Preprint
Article

Numerical Investigation of Photo Generated Carrier Recombination Dynamics on the Device Characteristics for the Perovskite/Carbon Nitride Absorber Layer Solar Cell

Altmetrics

Downloads

287

Views

177

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

12 October 2022

Posted:

12 October 2022

You are already at the latest version

Alerts
Abstract
Herein we foremost detailed the numerical modeling of the double absorber layer- methyl ammonium lead iodide– carbon nitride layer solar cell and subsequently provided in-depth insight on the active layer associated with dominant radiative and non-radiative recombination losses limiting the efficiency ( ) of the solar cell. Under recombination kinetics phenomena, we explored the influence of Radiative recombination, Auger recombination, Shockley Read Hall recombination, the energy distribution of defects; Band Tail recombination (Hoping Model), Gaussian distribution, metastable defect states including single donor (0/+), single acceptor (-/0), Double Donor (0/+/2+), double acceptor (2/-/0-), and the interface layer defects on the output characteristics of the solar cell. Setting defect (or trap) density to with uniform energy distribution of defects for all the layers, we achieved the of 24. 16 %. A considerable enhancement in power conversion efficiency was perceived as we reduced the trap density to for the absorber layers. Further, it was observed that for the absorber layer with double donor defect states, the active layer should be carefully synthesized to reduce crystal order defects to keep the total defect density as low as to achieve efficient device characteristics
Keywords: 
Subject: Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated