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Abstract: The COVID-19 was described as a respiratory illness, however further studies recognize it as a complex heterogeneous multisystemic
disorder. Global efforts have been proposed to combat COVID-19, emerging diverse therapeutic options, in which discovering new drug
therapies, development of vaccines and drug repurposing have been considered the most promising approaches to fight the virus. This study
aimed to repurpose known drugs for use against the COVID-19, finding better therapeutic options. Seventeen biological databases were used
in this study. The genetic algorithm (GA) was performed for a set of drug target classes and COVID-19 proteins as input, whose drug candidates
are obtained according to the target similarities found in the target-target similarity predictive network, resulting in a drug-target interaction
network. Thus, recommended drugs correspond to the union of the drug subsets found during each GA execution. Twenty-eight drugs were
indicated to be the best therapeutic targets for the virus, in special, the Cyclosporine drug was administered as adjuvant to steroid treatment for
COVID-19 patients which showed positive outcomes, reducing mortality in moderate and severe cases. The drugs found have used to treat
other diseases, evidencing that the COVID-19 is a multisystemic disorder and suggests that the viruses’ mechanism of action presents some
comorbidity with other human diseases. Evidence shows that the drugs found in this research might act together to fight the virus in a broader

fashion, however further studies including in vitro and in vivo experiments are needed to find the best combination of these drugs.
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1. INTRODUCTION

A local outbreak of pneumonia of initially unknown causes
was detected in December 2019 in Wuhan city, Hubei
Province (China), a city with 11 million inhabitants. The cause
behind this pneumonia was further determined as a new
coronavirus, called new coronavirus 2019 (2019-nCoV),
which in turn causes the severe acute respiratory syndrome
coronavirus 2 infection (SARS-CoV-2), also called
coronavirus disease (COVID-19) [1-3].

On March 11, 2020, the World Health Organization
(WHO) declared COVID-19 to be a global pandemic [4, 5].
This highly contagious disease, transmitted between humans

by both oral and nasal routes via activities such as talking,
breathing, coughing, and sneezing [6—8], has spread slightly
to more than 185 countries with over 271,963,258 confirmed
cases and 5,331,019 confirmed deaths [9]. Symptoms can be
life-threatening, with a higher lethality rate in the elderly and
people with underlying health conditions [10, 11]. However,
the most common clinical manifestations have been fever, dry
mouth and cough, fatigue, loss of taste and smell, and
shortness of breath [12].

Although early reports described the disease caused by
SARS-CoV-2 as a respiratory illness, in some cases leading to
viral pneumonia, further studies recognize that COVID-19 is
a complex heterogeneous multisystemic disorder, affecting a
variety of organs such as lung, heart, kidneys, brain, among
others [13, 14], in addition to the fact that patients have

different symptoms and complications, such as
neuropsychiatric symptoms, endothelial dysfunction, hyper-
inflammatory state and thromboembolic disease [14].

Coronaviruses are enveloped RNA viruses belonging to
the Coronaviridae family that upon viewing under an electron
microscope present crown-like spikes on their surface [15—
17]. First identified in 1966 by Tyrrell and Bynoe,
coronaviruses affect several animal species including birds,
mammals such as bats, cattle, pigs, and humans [15, 16, 18-
20]. During pandemic outbreaks, some variants of the virus
began infecting humans (HCoVs), including Middle East
respiratory syndrome (MERS-CoV, 2014), Alpha (United
Kingdom, September-2020), Beta (South Africa, May-2020),
Gamma  (Brazil, November-2020), Delta  (India,
October2020), Eta (multiple countries, December-2020), Iota
(United States of America, November-2020), Kappa (India,
October-2020), Lambda (Peru, December-2020), Mu
(Colombia, January-2021) and Omicron (multiple countries,
November-2021) [21].

High rates of SARS-CoV-2 transmission, together with
their variants have been a global threat, and many countries
have adopted non-pharmaceutical health policy strategies,
such as social distancing, the use of face masks and contact
tracking as the best alternatives to reduce viral spread and
demands on healthcare [22, 23]. Furthermore, the viruses have
caused interruptions in healthcare systems and in business, in
addition to other aspects related to the daily lives of the
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population such as education, employment and transportation
[24].

Global efforts have been proposed to combat COVID-19,
the recent results of WHO’s Solidarity Clinical Trial have
revealed some efficient treatments and recommendations for
SARS-CoV-2, however the approved drugs have to be
administrated in some conditionals, including systemic
corticosteroids and tocilizumab or sarilumab with strong
recommendations in patients with severe and critical disease,
casirivimab and imdevimab with conditional
recommendations in cases of seronegative status (severe and
critical COVID-19) or highest risk of severe disease for those
with non-severe COVID-19 [25].

Therapeutic options are diverse and is increasing rapidly,
where the most significant efforts have been made in
discovering new drug therapies, involving virus targets, host
cell targets, adjunctive therapy, and developing vaccines [26—
301:

Virus targets — Use of medications to block virus
replication, e.g., atazanavir, azvudine, lopinavir, raltegravir,
ritonavir and vapreotide (human immunodeficiency virus —
HIV); bismuth potassium citrate and oseltamivir
(gastrointestinal); boceprevir, daclatasvir, ribavirin and
sofosbuvir (hepatitis C); carmofour (antineoplastic),
doxycycline (antibacterial) and famotidine (stomach ulcer),
favipiravir and triazavirin (influenza); fostamatinib disodium
(chronic immune thrombocytopenia), gliclazide (diabetes),
memantine (Alzheimer’s), penciclovir (herpes), natural
product platycodin D (respiratory tract and lung) and
remdesivir (Ebola) [27, 29-33].

Host cell targets — Comprises drugs that interfere with
infection and viral replication in the host cell, involving its
functions, pathways and proteins, such as arbidol (influenza),
azithromycin (antibacterial), camostat and nafamostat
mesylate (pancreatitis and reflux oesophagitis); captopril and
losartan (hypertension and renal/cardiovascular); chloroquine
phosphate and hydroxychloroquine (malaria); ivermectin
(anthelmintics), nitazoxanide (antiprotozoal), STI-1499
(antibody), teicoplanin (antibacterial), and the natural product
withanone [27, 29-33].

Adjunctive therapies — Molecules acting on the host’s
immune response to reduce inflammation, being baricitinib,
sarilumab and tocilizumab  (rheumatoid arthritis),
bevacizumab (cancer), colchicine (antigout), dexamethasone
and methylprednisolone (corticosteroid); and vitamins C and
D [27,29-33].

Vaccines — Considered the most effective method for
combating SARS-CoV-2. According to WHO, there are more
than 110 vaccines in clinical and more than 184 in pre-clinical
development distributed on various platforms, including live
attenuated: use of weakened virus (Sinovac), nucleic acid:
DNA or messenger RNA (mRNA) genetically modified from
the virus used to produce viral proteins in the body (Biotech-
Pfizer); subunit: may use one or part of the virus protein, or
even another protein similar to the virus structure (Novavax);
and viral vectors: another genetically modified virus used to
produce viral proteins in the body (Oxford-AstraZeneca) [30,
32,34, 35].
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Although vaccines for COVID-19 were developed in
much less time than conventional vaccines and many
countries have already adopted mass vaccination campaigns
[36], open questions remain regarding antigen optimization
and the duration of immunity potential [37]. Another
important factor is the high cost involved in the vaccine
development process, especially with the licensing time. This
can take many years [36], as in the case of the first Ebola
vaccine which took 43 years after the virus was discovered to
get approved [38-40].

Effectiveness of vaccines for new variants of SARS-CoV-
2 is of concern. New studies indicate a significant reduction
in protection against the new omicron variant [41, 42]. Despite
these studies are small and recent to know the exact level of
protection from vaccines or previous infection with SARS-
CoV-2, these studies suggest a third dose against omicron
[42]. Meanwhile, Pfizer-BioNTech and Moderna, mRNA
vaccine manufacturers for COVID-19 have begun the
development of an omicron-specific vaccine that could be
ready for delivery within 100 days [41, 42]. In light of these
facts and the current COVID-19 pandemic situation, drug
repurposing is then a powerful, fast and economical
alternative solution, which may provide evidence of new or
complementary treatments for the virus [43].

Drug repurposing can identify new therapeutic approaches
for known drugs [44]. Existing drugs under clinical
investigation or approved are safer and their toxicities are
known, representing less risk to patients. Time is halved and
the financial investment is about ten times less for drug
repositioning compared to the implementation of a new drug
[45], in addition to the lower risk of failure and use of
consolidated and operational pharmaceutical supply chains
for the production and distribution of medicines [46]. Another
encouraging fact of drug repurposing therapy is related to
reducing dosage levels and minimizing adverse reactions.
Moreover, this also may increase efficacy through drug
activity or synergy [47].

Computational approaches have been increasingly
employed in fighting SARS-CoV-2, offering new testable
hypotheses for new drug targets or systematic reuse of drug
candidates [48—54]. In contrast to in vitro and in vivo studies,
in silico studies are cheaper and faster approaches [48, 55],
and can be used to analyze a huge number of compounds, drug
combinations and biomedical data available. Therefore,
computational methods can be useful for the filtering step, and
for thoroughly evaluating medications which warrant a more
extensive, experimental, and clinical evaluation [43, 48, 56].

Computational strategies using machine learning has
contributed to the prediction of existing drugs with greater
potential for effectiveness COVID-19 treatment. Such an
approach has been used to predict drug-target interactions
(DTI) [43, 53, 57-59], indicating drug binding at the target
site, and which binding can cause changes in target behaviors
(most drug targets are related to the protein-coupled receptors,
enzymes and ion channels). Basically, computational methods
are used for DTIs involving ligand, docking and
chemogenomic methods [60]:
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Ligand methods: As a rule, similar molecules are
associated with similar protein targets [54, 60].

Docking methods: Identifies drug and protein
reactions by analyzing 3D structure [52, 60, 61].

Chemogenomic methods: Predictions are performed
using data from drug and protein omics,
encompassing machine learning methods (support
vector machine, random forest, k-nearest neighbor,
ensemble, artificial neural networks, and deep
learning) [53], graphs [54, 62] and networks
(protein-protein interactions, gene co-expression,
drug-drug interactions, and drug-gene and drug-
disease) [51, 53, 54, 60, 63—67].

Although artificial intelligence techniques can contribute
to drug repurposing, advances in pharmacogenetics and
pharmacogenomics indicate that therapies guided by
individual genomic profiles considerably improve the
treatment and curing of diseases, something already practiced
in other diseases such as in cancer [68]. Thus, host genetic
studies playing an important role in COVID-19 can evidence
human genetic determinants of the viruses, leading to
personalized treatment. This represents a unique opportunity
for drug repurposing in precision medicine [59, 69—72]. In this
context, the present study is proposed, focusing on
discovering new targets for existing drugs to fight COVID-19
with high precision provided by the application of integrative
analysis of biological datasets combined with artificial
intelligence techniques.

2. MATERIALS AND METHODS
2.1. Data Sources

Several biological data sources were collected and
submitted to data cleaning and wrangling for understanding
the relationships between drugs and proteins, as well as for
discovering new drug targets (Fig. 1A). The information
available in biological repositories is vast and of great value,
requiring data processing for better applicability to this study.
This is detailed below:

BindingDB [73] — Got information about protein-ligand
binding affinities, including InChl (International Chemical
Identifier) and the biological database identifiers: BindingDB,
ChEBI (Chemical Entities of Biological Interest) [74],
DrugBank [75], PubChem [76] and proteins (UniProt
accession numbers).

Brenda [77] — Got information about enzyme classes with
UniProt accession numbers.

ChEBI — Got information about ontological chemical
entities and biological database identifiers: ChEBI, DrugBank
accession number, KEGG (Kyoto Encyclopedia of Genes and
Genomes) Compound [78] and KEGG Drug [79].

DrugBank — Got information about the drugs, including
DrugBank identifiers (primary and secondary accession
numbers), name, name synonyms, status, molecular formula,
UNII (Unique Ingredient Identifier), CAS Registry Number,
SMILES (canonical simplified molecular), IUPAC name
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(International Union of Pure and Applied Chemistry), InChl,
InChl Key, ATC codes (Anatomical Therapeutic Chemical)
and biological repository identifiers: BindingDB, ChEBI,
PharmGKB [80], KEGG Compound, KEGG Drug, PubChem
Compound, RxNorm [81] and TTD (Therapeutic Target
Database) [82].

Ensembl [83] — Got information about genes, such as
names, symbols and biological database identifiers: Ensembl
and HGNC (Human Gene Nomenclature) [84].

Gene Ontology [85] — Information about gene annotations
and mapping between gene ontology terms and proteins
(UniProt accession numbers).

HGNC - Got information about genes, such as names,
name synonyms, symbols, symbol synonyms, and biological
repository identifiers: Ensembl, HGNC e NCBI (National
Center for Biotechnology) [86].

HPRD (Human Protein Reference Database) [87] —
Information about the proteins and their interactions (UniProt
accession number).

KEGG Brite [88] — Got information about target-based
classification of drugs (KEGG Drug identifiers).

OFFSIDES [89] — Got information about adverse drug
reactions: MedDRA (Medical Dictionary for Regulatory
Activities) [90], RxNorm identifiers and frequency.

NCBI — Got information about genes, including names,
name synonyms, symbols, symbol synonyms and biological
database identifiers: Ensembl and NCBI.

Pfam [91] — Got information about protein domains: Pfam
identifiers.

PathBank [92] — Got information about pathways through
which drugs act: species (homo sapiens).

Reactome [93] — Got information about pathways through
which drugs act: species Reactome [93] — Got information
about pathways through which drugs act: species (homo
sapiens), ChEBI, DrugBank, PathBank and Reactome
identifiers.

Sider [94] — Got information about adverse drug reactions,
including mappings and frequencies of side effects. The
mapping is between UMLS (Unified Medical Language
System) concept [95] and MedDRA identifiers, choosing only
mappings with the term PT (preferred term). Additionally,
only frequencies of side effects with the term PT containing
the following fields: stitch stereo identifier, description of
frequency (very frequent, very common, frequent, common,
uncommon, infrequent, rare, very rare and postmarketing),
lower and upper frequencies, and UMLS concept identifiers
and side effect name. UMLs concept identifiers were
converted to MedDRA identifiers, and the resulting frequency
is according to whether there is a description of frequency,
assigning the value 0.9 for very frequent or very common, 0.1
— frequent or common, 0.01 —uncommon or infrequent, 0.001
— rare or postmarketing and 0.0001 — very rare. If there is no
description of frequency, then the mean between lower and
upper frequencies is obtained.
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Fig. (1). Overview of computational drug repurposing for COVID-19, including biological database sets (A), predicting target-target and drug-
drug similarity networks using machine learning techniques (B) and recommending potential drugs for SARS-CoV-2 using genetic algorithms
to find the best drugs, according to input variables (drug target classes and proteins) and predictive TTS Network (C).

Stitch [96] — Got information between Stitch identifiers
and other biological repositories, such as BindingDB, ChEBI,
DrugBank and PubChem identifiers (homo sapiens).
Additional  information  includes  chemical-chemical
connections (homo sapiens) — two chemical identifiers, values
of similarity, experimental, database and a combined score.
The final score from the connection between the two
chemicals is given as a combined score, where values are
greater than or equal to 850.

UniProt [97] — Got information about proteins, such as
accession numbers, names, recommended names, alternative
names, enzyme commission numbers, genes (symbol and
Ensembl, HGNC, NCBI identifiers), gene ontology terms
(biological process, molecular function and cellular
component identifiers), Pfam domains and sequences.

