
component identifiers), Pfam domains and sequences. 

2.2. Networks 

 In this study, target and drug similarity networks were 
created. As these networks are undirected graphs, they 
constitute a set of node pairs (edges, links or interactions) that 
are connected, with all links being bidirectional. Details about 

the construction of these similarity networks can be seen in 
Fig. 1B and as follows 

2.3. Target-Target Similarity Network (TTS) 

TTS are biological networks composed of drug targets at 
their nodes and their connections occur through similarity 
between protein sequences, protein domains involved in 
adverse drug reactions [98], gene ontology annotations, 
enzyme-catalyzed reactions (enzymes are drug targets for a 
desirable therapeutic effect, in addition to the fact that they are 
related to causes of the adverse drug reactions) [98, 99], and 
direct interaction between two proteins in the protein-protein 
interaction networks (PPI). 

Predictive models for the TTS network result from the 
application of supervised learning algorithms (binary 
classifiers) to predict the similarity relationships of drug 
targets. Among the variety of machine learning algorithms, 
those widely used by drug repurposing predictions [100–102] 
are, in special, k-nearest neighbors (KNN), Naive Bayes 
(NB), logistic regression (LR), random forests (RFs) and 
support vector machines (SVMs).  

Fig. (1). Overview of computational drug repurposing for COVID-19, including biological database sets (A), predicting target-target and drug-
drug similarity networks using machine learning techniques (B) and recommending potential drugs for SARS-CoV-2 using genetic algorithms 
to find the best drugs, according to input variables (drug target classes and proteins) and predictive TTS Network (C). 
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With their parameters adjusted by hyperparameter 
optimization, algorithms were submitted to training, in order 
to choose a set of ideal hyperparameters for the machine 
learning algorithm according to the F1-score. Each of these 
generated hyperparameters models were evaluated by the 
cross-validation technique, dividing the dataset into ten 
subsets (10-fold) of the same size, where one subset was used 
for testing and the rest were used for the parameter estimation. 

2.4. Drug-Drug Similarity Network (DDS) 

 DDS are biological networks consisting of drugs in their 
nodes and their links are through similarity between 
molecules and chemicals, ATC codes, adverse drug reactions, 
targets, and pathways of drug actions. 

 As well as the TTS network, the development of the 
predictive model for the DDS networks succeeds by applying 
supervised learning algorithms (binary classifiers) to predict 
drug similarity relationships: KNN, NB, LR, RFs and SVMs. 
Furthermore, hyperparameter optimizations and 10-fold 
cross-validations were applied to each of the algorithms to 
select the best one based on the final evaluation (F1-score 
metric). 

2.5. Drug Recommendation 

 The drug recommendation process consists of ascertaining 
the best drugs as potential therapeutic targets for a particular 
disease, according to the inputs: a set of drug target classes 
and proteins involved in a given disease (Fig. 1C).  

Drugs are recommended for each drug target class, whose 
drug candidates (approved status) are obtained according to 
the target similarities found in the TTS predictive network, 
resulting in a drug-target interaction network in which the 
nodes correspond to drugs and proteins, and the links are only 
predictions between drugs and their targets. 

Once defined the drug-target interaction network, the 
parameters of the genetic algorithms (GA) are adjusted by 
hyperparameter optimization in order to find the best 
parameters capable of selecting one or more drug candidates 
as the best therapeutic target. Thus, the recommended drugs 
correspond to the union of the drug subsets found during each 
GA execution for the drug-target class and the set of proteins 
as input. 

3. RESULTS 

3.1. Input Variable Sets 

 Recommendation of drugs for SARS-CoV-2 was 
performed with the purpose of discovering potential 
therapeutic targets capable of blocking virus entry, inhibiting 
both virus transcription and replication, and reducing 
inflammation in the bronchi, lungs and pulmonary alveolus. 
Therefore, 12 target drug classes were chosen, according to 
some information found in the literature [103–108] relating 
the virus life cycle in the human body to G protein-coupled 
receptors, ion channels, nuclear receptors, protein kinases, 
cytokines and receptors, cell surface molecules and ligands, 

transporters, enzymes, nucleic acids, signaling molecules, 
cellular process and organismal systems, for example. 

