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Abstract: For a long time, physicists always directly use mathematical tools to deal with physical 

problems, and few people pay attention to the difference between mathematical theory and physical 

theory. Just like the dilemma that physicists once faced when dealing with the problem of blackbody 

radiation function. 

By analyzing the difference between the theoretical basis of mathematics and the theoretical basis 

of physics, this paper draws the following conclusions: (1) The theoretical basis of mathematics and 

the theoretical basis of physics are different, so when we use mathematical tools for physics research, 

we need to be very careful. (2) Finiteness and discreteness should be the basis of the whole physical 

theory; This paper points out that it is not advisable to use infinite "∞" and infinitesimal "0" without 

restriction and demonstration in physics, as well as the continuity of functions, which will bring a 

lot of trouble to physical theory. 

At the same time, through the analysis of Banach-Tarski paradox and Bertrand paradox, this paper 

proposes that if we revise the basic assumptions of probability theory: assuming that "points" have 

quantized sizes, and "lines" also have quantized widths. After the correction, we can not only avoid 

the troubles caused by Bertrand paradox, but also make probability theory better for practical ap-

plication. 

Keywords: infinity; infinitesimal; continuity; finiteness; discreteness; Banach-Tarski paradox; Ber-
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1. Introduction 

For a long time, physicists have been directly using mathematical tools to deal with 

physical problems, and acquiesced in the rationality of mathematical tools in dealing with 

physical problems; at the same time, mathematicians have also directly applied mathe-

matics to explain many practical problems, and acquiesce in the rationality of this way. 

Few people notice that in fact the theoretical foundations of mathematics and physics 

are different, for example: 

1) In mathematics, we define a "point" as having no size. In geometry, what is 

mapped to a straight line is the set of real numbers " R". This mapping relationship is self-

consistent and reasonable in mathematical theory. Otherwise, the mapping relationship 

between geometry and coordinates will be confused. 

However, theoretical applications based on this assumption can be problematic in 

practical applications in physics or other fields. Because we have not yet experimentally 

confirmed the existence of matter without size, at least the current physical theory limits 

the length to the "Planck length". 

Therefore, in fact, the assumption basis of mathematical theory is very different from 

that of physical theory. When we use mathematical tools to deal with physical problems, 

we must be careful, otherwise we will make mistakes. 
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2) In geometry, functions y = f(�) tend to be continuous; however, we know that 

in the physical world, we face almost all discrete cases. 

The foundation of the entire quantum mechanics is both quantized and discretized; 

the laws of physics are built on a discrete basis. 

If we do not limit the mathematical tools, there will be many problems in the appli-

cation, just as the physicists faced the dilemma of the black body radiation distribution 

function in those days [ 1-3 ] . 

This paper hopes to avoid problems in the application of mathematical theory to 

physics by strictly defining and distinguishing the theoretical foundations of mathematics 

and physics. 

2. The boundaries of mathematics in physics 

2.1. Application Boundaries of Infinite “∞ ” and Infinitesimal “0” 

1) In mathematical theory, the use of "∞ " and "0" is natural, whether it is infinity or 

infinitesimal, it is an important symbol and variable in the field of mathematics. Moreover, 

the approximation of functions is often used to discuss and compare infinitely large and 

infinitesimal series problems. 

However, when we introduced " ∞" and "0" into the field of physics, we did not no-

tice the essential difference in the meanings of the symbols " ∞" and "0" in mathematics 

and physics. The foundation of the birth of " ∞" in the field of mathematics is our defini-

tion of "number", which is based on the high degree of abstraction of human thinking and 

the reasoning process of abstract objects; however, in the field of physics, no one has ever 

proved it. The real meaning and existence evidence of " ∞" and "0", for example, no one 

has proved that the energy of our universe is infinite, and no one has ever proved that our 

universe is infinite; our current physical theory also has strict restrictions on infinitesi-

mals, for example, restrictions on Planck length, energy, time, etc. 

2) The physical world is limited, there is no infinite " ∞" 

Taking energy conservation and momentum conservation as examples, in fact all 

forms of "conservation" are meaningful only under the premise of "limitation". This means 

that our universe is a universe with a finite structure, and it should also be a closed uni-

verse under the evolution of time. 

If the universe is infinite, or the direction of evolution tends to be infinite, then our 

laws of conservation of energy and momentum will become meaningless. 