2.2. Networks

In this study, target and drug similarity networks were
created. As these networks are undirected graphs, they
constitute a set of node pairs (edges, links or interactions) that
are connected, with all links being bidirectional. Details about

the construction of these similarity networks can be seen in
Fig. 1B and as follows

2.3. Target-Target Similarity Network (TTS)

TTS are biological networks composed of drug targets at
their nodes and their connections occur through similarity
between protein sequences, protein domains involved in
adverse drug reactions [98], gene ontology annotations,
enzyme-catalyzed reactions (enzymes are drug targets for a
desirable therapeutic effect, in addition to the fact that they are
related to causes of the adverse drug reactions) [98, 99], and
direct interaction between two proteins in the protein-protein
interaction networks (PPI).

Predictive models for the TTS network result from the
application of supervised learning algorithms (binary
classifiers) to predict the similarity relationships of drug
targets. Among the variety of machine learning algorithms,
those widely used by drug repurposing predictions [ 100—-102]
are, in special, k-nearest neighbors (KNN), Naive Bayes
(NB), logistic regression (LR), random forests (RFs) and
support vector machines (SVMs).
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With their parameters adjusted by hyperparameter
optimization, algorithms were submitted to training, in order
to choose a set of ideal hyperparameters for the machine
learning algorithm according to the Fl-score. Each of these
generated hyperparameters models were evaluated by the
cross-validation technique, dividing the dataset into ten
subsets (10-fold) of the same size, where one subset was used
for testing and the rest were used for the parameter estimation.

2.4. Drug-Drug Similarity Network (DDS)

DDS are biological networks consisting of drugs in their
nodes and their links are through similarity between
molecules and chemicals, ATC codes, adverse drug reactions,
targets, and pathways of drug actions.

As well as the TTS network, the development of the
predictive model for the DDS networks succeeds by applying
supervised learning algorithms (binary classifiers) to predict
drug similarity relationships: KNN, NB, LR, RFs and SVMs.
Furthermore, hyperparameter optimizations and 10-fold
cross-validations were applied to each of the algorithms to
select the best one based on the final evaluation (F1-score
metric).

2.5. Drug Recommendation

The drug recommendation process consists of ascertaining
the best drugs as potential therapeutic targets for a particular
disease, according to the inputs: a set of drug target classes
and proteins involved in a given disease (Fig. 1C).

Drugs are recommended for each drug target class, whose
drug candidates (approved status) are obtained according to
the target similarities found in the TTS predictive network,
resulting in a drug-target interaction network in which the
nodes correspond to drugs and proteins, and the links are only
predictions between drugs and their targets.

Once defined the drug-target interaction network, the
parameters of the genetic algorithms (GA) are adjusted by
hyperparameter optimization in order to find the best
parameters capable of selecting one or more drug candidates
as the best therapeutic target. Thus, the recommended drugs
correspond to the union of the drug subsets found during each
GA execution for the drug-target class and the set of proteins
as input.

3. RESULTS
3.1. Input Variable Sets

Recommendation of drugs for SARS-CoV-2 was
performed with the purpose of discovering potential
therapeutic targets capable of blocking virus entry, inhibiting
both virus transcription and replication, and reducing
inflammation in the bronchi, lungs and pulmonary alveolus.
Therefore, 12 target drug classes were chosen, according to
some information found in the literature [103—108] relating
the virus life cycle in the human body to G protein-coupled
receptors, ion channels, nuclear receptors, protein kinases,
cytokines and receptors, cell surface molecules and ligands,
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transporters, enzymes, nucleic acids, signaling molecules,
cellular process and organismal systems, for example.

Finally, several studies found proteins associated with
COVID-19, which were collected manually via the UniProt
website [109]. It is surmised that these proteins can cover the
entire SARS-CoV-2 life cycle in the human body. These
include 015393, P07711, P09958, P17405, P33076, P51149,
P52948, P62937, Q92499, Q96C10, Q9BYF1, Q9BYX4,
Q9C000, QINRS4, QINVI2, QOUHD2, Q9Y217, 014786,
015455, 043765, 094826, 095721, P01185, P01889,
P02649, P04233, P04439, P05109, P05161, P05231, P08887,
P09429, P13164, P13747, P17181, P20701, P26715, P30556,
P35232,P35613, P40189, P47901, P48551, P49754, P52292,
P56962, P68104, P84022, Q01628, Q01629, Q10589,
Q13241, Q13568, Q14653, Q16552, Q16553, QI16665,
Q4KMQ2, Q35BIJDS5, Q77434, Q8IUC6, Q8N3R9, Q8NAC3,
Q8NHX9, Q92985, Q96F46, Q96JC1, Q96PD4, Q99623,
Q99836, Q9BV40, QINRI7, QINYKI, and QIY6KO.

3.2. Repositioned Drugs

Table 1 shows 28 drug candidates recommended by the
proposed system as potential therapeutic options for COVID-
19 according on the multi-target drug optimal. Such drugs are
used for a wvariety of disorders, including bipolarity,
schizophrenia, depression, cancers, hypertension, among
others.

3.3. Therapeutic Strategies

Studies in the literature using in silico, in vitro, and in vivo
experiments and hypotheses, try to explain the use of drugs
for COVID-19 therapy. Table 2 briefly shows the details
about these studies, whose investigations involve drugs
blocking virus entry into the cell, inhibiting virus transcription
and replication within the cell, and reducing the inflammation.
This leads to the assumption that proteins provided to the
system input fully contemplate the viruses’ role in humans and
that the system is able to prescribe drugs to fight the entire
virus life cycle infection.

4. DISCUSSION

Although vaccines have been the most promising and
efficient therapeutic approaches to combat the COVID-19
pandemic for the present [26-30], the time required to develop
a functional vaccine and distribute it to multiple nations is still
high [36-40]. As it is a mutant virus [21], current vaccines
may not be highly effective against new variants, succeeding
new studies and/or requiring multiple doses [41, 42]. Taking
these issues into consideration, the drug repurposing already
approved for clinical use can be extremely advantageous, and
offer more accessible, cost-effective and accurate alternatives
[44-46].

The present study was conducted to identify drugs as
therapeutic targets for SARS-CoV-2. Analyzing datasets of
several types and understanding the relationships between
drugs and their targets, it was possible to discover new drug
targets and new therapeutic options to fight COVID-19.
Twenty-eight drugs related to several diseases, including
bipolarity, cancers, depression, heart disease and
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schizophrenia, were found and indicated to combat the virus human diseases, showing that diseases can share similar
(Table 1). This corroborates evidence that the COVID-19 is a biological processes, functions and pathways.

multisystemic disorder and suggests that the viruses’

mechanism of action presents some comorbidity with other

Table 1. Collection of existing drugs used for various disorders repurposed for the SARS-CoV-2 treatment.

DrugBank ID Treatment candidates Indications
DB00091 Cyclosporine Prophylaxis of organ rejection in allogeneic kidney, liver, and heart transplants
DB00384 Triamterene Edema and hypertension
DB00317 Gefitinib Non-small cell lung carcinoma
DB00328 Indomethacin Osteoarthritis, rheumatoid arthritis, gouty arthritis, or ankylosing spondylitis and bursitis or tendinitis
DB00619 Imatinib Leukemias, bone marrow disorders, tumors of the stomach and digestive system
DB00715 Paroxetine Depression, major depressive disorder, panic disorder, obsessivecompulsive disorder, anxiety

disorders, post-traumatic stress disorder and premenstrual dysphoric disorder

DB00927 Famotidine Duodenal ulcers, benign gastric ulcers, GERD, and Zollinger-Ellison syndrome

DB00458 Imipramine Depression and reduced childhood enuresis

DBO01268 Sunitinib Some types of cancer tumors (stomach, intestines, esophagus, pancreas, or kidneys)

DB01238 Aripiprazole Bipolar disorder, irritability associated with autism spectrum disorder, schizophrenia and Tourette's
disorder

DB01204 Mitoxantrone Prostate cancer, leukemia, progressive or relapsing multiple sclerosis

DB00313 Valproic acid Seizure disorders, manic episodes related to bipolar and migraine headaches

DB00640 Adenosine Paroxysmal supraventricular tachycardia

DB00620 Triamcinolone Allergic disorders, skin conditions, ulcerative colitis, arthritis, lupus, psoriasis, or breathing disorders

DB00783 Estradiol Menopause symptoms, osteoporosis in menopausal women, low estrogen levels in women with

ovarian failure, types of breast cancer and prostate cancer

DB00988 Dopamine Hemodynamic imbalances, poor perfusion of vital organs, low cardiac output, and hypotension
DB01023 Felodipine Hypertension

DB02546 Vorinostat Cutaneous T-cell lymphoma

DB00201 Caffeine Increase alertness, apnea of prematurity in infants, bronchopulmonary dysplasia caused by premature

birth, energy supplements, athletic enhancement products, pain relief products and cosmetic products

DB00420 Promazine Schizophrenia
DB00227 Lovastatin Lower LDL cholesterol and reduce the risk of cardiovascular disease
DB00563 Methotrexate Leukemia, some types of cancer (skin, head and neck, lung, or uterus), psoriasis, rheumatoid arthritis

and juvenile rheumatoid arthritis

DB00997 Doxorubicin Cancer

DB00843 Donepezil Alzheimer’s Disease

DB01197 Captopril Hypertension, congestive heart failure, kidney problems caused by diabetes and heart attack
DB01196 Estramustine Metastatic or progressive prostate cancer

DB01396 Digitoxin Congestive cardiac insufficiency, arthythmias and heart failure

DB01229 Paclitaxel Breast cancer, ovarian cancer, lung cancer and AIDS-related Kaposi's sarcoma
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Table 2. List of drugs identified separated by investigative categories for treating SARS-CoV-2 patients.

Treatment candidates Discovery Description References
Host Cell Targets

Captopril In vitro, in vivo May inhibit viral entry to the host cell [109]

Doxorubicin In silico, in vitro Can inhibit viral entry to the host cell [110,111]
Estradiol In vitro Can promote cell protection against SARS-CoV-2 [112]
Felodipine In vitro Can inhibit viral entry to the host cell [113]
Promazine In vitro May block viral entry to the host cell [114]
Sunitinib In silico, in vitro May inhibit viral entry to the host cell [115]

Virus targets
Caffeine In silico Can control coronavirus replication [116]
Digitoxin In vitro May inhibit SARS-CoV-2 replication [117]
Estramustine In silico May inhibit SARS-CoV-2 replication [118]
Famotidine In vivo May inhibit SARS-CoV-2 replication [119]
Imipramine In vitro Reduces the viral infection [120]
Mitoxantrone In silico May inhibit replication [121]
Methotrexate In vitro Can inhibit viral replication [122]
Paclitaxel In silico May have potential antiviral properties, however for treating the virus infection nothing is [123]
well established
Triamcinolone In silico May inhibit SARS-CoV-2 replication [124]
Triamterene In silico May inhibit SARS-CoV-2 replication [118]
Adjunctive therapy

Adenosine In vivo Reduces inflammation [125]

Aripiprazole In silico, in vivo Reduces inflammation [126, 127]
Cyclosporine In vivo Reduces mortality [128]
Imatinib In vivo Might reduce mortality [129]
Lovastatin In vivo May lower risk of mortality [130]
Paroxetine In silico May reduce mortality and decrease rates of hospitalization [131]
Vorinostat In silico May reduce inflammation [132]

Mixed actions

Donepezil Hypothesis May block or delay clinical deterioration [133]
Dopamine Hypothesis May be involved in entry and propagation of viruses [134]
Indomethacin In vivo Can inhibit replication, having both anti-inflammatory and antiviral activity [135]
Gefitinib Hypothesis May inhibit viral entry, metabolism or reproduction [136]
Valproic acid Hypothesis May inhibit viral entry to the host cell and may reduce inflammation [137]