 Finally, several studies found proteins associated with 
COVID-19, which were collected manually via the UniProt 
website [109]. It is surmised that these proteins can cover the 
entire SARS-CoV-2 life cycle in the human body. These 
include O15393, P07711, P09958, P17405, P33076, P51149, 
P52948, P62937, Q92499, Q96C10, Q9BYF1, Q9BYX4, 
Q9C000, Q9NRS4, Q9NVJ2, Q9UHD2, Q9Y2I7, O14786, 
O15455, O43765, O94826, O95721, P01185, P01889, 
P02649, P04233, P04439, P05109, P05161, P05231, P08887, 
P09429, P13164, P13747, P17181, P20701, P26715, P30556, 
P35232, P35613, P40189, P47901, P48551, P49754, P52292, 
P56962, P68104, P84022, Q01628, Q01629, Q10589, 
Q13241, Q13568, Q14653, Q16552, Q16553, Q16665, 
Q4KMQ2, Q5BJD5, Q7Z434, Q8IUC6, Q8N3R9, Q8NAC3, 
Q8NHX9, Q92985, Q96F46, Q96JC1, Q96PD4, Q99623, 
Q99836, Q9BV40, Q9NR97, Q9NYK1, and Q9Y6K9. 

3.2. Repositioned Drugs 

Table 1 shows 28 drug candidates recommended by the 
proposed system as potential therapeutic options for COVID-
19 according on the multi-target drug optimal. Such drugs are 
used for a variety of disorders, including bipolarity, 
schizophrenia, depression, cancers, hypertension, among 
others.   

3.3. Therapeutic Strategies 

Studies in the literature using in silico, in vitro, and in vivo 
experiments and hypotheses, try to explain the use of drugs 
for COVID-19 therapy. Table 2 briefly shows the details 
about these studies, whose investigations involve drugs 
blocking virus entry into the cell, inhibiting virus transcription 
and replication within the cell, and reducing the inflammation. 
This leads to the assumption that proteins provided to the 
system input fully contemplate the viruses’ role in humans and 
that the system is able to prescribe drugs to fight the entire 
virus life cycle infection. 

4. DISCUSSION 

Although vaccines have been the most promising and 
efficient therapeutic approaches to combat the COVID-19 
pandemic for the present [26–30], the time required to develop 
a functional vaccine and distribute it to multiple nations is still 
high [36–40]. As it is a mutant virus [21], current vaccines 
may not be highly effective against new variants, succeeding 
new studies and/or requiring multiple doses [41, 42]. Taking 
these issues into consideration, the drug repurposing already 
approved for clinical use can be extremely advantageous, and 
offer more accessible, cost-effective and accurate alternatives 
[44–46]. 

The present study was conducted to identify drugs as 
therapeutic targets for SARS-CoV-2. Analyzing datasets of 
several types and understanding the relationships between 
drugs and their targets, it was possible to discover new drug 
targets and new therapeutic options to fight COVID-19. 
Twenty-eight drugs related to several diseases, including 
bipolarity, cancers, depression, heart disease and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2022                   doi:10.20944/preprints202207.0004.v1

https://doi.org/10.20944/preprints202207.0004.v1


6    Preprints  
 
schizophrenia, were found and indicated to combat the virus 
(Table 1). This corroborates evidence that the COVID-19 is a 
multisystemic disorder and suggests that the viruses’ 
mechanism of action presents some comorbidity with other 

human diseases, showing that diseases can share similar 
biological processes, functions and pathways. 

  

Table 1. Collection of existing drugs used for various disorders repurposed for the SARS-CoV-2 treatment. 

DrugBank ID Treatment candidates Indications 

DB00091 Cyclosporine Prophylaxis of organ rejection in allogeneic kidney, liver, and heart transplants 

DB00384 Triamterene Edema and hypertension 

DB00317 Gefitinib Non-small cell lung carcinoma 

DB00328 Indomethacin Osteoarthritis, rheumatoid arthritis, gouty arthritis, or ankylosing spondylitis and bursitis or tendinitis 

DB00619 Imatinib Leukemias, bone marrow disorders, tumors of the stomach and digestive system 

DB00715 Paroxetine Depression, major depressive disorder, panic disorder, obsessivecompulsive disorder, anxiety 
disorders, post-traumatic stress disorder and premenstrual dysphoric disorder 

DB00927 Famotidine Duodenal ulcers, benign gastric ulcers, GERD, and Zollinger-Ellison syndrome 

DB00458 Imipramine Depression and reduced childhood enuresis 

DB01268 Sunitinib Some types of cancer tumors (stomach, intestines, esophagus, pancreas, or kidneys) 

