Preprint
Article

Natural Language Processing Methods for Scoring Sustainability Reports – A Study of Nordic Listed Companies

Altmetrics

Downloads

252

Views

131

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 July 2022

Posted:

06 July 2022

You are already at the latest version

Alerts
Abstract
This paper investigates if Corporate Social Responsibility (CSR) reports published by a selected group of Nordic companies are aligned with the Global Reporting Initiative (GRI) standards. To achieve this goal, several natural language processing, and text mining techniques were implemented and tested. We extracted strings, corpus, and hybrid semantic similarities from the reports and evaluated the models through the intrinsic assessment methodology. A quantitative ranking score based on index matching was developed to complement the semantic valuation. The final results show that Latent Semantic Analysis (LSA) and Global Vectors for Word Representation (GloVE) are the best methods for our study. Our findings will open the door to the automatic evaluation of sustainability reports which could have a strong impact on the environment.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated