Impervious surface area (ISA) is a crucial indicator for quantitative urban studies. It is also important for land use land cover classification, groundwater recharge, sustainable development, urban heat island effects, and more. Spectral ISA mapping suffers from mixed pixel problems, especially with bare soil. This study aims to develop an ISA index for spatiotemporal urban mapping from common multispectral bands by reducing soil signature better than in previous studies. This study proposed a global impervious surface area index (GISAI) enhancing ISA mapping accuracy using a temporal parameter of the remote sensing (RS) dataset. Bare soil spectral reflectance shows more fluctuation than urban ISA. Therefore, the study uses minimum composites of earlier urban indices to compile minimum soil signature. It is later improved by removing water, increasing the contrast between bare soil and urban ISA and reducing bright bare soil area. This study maps the ISA of all 12 megacities using the annual RS image collection from 2021. GISAI reduced the bare soil signature and achieved an overall accuracy of 87.29%, F1-score of 0.84, and Kappa coefficient of 0.75. However, it has some limitations with grey bare soil and barren hilly areas. By limiting bare soil signature, GISAI broadens the scope of inter-urban studies globally and lengthens potential urban time-series analysis using common multispectral bands.
Keywords:
Subject:
Environmental and Earth Sciences - Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.