For example: if a beam of light leaves an object, travels over time to infinity in the 

universe and never comes back, it makes no sense to talk about conservation of energy, 

which is somewhat similar to the second law of thermodynamics. For a universe whose 

evolution direction tends to be "infinity", when energy is dispersed and wants to gather 

again, a part of the energy must be consumed so that the energy of the universe can be 

gathered again. The law of conservation of energy is like the second law of thermodynam-

ics at this time. If it is not in an "isolated reversible system", there will be consumption, 

and energy will not be truly conserved for the universe as a whole. 

Therefore, our universe should be a closed universe, and the direction of evolution is 

also closed, not open. 

3) There is no infinitesimal "0" in the physical world 

For mathematics, infinitesimal is a concept based on mathematical theory, and it is 

indispensable to the entire mathematical system, so it is also a reasonable conclusion in 

line with the mathematical system. 

But for the real physical world, before we strictly prove the existence of infinitesimal 

"0", we should strictly distinguish the difference between infinitesimals in mathematics 

and physics. 

However, When we apply mathematical tools to physical systems, without re-

strictions, problems arise: 

For example: Newton's gravitational potential energy formula (1) and electric field 

potential energy formula (2) are as follows: 
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Where G is the gravitational constant, � =
�

����
. According to current theory, when � → 0 

the potential energy can be infinite if it tends to be infinitely small. Based on the gravita-

tional potential energy formula (or general relativity), we deduce the existence of black 

holes as singularities in the universe [ 4-5 ] . Regrettably, however, in the above black hole 

theory of gravity, the derivation process of the entire theory we use is based on mathe-

matics, not physics. 

So far, we have never strictly experimentally proved the specific value �� of the 

gravitational potential energy between two static masses M and objects m(of course, we 

are constantly trying to prove that there is a minimum distance for gravitational action 

between objects, but in fact this are two completely different problems, and it is not di-

rectly equivalent to the magnitude of the gravitational potential energy between two ob-

jects), and has never been strictly experimentally proved whether there really exists mat-

ter and gravitational effects under infinitely small radii. 

All our theoretical derivations are based on mathematics, not physics. What is wor-

rying, however, is that few people have clearly pointed out that there is actually a huge 

difference between the foundations of mathematical theories and the foundations of 

physical theories . 

We cannot arbitrarily use the tools of mathematics to deal with problems in physics 

unless based on rigorous experimental verification. 

As the author pointed out in another article: Our real physical world seems to be 

more inclined to " The gravitational potential energy �� and the electric field potential 

energy ��  between any two substances are finite", that is, the minimum radius of action 

of all fields such as electric field and gravitational field r, is a finite value, not an infini-

tesimal value [ 6 ] . 

Therefore, it is problematic to directly deduce the "black hole theory" based on the 

gravitational potential energy formula. At least the basis of this theory is currently a 

"mathematical" black hole theory; rather than a "black hole theory" based on physical the-

ory in the true sense. 

From this, we lead to the first theorem of the application of mathematical theory in 

physics: 

Theorem 1: The research object of physical theory is limited. In physical theory, 

there are no two limit cases of the infinite "∞ " and the infinitesimal " 0 ". 

2.2. Application Boundaries of "Continuity of Mathematical Functions" 

1) In mathematics, functions f(�) tend to be continuous. The theoretical starting 

point of the continuity theorem is our definition of "numbers". When all the "numbers" we 

define have no size, then we can define sets, mapping relationships, limits, Using the in-

finite approximation method, we finally rely on a set of set theory to define the continuity 

of the function. 

Based on the continuity of functions and our definition of the limits of functions, we 

apply this theory to various fields such as calculus, geometry, topology, etc. The proof of 

the entire mathematical theory is flawless because our original definition of logarithms 

determines the integrity of the edifice of mathematical theory and the self-consistency of 

the theory. 

2) However, in the practical application of physics, the problems we encounter are 

often not like this. 
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The foundations of our physics edifice: time, length, energy, and mass all have Planck 

minimum unit constraints. 

Time itself may be continuous (we have no way of knowing this at present), but all 

the physical phenomena we study, and the instruments we use to define time, are defined 

based on the "period T" in which matter operates , the most accurate timer we have in-

vented today is only a very high periodic frequency. Periodicity means "discreteness". 

The same is true for length. When we try to understand the size of microscopic matter 

(such as the size of an atom, the size of a nucleus, and the size of an electron), we still rely 

on the wavelength formula determined by the de Broglie wave function. Therefore, length 

is also discrete to the physical world. 

And energy, mass, through quantum mechanics, we found that when the depth of 

research is close to the physical limit, the basis of almost all physical units we face is almost 

discrete rather than continuous. 

3) Therefore, we have to be very careful not to make mistakes when we use the math-

ematical tools that have been developed in succession. Just as the blackbody radiation 

brought trouble to the entire physics community in the past [ 1-3 ] , if we hadn't gradually 

deepened our understanding of the concept of quantization, there would not be today's 

quantum mechanics and related theories of statistical physics based on quantization. 

Although at present, the quantization processing method has become common in the 

field of physics, but I think it will become more in-depth in the development of physics in 

the future. The basis of "discrete" has become the theoretical basis of the whole physics. 

Theorem 2: The object of physics research is discrete, not continuous. Thus, dis-

creteness is the basis of the entire theory of physics, as discovered by the theory of 

quantum mechanics . 

3. Modifications to the Assumptions of Mathematical Probability Theory 

We know that in general, the system of mathematical theory is self-consistent. Alt-

hough Gödel's incomplete theorem points out the dilemma faced by the completeness of 

mathematical theory, no major problems have been found in the application of basic dis-

ciplines such as number theory and geometry. 

However, with the development of mathematics itself and the expansion of applica-

tion fields, the connection between mathematics and physics has become more and more 

closely, the application of mathematical theory has become more and more practical, and 

the dependence on the physical world has become higher and higher. Among them, the 

most obvious belongs to probability theory. 

The theoretical basis of probability theory still uses the basic assumptions of mathe-

matics, such as: the definition of point, the definition of randomness, set theory and so on. 

As a result, we found many paradoxes in practical applications, such as: 

1) Bertrand paradox 

2) Banach -Tarski paradox (in mathematics it does not belong to the category of prob-

ability theory, but its essence is the same, so this article will discuss it here) 

Below, we will discuss the above two paradoxes in detail and find solutions to them 

fundamentally: 

3.1. Bertrand paradox 

Bertrand Paradox: "What is the probability that a chord in a circle is arbitrarily cho-

sen, and the chord length is greater than the side length of the inscribed equilateral trian-

gle of the circle?" 
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Figure 1. Bertrand paradox. 

There are three solutions as follows, and get different probabilities respectively: 

a) A chord inside a circle must have two intersections with the circle. We take any 

vertex of the inscribed equilateral triangle as point A. Make the chords in the circle all start 

from point A. The tangent DE of the circle through point A intersects the circle at point A. 

We set the angle between the chord through point A and the tangent AD to be �, as 

shown in Fig. 1(a), if the chord length is longer than the chord length of the equilateral 

triangle, there must be ∠�′�� ∈ (60°，120°). ie 60° < � <  120°. That is to say, among 

the chords starting from A, the chords whose chord length is longer than the side length 

of the equilateral triangle all fall within ∠BAC. The chords from point A that fall outside 

this area are all shorter than the sides of an equilateral triangle. So we apply the principle 

of indifference, which is uniformly distributed over the � interval [0°，180° ]. So we 

can get: 

� =

�
3
�

=
1

3
 

b) Pick a point at random on the diameter perpendicular to any side of the triangle, 

and make a chord perpendicular to the diameter through this point, as shown in Fig. 1(b), 

from the properties of a circle inscribed in an equilateral triangle, at this point the length 

of the chord is equal to the length of the side of the triangle when it is at the midpoint of 

the radius, and greater than the length of the side of the triangle when the point is less 

than the distance from the center of the circle 
�

�
. So the probability is: 

� =
1

2
 

c) We draw another inscribed circle of the triangle inside the inscribed equilateral 

triangle of the great circle, which intersects the three sides of the triangle respectively. As 

shown in Fig. 1(c), the radius of the small circle is R/2. The chord length of the random 

chord is longer than the side length of the equilateral triangle when the midpoint of the 

random chord is inside the small circle. We have no reason to say that the midpoint of the 

chord falls on a certain point within the small circle rather than other points, so according 

to the principle of indifference, it is considered to be uniformly distributed, then we can 

get: 

 

� =
� ∙ �

�
2

�
�

� ∙ ��
=

1

4
 

The research papers on the interpretation and solution of Bertrand paradox mainly 

focus on the following two ways: 
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1) Clarify the "method of randomized trials", e.g. L. Marinoff ( 1994 ) [ 7 ] and G. D' 

Agostini [8], Diederik Aerts1 and Massimiliano Sassoli de Bianchi ( 2014 ) [ 9 ] , most of the 

authors  have noticed the huge difference between Bertrand paradox between theory and 

practice. 

Mathematical theories can be extremely abstract, but when we introduce mathemat-

ics into probability theory, a theory so closely related to applications, we see the differ-

ence. Bertrand paradox is a typical representative, and we find that the above three prob-

ability models cannot be designed in the real world. 

Therefore, this has also become the main way for scholars to solve Bertrand  para-

dox. 

2) Some scholars believe that Bertrand itself does not want to raise a mathematical 

theoretical problem that bothers everyone, but expects to point out the importance of spec-

ifying "random selection method" in probability theory through Bertrand  paradox itself. 

For example Dominic Klyve ( 2013 ) [ 10 ] . 

Of course, some scholars believe that we have not yet found a real solution to Ber-

trand  paradox, such as Darrell P. Rowbottom ( 2013 ). [ 11 ] 

This article agrees with the solutions 1) and 2) above because: 

First, probability theory is an applied discipline, not a purely mathematical theoreti-

cal discipline. It has gradually got rid of the theoretical framework of pure mathematics 

and involved in practical application fields. Therefore, since probability theory is faced 

with practical applications, in any actual random experiment, we must first specify the 

"mode of random experiment". 

But unlike the above solutions, this article expects to explicitly point out the follow-

ing two points: 

Ⅰ. The cause of Bertrand  paradox is the mathematical theory itself. The assump-

tion in mathematics that "points" have no size and "lines" have no width is the root 

cause of the paradox . 

Ⅱ. Probability theory is an applied subject, so its theory is mainly applicable to 

applied fields rather than pure mathematical theoretical research. Therefore, it is nec-

essary for us to revise its theoretical basis: it is stipulated that "points" have sizes (pref-

erably to match the physical theory, defined as quantized), and "lines" have widths . 

Any theory, the theoretical assumption basis of its construction, should match the 

application category corresponding to its theory, otherwise the theory will lose its own 

meaning. 

Therefore, the purpose of our construction of probability theory is to carry out prac-

tical application in our real physical world, not to carry out pure theoretical research. Un-

der such a premise, we need to carefully examine whether the theoretical basis of proba-

bility theory matches its application scope. 

When the probability theory was constructed, it continued the relevant theoretical 

foundations in the field of mathematics: the definition of numbers, the definition of sets, 

the definition of elements, the definition of points, the definition of straight lines, etc., all 

directly followed the traditional theory of mathematics. But what mathematicians don't 

find is that probability theory has extended from the purely theoretical realm of mathe-

matics to practical applications, where our assumptions are no longer applicable and need 

to be revised. 

After modification, we will find that the theory of probability theory will become 

more self-consistent and more in line with its practical application. We still use Bertrand 

paradox as an example, but we make some modifications to it. As shown in the two cases 

b ) and c ) in Fig. 1: 

We abstract the problem again as: throw random "points" one by one into a circle, 

and ask the probability that these points are less than R /2 from the center of the circle. 

The first solution: If we assume that the "points" have no size, then the result will be 

consistent with b ) and c ) in the traditional Bertrand paradox , resulting in two different 

probabilities P = 1/ 4 and P =  1/2 . When we use the area method to solve the problem, 
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as in c ) , we get a probability of P = 1/ 4  ; and when we solve the problem with the 

probability of passing a point on the diameter of the center of the circle, as in b) Again , 

we would get a probability of P =  1/2 . 

The second solution: the solution after assuming that the "point" has a size (quanti-

zation) and the "line" has a width. 

When we assume that the points have sizes, then we find that the probabilities of b ) 

and c ) above will be uniformly P =  1/4 . Because the diameter passing through the cen-

ter of the circle is no longer an ideal mathematical situation: "never coincide", but presents 

the property that the closer to the center of the circle, the easier it is to coincide. In such a 

case, if we assume that the probability of quantized "points" within any area unit is equally 

random, then the probability of "points" distributed on the diameter will no longer be 

equal, but close to the center of the circle has a lower probability (because of the coinci-

dence), while regions close to the circumference have a higher probability. 

In this way, we revise Bertrand  paradox of probability, and at the same time, revise 

the inappropriate assumptions of probability theory. 

(Note: We do not discuss the case of a in Fig. 1 because it is difficult to implement 

this theoretical model in real experiments) 

3.2. Banach -Tarski paradox (abbreviated as: Ball sharing paradox) 

In 1924, Stefan Banach and Alfred Tarski first proposed this theorem. This theorem 

states that, given the axiom of choice, a solid three-dimensional sphere can be divided into 

finite (unmeasurable) parts, and then reassembled elsewhere simply by rotation and 

translation, to form two complete radii with the same original ball. (We will not repeat the 

derivation process of the whole theorem here) 

For Banach-Tarski paradox, almost the entire mathematical community would not 

consider it a paradox, but a well-known mathematical theorem, e.g. Robert M. French 

(1988) [ 12 ], Tom Weston ( 2003 ) [ 13 ], Wagon , S. (2010) [ 14 ], Francis Edward Su ( 1990 ) [ 15 ]. 

However, when we analyze the nature of the Banach-Tarski paradox and Bertrand 

paradox, we will find that the origin of these two problems is exactly the same: our 

definition of "point" and "line" in mathematical theory, and the basic theory of set theory. 

For example, we can simplify the Banach - Tarski paradox problem by considering 

the following two functions: 

y(x) = x (3)

g(x) = 2x (4)

Where, x ∈ [0,1], according to the definition of the continuity of mathematical functions, 

we know that y(x)and g(x)are continuous, and a one-to-one mapping relationship can be 

established between the two functions: 
y(x) → g(x) 

�: x → 2x，x ∈ [0,1] 
Mapping relationship of the above functions: y(x) → g(x) , It is equivalent to divid-

ing a line segment of length 1 into two line segments of length 1, and it can be repeated 

indefinitely: 
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Figure 2. Simplified graph paradox. 

This is superficially different from the Banach -Tarski paradox, but there is no essen-

tial difference in mathematics, and its origins are derived from the basic definition of 

"number" in our entire mathematical theory. In infinite sets, we have many ways to im-

plement the Banach-Tarski paradox mapping relationship, which is very common in dis-

cussions of mathematical set theory. The reason why Banach - Tarski paradox is different 

is that it visualizes the conclusions of set theory through operations such as "dividing the 

sphere" in geometry, which surprises many people who are not familiar with mathemati-

cal set theory. It's like turning "mathematical magic" into reality. 

When we have defined from the beginning that "numbers" have no size, points have 

no size, defined mapping relationships, and defined the continuity of functions, then Ba-

nach - Tarski paradox and Bertrand paradox will be the direct conclusions of mathemati-

cal theory. 

Only difference: we put Banach -Tarski paradox is only used in the field of mathe-

matical theory, and has never tried to prove it in practice, so few people doubt its ration-

ality in mathematical theory. 

On the contrary, Bertrand paradox is a basic conclusion in probability theory, and we 

regard probability theory as a practical discipline, so it is easy to connect it with practical 

application, which has led to it being widely regarded as a paradox Argument. If not for 

the purpose of application, Bertrand paradox itself is not surprising in the field of mathe-

matical theory, but it is normal. 

3.3. Amendments to the theoretical basis of probability theory 

We make the following two requirements for any theory: 

1) The theory itself is self-consistent, and there is no logical contradiction; 

2) The theory itself needs to be adapted to its application category, otherwise it 

will be out of the meaning of constructing the theory. 

Then, for probability theory, because it has been out of the category of pure theoret-

ical mathematics, it should be actually applied to the real physical world. Therefore, we 

need to revise its theoretical basis accordingly: 

Modified basic definition of probability theory: "points" have size, "lines" have 

width, and they are all quantized. 

After the revision, the entire theoretical system of probability theory will become 

complete and in line with the application purpose of its theory. 

4. Conclusion  

Through the analysis of the article, we have drawn the following important conclu-

sions: 
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1) The theoretical basis of mathematics is different from the theoretical basis of phys-

ics, so we need to be very careful when using mathematical theoretical tools for physics 

research, otherwise it will be easy to make mistakes; 

2) Finiteness and discreteness should be used as the basis of the entire physical the-

ory; this paper points out that the use of infinite " ∞" and infinite small " 0 " and the con-

tinuity of functions without restrictions and demonstrations in physics are not desirable. 

It will bring a lot of trouble to the theory of physics. 

3) Through the analysis of Banach-Tarski paradox and Bertrand paradox, this paper 

proposes that we should revise the basic assumption of probability theory: it is assumed 

that "points" have quantized sizes, and "lines" also have quantized widths. 

After the correction, we can not only avoid the troubles caused by Bertrand paradox, 

but also make probability theory better for practical application. 
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