DB01238 Aripiprazole Bipolar disorder, irritability associated with autism spectrum disorder, schizophrenia and Tourette's 
disorder 

DB01204 Mitoxantrone Prostate cancer, leukemia, progressive or relapsing multiple sclerosis 

DB00313 Valproic acid Seizure disorders, manic episodes related to bipolar and migraine headaches 

DB00640 Adenosine Paroxysmal supraventricular tachycardia 

DB00620 Triamcinolone Allergic disorders, skin conditions, ulcerative colitis, arthritis, lupus, psoriasis, or breathing disorders 

DB00783 Estradiol Menopause symptoms, osteoporosis in menopausal women, low estrogen levels in women with 
ovarian failure, types of breast cancer and prostate cancer 

DB00988 Dopamine Hemodynamic imbalances, poor perfusion of vital organs, low cardiac output, and hypotension 

DB01023 Felodipine Hypertension 

DB02546 Vorinostat Cutaneous T-cell lymphoma 

DB00201 Caffeine Increase alertness, apnea of prematurity in infants, bronchopulmonary dysplasia caused by premature 
birth, energy supplements, athletic enhancement products, pain relief products and cosmetic products 

DB00420 Promazine Schizophrenia 

DB00227 Lovastatin Lower LDL cholesterol and reduce the risk of cardiovascular disease 

DB00563 Methotrexate Leukemia, some types of cancer (skin, head and neck, lung, or uterus), psoriasis, rheumatoid arthritis 
and juvenile rheumatoid arthritis 

DB00997 Doxorubicin Cancer 

DB00843 Donepezil Alzheimer’s Disease 

DB01197 Captopril Hypertension, congestive heart failure, kidney problems caused by diabetes and heart attack 

DB01196 Estramustine Metastatic or progressive prostate cancer 

DB01396 Digitoxin Congestive cardiac insufficiency, arrhythmias and heart failure 

DB01229 Paclitaxel Breast cancer, ovarian cancer, lung cancer and AIDS-related Kaposi's sarcoma 
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 In fact, the World Health Organization found there are no 
therapeutic agents capable of fully combating COVID-19, 
while some drugs have been recommended for patients with 
specific conditions [25]. None of the twenty-eight drugs 
indicated for COVID-19 was able to fight the virus 

completely, but only partially, in which most studies have 
been conducted in vitro and in vivo (Table 2). Similar to 
cocktails for cancer and HIV [68], perhaps more 
comprehensive drug investigation can aid in combating 
COVID-19 as well. Studies have suggested that more drug 

Table 2. List of drugs identified separated by investigative categories for treating SARS-CoV-2 patients. 

Treatment candidates Discovery Description References 

Host Cell Targets    

Captopril In vitro, in vivo May inhibit viral entry to the host cell [109] 

Doxorubicin In silico, in vitro Can inhibit viral entry to the host cell [110, 111] 

Estradiol In vitro Can promote cell protection against SARS-CoV-2 [112] 

Felodipine In vitro Can inhibit viral entry to the host cell [113] 

Promazine In vitro May block viral entry to the host cell [114] 

Sunitinib In silico, in vitro May inhibit viral entry to the host cell [115] 

Virus targets    

Caffeine In silico Can control coronavirus replication [116] 

Digitoxin In vitro May inhibit SARS-CoV-2 replication [117] 

Estramustine In silico May inhibit SARS-CoV-2 replication [118] 

Famotidine In vivo May inhibit SARS-CoV-2 replication [119] 

Imipramine In vitro Reduces the viral infection [120] 

Mitoxantrone In silico May inhibit replication [121] 

Methotrexate In vitro Can inhibit viral replication [122] 

Paclitaxel In silico May have potential antiviral properties, however for treating the virus infection nothing is 
well established 

[123] 

Triamcinolone In silico May inhibit SARS-CoV-2 replication [124] 

Triamterene In silico May inhibit SARS-CoV-2 replication [118] 

Adjunctive therapy    

Adenosine In vivo Reduces inflammation [125] 

Aripiprazole In silico, in vivo Reduces inflammation [126, 127] 

Cyclosporine In vivo Reduces mortality [128] 

Imatinib In vivo Might reduce mortality [129] 

Lovastatin In vivo May lower risk of mortality [130] 

Paroxetine In silico May reduce mortality and decrease rates of hospitalization [131] 

Vorinostat In silico May reduce inflammation [132] 

Mixed actions    

Donepezil Hypothesis May block or delay clinical deterioration [133] 

