The structure of wound dressing materials presents one of the most relevant characteristics for effective skin tissue repair. Electrospinning is a common technique used to produce polymeric fibres that can mimic fibrillar disposition of skin extracellular matrix, favouring cell migration, and thus regeneration of the damaged tissue. Moreover, beads, also known as by-products of electrospinning, have potential as reservoirs for sustained drug release. Processing parameters, such as molecular weight and viscosity of the polymer solution, can affect the desirable morphologies of electrospun films. Thereby, this work had the purpose of producing and characterized electrospun polycaprolactone (PCL) mats loaded with propolis, a popular extract in traditional medicine with potential for skin repair aid. Films with different morphologies were obtained depending on the storage period of the solution prior to the lectrospinning, probably due to the PCL hydrolysis. FTIR analyses of the extract confirmed propolis composition. GPC and viscosity analyses demonstrated that the decrease in molar mass over the storage period was responsible for nanostructure diversity. Propolis acts as a lubricant agent, affecting the spun solutions' viscosity and the thermal properties and hydrophilicity of the films. All films are within the value range of the water vapour transpiration rate of the commercial products. The presence of beads did not affect the propolis release pattern. However, "in vitro" wound healing assay showed that propolis-loaded films composed by beaded fibres increased the cell migration process. Thus, it can be inferred that these films presented the potential for wound dressing application.
Keywords:
Subject: Chemistry and Materials Science - Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.