In fact, the World Health Organization found there are no
therapeutic agents capable of fully combating COVID-19,
while some drugs have been recommended for patients with
specific conditions [25]. None of the twenty-eight drugs
indicated for COVID-19 was able to fight the virus

completely, but only partially, in which most studies have
been conducted in vitro and in vivo (Table 2). Similar to
cocktails for cancer and HIV [68], perhaps more
comprehensive drug investigation can aid in combating
COVID-19 as well. Studies have suggested that more drug
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combinations might be better to minimizing adverse reactions,
increase synergy and efficacy [138—140]. Besides, the use of
drug in combination might fully cover the role of human
coronavirus, such as blocking the virus entry into the cell,
inhibiting virus transcription and replication within the cell,
and reducing inflammation which makes it difficult for lungs
to absorb and transport oxygen to the rest of the body.

Some efforts have been directed towards the discovery
synergistic drug combinations [139—141]. Similarly, the drugs
hypothesized to fight COVID-19 (Table 2) might be better
used as a cocktail to fight the virus, including six drugs which
block COVID-19 infection, ten which inhibit virus
replication, seven which reduce inflammation and five
therapeutic agents with multiple mechanisms of action.
Combining one or more drugs from those categories might
result in better therapeutic approaches for patients, however it
is necessary clinical studies to validate this hypothesis.

Despite the fact that the results indicate drug relationships
for COVID-19, the best combination or synergy of these drugs
is still unknown. In this sense, further studies with in vitro and
in vivo experiments are essential to validate effective drug
combinations. Additionally, there may be several potential
drug combinations to treat different cases in COVID-19
patients, which require precise and synergistic drug
approaches for therapies guided by individual genomic
profiles.

This computational framework was able to discover new
drug targets through TTS prediction, however using DDS
prediction in conjunction with TTS might result in better drug
recommendations for the disease. Drug synergy studies are
also important and can be included in the drug
recommendation step, possibly becoming the system more
effective for drug repurposing.

CONCLUSION

The COVID-19 pandemic has brought several challenges,
especially within both the healthcare system and economic
sectors [24]. Due to this emergency, repurposing existing
drugs has been an important therapeutic approach to fight the
coronavirus. Computational methods are a great opportunity
for preliminary filtering of drug candidates, while also saving
time, effort and financial resources [48, 56]. This research has
aimed at developing a computational system which
recommends existing drugs as potential therapeutic targets for
SARS-CoV-2 making use of integrative analysis of biological
data sets and artificial intelligence techniques.

Results have indicated 28 drugs which could be effective
for COVID-19. However, in order to discover their best
combination and synergy, further in vitro and in vivo studies
are still necessary. Even though there are some limitations,
this computational framework may provide a great option for
repurposing drugs for COVID-19, offering new perspectives
for precision drug and medicine.
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COVID-19 = Coronavirus Disease 2019

DDS = Drug-Drug Similarity

DNA = Deoxyribonucleic Acid

DTI = Drug-Target Interactions

GA = Genetic Algorithms

GERD = Qastroesophageal Reflux disease

HCoVs = Human Coronaviruses

HGNC = Human Gene Nomenclature

HIV = Human Immunodeficiency Virus

HPRD = Human Protein Reference Database

IUPAC = International Union of Pure and Ap-
plied Chemistry

KEGG = Kyoto Encyclopedia of Genes and
Genomes

KNN = K-Nearest Neighbors

LDL = Low-Density Lipoproteins

LR = Logistic Regression

MedDRA = Medical Dictionary for Regulatory
Activities

MERS-CoV = Middle East respiratory Syndrome
Coronavirus

mRNA = Messenger RNA

NB = Naive Bayes

NCBI = National Center for Biotechnology

PPI = Protein-Protein Interaction

PT = Preferred Term

RFs = Random Forests

RNA = Ribonucleic Acid
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Entry System

SVMs Support Vector Machines

TTD = Therapeutic Target Database

TTS = Target-Target Similarity Network

UMLS = Unified Medical Language System

UNII = Unique Ingredient Identifier

WHO = World Health Organization
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