Dopamine Hypothesis May be involved in entry and propagation of viruses [134] 

Indomethacin In vivo Can inhibit replication, having both anti-inflammatory and antiviral activity [135] 

Gefitinib Hypothesis May inhibit viral entry, metabolism or reproduction [136] 

Valproic acid Hypothesis May inhibit viral entry to the host cell and may reduce inflammation [137] 
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combinations might be better to minimizing adverse reactions, 
increase synergy and efficacy [138–140]. Besides, the use of 
drug in combination might fully cover the role of human 
coronavirus, such as blocking the virus entry into the cell, 
inhibiting virus transcription and replication within the cell, 
and reducing inflammation which makes it difficult for lungs 
to absorb and transport oxygen to the rest of the body. 

 Some efforts have been directed towards the discovery 
synergistic drug combinations [139–141]. Similarly, the drugs 
hypothesized to fight COVID-19 (Table 2) might be better 
used as a cocktail to fight the virus, including six drugs which 
block COVID-19 infection, ten which inhibit virus 
replication, seven which reduce inflammation and five 
therapeutic agents with multiple mechanisms of action. 
Combining one or more drugs from those categories might 
result in better therapeutic approaches for patients, however it 
is necessary clinical studies to validate this hypothesis. 

 Despite the fact that the results indicate drug relationships 
for COVID-19, the best combination or synergy of these drugs 
is still unknown. In this sense, further studies with in vitro and 
in vivo experiments are essential to validate effective drug 
combinations. Additionally, there may be several potential 
drug combinations to treat different cases in COVID-19 
patients, which require precise and synergistic drug 
approaches for therapies guided by individual genomic 
profiles. 

 This computational framework was able to discover new 
drug targets through TTS prediction, however using DDS 
prediction in conjunction with TTS might result in better drug 
recommendations for the disease. Drug synergy studies are 
also important and can be included in the drug 
recommendation step, possibly becoming the system more 
effective for drug repurposing. 

CONCLUSION 

 The COVID-19 pandemic has brought several challenges, 
especially within both the healthcare system and economic 
sectors [24]. Due to this emergency, repurposing existing 
drugs has been an important therapeutic approach to fight the 
coronavirus. Computational methods are a great opportunity 
for preliminary filtering of drug candidates, while also saving 
time, effort and financial resources [48, 56]. This research has 
aimed at developing a computational system which 
recommends existing drugs as potential therapeutic targets for 
SARS-CoV-2 making use of integrative analysis of biological 
data sets and artificial intelligence techniques. 

 Results have indicated 28 drugs which could be effective 
for COVID-19. However, in order to discover their best 
combination and synergy, further in vitro and in vivo studies 
are still necessary. Even though there are some limitations, 
this computational framework may provide a great option for 
repurposing drugs for COVID-19, offering new perspectives 
for precision drug and medicine. 
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AIDS =  Acquired Immunodeficiency Syn-

drome 
ATC = Anatomical Therapeutic Chemical 
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COVID-19 = Coronavirus Disease 2019 
DDS  = Drug-Drug Similarity 
DNA  = Deoxyribonucleic Acid 
DTI = Drug-Target Interactions 
GA = Genetic Algorithms 
GERD = Gastroesophageal Reflux disease 
HCoVs = Human Coronaviruses 
HGNC = Human Gene Nomenclature 
HIV = Human Immunodeficiency Virus 
HPRD = Human Protein Reference Database 
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plied Chemistry 
KEGG = Kyoto Encyclopedia of Genes and 

Genomes 
KNN = K-Nearest Neighbors 
LDL = Low-Density Lipoproteins 
LR = Logistic Regression 
MedDRA = Medical Dictionary for Regulatory 
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MERS-CoV = Middle East respiratory Syndrome 

Coronavirus 
mRNA = Messenger RNA 
NB = Naive Bayes 
NCBI = National Center for Biotechnology 
PPI = Protein-Protein Interaction 
PT = Preferred Term 
RFs = Random Forests 
RNA = Ribonucleic Acid 
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SARS-CoV-2 = Severe Acute Respiratory Syndrome 
Coronavirus 2 

SMILES = Simplified Molecular Input Line 
Entry System 

SVMs = Support Vector Machines 
TTD = Therapeutic Target Database 
TTS = Target-Target Similarity Network 
UMLS = Unified Medical Language System 
UNII = Unique Ingredient Identifier 
WHO = World Health Organization 
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